1. Consider the lattice of subgroups $\mathscr{L}(G)$ of a group G. For each $H \in \mathscr{L}(G)$ and $g \in G$ let

$$
g H g^{-1}:=\left\{g h g^{-1}: h \in H\right\} .
$$

(a) Show that $g H^{-1}$ is a subgroup of G.
(b) Show that the map $G \times \mathscr{L}(G) \rightarrow \mathscr{L}(G)$ defined by $(g, H) \mapsto g H g^{-1}$ is a group action.
(c) The stabilizer of $H \in \mathscr{L}(G)$ under this action is called the normalizer of H :

$$
N_{G}(H):=\left\{g \in G: g H g^{-1}=H\right\} .
$$

Show that $N_{G}(H)$ is the largest subgroup of G in which H is normal.
Proof. For part (a) we will show that for all $a, b \in g H g^{-1}$ we have $a b^{-1} \in g H g^{-1}$. So suppose that $a, b \in g H g^{-1}$, say $a=g h_{1} g^{-1}$ and $b=g h_{2} g^{-1}$. Note that $b^{-1}=g h_{2}^{-1} g^{-1}$. Then we have

$$
a b=\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g\left(h_{1} h_{2}^{-1}\right) g^{-1} \in g H g^{-1},
$$

as desired.
For part (b), let $(g, \bullet): \mathscr{L}(G) \rightarrow \mathscr{L}(G)$ denote the map $H \mapsto g H^{-1}$. We must show that for all $g, h \in G$ we have $(g, \bullet) \circ(h, \bullet)=(g h, \bullet)$. [In other words, the map $g \mapsto(g, \bullet)$ is a group homomorphism $G \rightarrow \operatorname{Aut}(\mathscr{L}(G))$.] Indeed, for all $H \in \mathscr{L}(G)$ and for all $g, h \in G$ we have

$$
(g,(h, H))=\left(g, h H h^{-1}\right)=g\left(h H h^{-1}\right) g^{-1}=(g h) H(g h)^{-1}=(g h, H) .
$$

For part (c), first note that H is indeed a normal a subgroup of $N_{G}(H)$. Now suppose we have $H \triangleleft K \leq G$ for some K. We want to show that $K \leq N_{G}(H)$. Indeed, suppose $g \in K$. Then since $H \triangleleft K$ we have $g H g^{-1}=H$, which implies that $g \in N_{G}(H)$.
2. Let $H \leq G$ be a subgroup.
(a) For each $a \in N_{G}(H)$, define a function $\theta_{a}: H \rightarrow G$ by $\theta_{a}(h):=a h a^{-1}$. Show that θ_{a} is actually in $\operatorname{Aut}(H)$, the group of automorphisms (i.e. self-isomorphisms) of H.
(b) Show that the map $\theta: N_{G}(H) \rightarrow \operatorname{Aut}(H)$ is a group homomorphism.
(c) Show that the kernel of θ is the centralizer of H

$$
C_{G}(H):=\left\{g \in G: g h g^{-1}=h \text { for all } h \in H\right\} .
$$

(d) Conclude that $C_{G}(H)$ is normal in $N_{G}(H)$ and that $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(\mathrm{H})$.

Proof. Let $a \in N_{G}(H)$. For