
Math 661 Fall 2013
Homework 2 Solutions Drew Armstrong

1. Consider the lattice of subgroups L (G) of a group G. For each H ∈ L (G) and g ∈ G let

gHg−1 := {ghg−1 : h ∈ H}.
(a) Show that gHg−1 is a subgroup of G.
(b) Show that the map G×L (G)→ L (G) defined by (g,H) 7→ gHg−1 is a group action.
(c) The stabilizer of H ∈ L (G) under this action is called the normalizer of H:

NG(H) := {g ∈ G : gHg−1 = H}.
Show that NG(H) is the largest subgroup of G in which H is normal.

Proof. For part (a) we will show that for all a, b ∈ gHg−1 we have ab−1 ∈ gHg−1. So suppose
that a, b ∈ gHg−1, say a = gh1g

−1 and b = gh2g
−1. Note that b−1 = gh−1

2 g−1. Then we have

ab = (gh1g
−1)(gh2g

−1) = g(h1h
−1
2 )g−1 ∈ gHg−1,

as desired.
For part (b), let (g, •) : L (G)→ L (G) denote the map H 7→ gHg−1. We must show that

for all g, h ∈ G we have (g, •) ◦ (h, •) = (gh, •). [In other words, the map g 7→ (g, •) is a group
homomorphism G→ Aut(L (G)).] Indeed, for all H ∈ L (G) and for all g, h ∈ G we have

(g, (h,H)) = (g, hHh−1) = g(hHh−1)g−1 = (gh)H(gh)−1 = (gh,H).

For part (c), first note that H is indeed a normal a subgroup of NG(H). Now suppose we
have H CK ≤ G for some K. We want to show that K ≤ NG(H). Indeed, suppose g ∈ K.
Then since H CK we have gHg−1 = H, which implies that g ∈ NG(H). �

2. Let H ≤ G be a subgroup.

(a) For each a ∈ NG(H), define a function θa : H → G by θa(h) := aha−1. Show that θa
is actually in Aut(H), the group of automorphisms (i.e. self-isomorphisms) of H.

(b) Show that the map θ : NG(H)→ Aut(H) is a group homomorphism.
(c) Show that the kernel of θ is the centralizer of H

CG(H) := {g ∈ G : ghg−1 = h for all h ∈ H}.
(d) Conclude that CG(H) is normal in NG(H) and that NG(H)/CG(H) is isomorphic to

a subgroup of Aut(H).

Proof. Let a ∈ NG(H). For part (a) we wish to show that the map θa : H → G defined by
θa(h) := aha−1 is actually in Aut(H). Well, since a ∈ NG(a) we know that aHa−1 = H,
hence for every h ∈ H we have aha−1 ∈ aHa−1 = H. So the map θa sends H to itself. The
map is a homomorphism because for all h1, h2 ∈ H we have

θa(h1)θa(h2) = (ah1a
−1)(ah2a

−1) = a(h1h2)a
−1 = θa(h1h2).

Finally, the map is invertible because θ−1
a = θa−1 . We conclude that θa ∈ Aut(H).

By part (a) we have a function θ : NG(H)→ Aut(H) given by a 7→ θa. For part (b) we will
show that θ is a homomorphism. Indeed, consider a, b ∈ NG(H). Then for all h ∈ H we have

θa ◦ θb(h) = θa(bhb
−1) = a(bhb−1)a−1 = (ab)h(ab)−1 = θab(h),



which implies that θa ◦ θb = θab as functions. Indeed, note that θa : H → H is the identity
map if and only if aha−1 = h for all h ∈ H, i.e., if and only if a ∈ CG(H).

For part (d) we apply the Fundamental Homomorphism Theorem to θ : NG(H)→ Aut(H)
to conclude that

NG(H)

CG(H)
=
NG(H)

ker θ
≈ im θ ≤ Aut(H).

�

[Some Words (to ignore if you want): If T ≤ G is a maximal abelian subgroup of a compact Lie
group G, then NG(T )/CG(T ) is called the Weyl group of G. It is important.]

3. Given two groups H,K and a group homomorphism θ : H → Aut(K), we define the
semidirect product of H and K with respect to θ as follows: The underlying set is the Cartesian
product H ×K and the group operation is

(h1, k1) • (h2, k2) := (h1h2, θ
−1
h2

(k1)k2).

(a) Show that this is indeed a group. We call it H nθ K.
(b) Identify H and K with subgroups of H nθ K via that maps h 7→ (h, 1K) for h ∈ H

and k 7→ (1H , k) for k ∈ K. Show that

H ∩K = 1, K EH nθ K, and HK = H nθ K.

(c) Furthermore, show that for all h ∈ H and k ∈ K we have θh(k) = hkh−1.

Proof. For part (a), we must show that the operation is associative, with an identity element
and inverses. First note that (1, 1) is an identity element because

(1, 1) • (h, k) = (1h, θ−1
1 (1)k) = (1h, 1k) = (h, k).

Next observe that (h, k)−1 = (h−1, θh(k−1)) because

(h, k) • (h−1, θh(k−1)) = (hh−1, θ−1
h−1(k)θh(k−1))

= (1, θh(k)θh(k−1))

= (1, θh(kk−1))

= (1, θh(1))

= (1, 1).

Finally, observe that the operation is associative. Given h1, h2, h3 ∈ H and k1, k2, k3 ∈ K we
have

[(h1, k1) • (h2, k2)] • (h3, h3) = (h1h2, θ
−1
h2

(k1)k2) • (h3, k3)

= ((h1h2)h3, θ
−1
h3

(θ−1
h2

(k1)k2)k3)

= ((h1h2)h3, θ
−1
h3
◦ θ−1

h2
(k1)θ

−1
h3

(k2)k3)

and

(h1, k1) • [(h2, k2) • (h3, k3)] = (h1, k1) • (h2h3, θ
−1
h3

(k2)k3)

= (h1(h2h3), θ
−1
h2h3

(k1)θ
−1
h3

(k2)k3).

Since (h1h2)h3 = h1(h2h3) and θ−1
h3
◦ θ−1

h2
= (θh2 ◦ θh3)−1 = θ−1

h2h3
, the two expressions are

equal.
For part (b) we will identify H and K with a subgroups of H nθK via the maps h↔ (h, 1)

and k ↔ (1, k). Under these identifications we will show that the external semidirect product



agrees with the corresponding internal semidirect product, i.e. H nθ K = H nK. There are
three steps. First note that H nθ K = HK because for all h ∈ H and k ∈ K we have

(h, k) = (h, 1) • (1, k).

Next, note that H ∩ K = 1 because the only element simultaneously of the form (h, 1) and
(1, k) is the identity element (1, 1). Finally, we will show that K is normal in HnθK. Indeed,
for all (1, a) ∈ K and (h, k) ∈ H nθ K we have

(h, k) • (1, a) • (h, k)−1 = (h, k) • (1, a) • (h−1, θh(k−1))

= (h1, θ−1
1 (k)a) • (h−1, θh(k−1))

= (h, ka) • (h−1, θh(k−1))

= (hh−1, θ−1
h−1(ka)θh(k−1))

= (1, θh(ka)θh(k−1))

= (1, θh(kak−1)) ∈ K.

For part (c), we will verify that conjugation action ofH onK agrees with the homomorphism
θ : H → Aut(K) that we used to externally define the semidirect product. Indeed, for all
h ∈ H and k ∈ K we have

“hkh−1” = (h, 1) • (1, k) • (h, 1)−1

= (h, 1) • (1, k) • (h−1, 1)

= (h1, θ−1
1 (1)k) • (h−1, 1)

= (h, k) • (h−1, 1)

= (hh−1, θ−1
h−1(k)1)

= (1, θh(k)) = “θh(k)”.

�

[Here we took two groups H,K that were not necessarily related and we created a group G such
that H and K embed in G with the property that G = H nK. In order to do this, we needed
a homomorphism θ : H → Aut(K). Without the homomorphism θ we could never get started.
Semidirect products are the most basic way to create group extensions.]

4. Let G be a group. If G acts on a set X via α : G → Aut(X), we say that the pair (X,α)
is a G-set. Given two G-sets (X,α) and (Y, β), we say that a function ϕ : X → Y is a G-set
homomorphism if for all g ∈ G the following diagram commutes:

X Y

X Y

ϕ

ϕ

αg βg

That is, for all x ∈ X and g ∈ G we have ϕ(βg(x)) = αg(ϕ(x)). We say that two G-sets are
isomorphic if there exists a bijective G-set homomorphism between them.

(a) If ϕ : X → Y is a G-set homomorphism, show that for all x ∈ X we have

Stab(x) ≤ Stab(ϕ(x)).



(b) If ϕ : X → Y is a G-set isomorphism, show that for all x ∈ X we have

Stab(x) = Stab(ϕ(x)).

(c) Given a subgroup H ≤ G we put a G-set structure on G/H by left-multiplication.
Show that this G-set is transitive. Moreover, show that any transitive G-set is
isomorphic to G/H for some H ≤ G.

Proof. For part (a), consider g ∈ Stab(x). Then we have

ϕ(x) = ϕ(αg(x)) = βg(ϕ(x)),

hence g ∈ Stab(ϕ(x)). For part (b), consider the inverse G-set homomorphism ϕ−1 : Y → X.
Applying part (a) to ϕ(x) ∈ Y gives Stab(ϕ(x)) ≤ Stab(ϕ−1(ϕ(x))) = Stab(x). Hence
Stab(x) = Stab(ϕ(x)).

For part (c), consider H ≤ G and for each g ∈ G define the map αg : G/H → G/H by
C 7→ gC. It is easy to check that α : G → Aut(G/H) is a homomorphism. This action is
transitive because for all g1H and g2H in G/H we have αg2g−1

1
(g1H) = g2H. Now let X be

any transitive G-set and let H = Stab(x) for some x ∈ X. Recall that we have a bijection

ϕ : X → G/H

defined by ϕ(g(x)) := gH. (We just replace the symbol x by the symbol H.) Finally, observe
that ϕ is in fact a G-set isomorphism. Indeed, for all g1 ∈ G and g2(x) ∈ X we have

g1(ϕ(g2(x))) = g1(g2H) = (g1g2)H = ϕ((g1g2)(x)) = ϕ(g1(g2(x))).

�

5. Given a G-set X, let AutG(X) denote the group of G-set automorphisms of X. In this
problem you will show that for all transitive G-sets X we have AutG(X) ≈ NG(H)/H, where
H is the stabilizer of a point and NG(H) is the normalizer of H in G. By Problem 4(c) we
can replace X with G/H.

(a) Given n ∈ NG(H), show that right multiplication by n−1 defines a G-set automor-
phism G/H → G/H. Call this automorphism θn.

(b) Show that θ : NG(H)→ AutG(G/H) is a homomorphism with kernel H.
(c) Show that the homomorphism θ from part (b) is surjective. [Hint: Let ϕ : G/H → G/H

be any G-set automorphism and suppose ϕ(H) = n−1H. Use Problem 4(b) to conclude
that n ∈ NG(H). Finally, show that for all g ∈ G we have ϕ(gH) = gHn−1.]

(d) If G acts freely and transitively on X, conclude that AutG(X) ≈ G.

Proof. For part (a), let n ∈ NG(H). First note that the rule θn(C) := Cn−1 actually defines
a function G/H → G/H. Indeed, given gH ∈ G/H we have gHn−1 = gn−1H ∈ G/H. Note
that θn is a bijection because its has an inverse; namely, θ−1

n = θn−1 . Finally, to see that θn is
a G-set map, observe that for all C ∈ G/H and for all g ∈ G we have

g(θn(C)) = g(Cn−1) = (gC)n−1 = θn(gC).

For part (b), observe that for all C ∈ G/H and for all m,n ∈ NG(H) we have

θmn(C) = C(mn)−1 = C(n−1m−1) = (Cn−1)m−1 = θm ◦ θn(C),

hence θ is a homomorphism. Note that we have θn = id if and only if gH = gHn−1 for all
g ∈ G, which happens if and only if n ∈ H. Hence ker θ = H.



For part (c), let ϕ : G/H → G/H be any G-set isomorphism and suppose that ϕ(H) =
n−1H for some n ∈ G. By Problem 4(b) we know that

H = Stab(H) = Stab(ϕ(H)) = Stab(n−1H) = n−1Stab(H)n = n−1Hn,

hence n ∈ NG(H). Finally, for all g ∈ G we have by assumption that ϕ(gH) = g(ϕ(H)), hence

ϕ(gH) = g(ϕ(H)) = g(n−1H) = gHn−1.

We conclude that the homomorphism θ : NG(H)→ AutG(G/H) is surjective, and the Funda-
mental Homomorphism Theorem says that

AutG(G/H) = im θ ≈ NG(H)

ker θ
=
NG(H)

H
.

For part (d), suppose that G acts freely and transitively on X. In this case the stabilizer is
trivial (i.e. H = 1), so we have

AutG(X) ≈ NG(1)

1
=
G

1
≈ G.

�

[Thinking Problem: I originally made a mistake by thinking that AutG(X) should be isomorphic to
Aut(G)nG. Can anyone figure out what I meant to say? That is, if G acts freely and transitively on
a set X, is there some appropriate notion of “automorphism” such that “Aut”(X) ≈ Aut(G)nG?]


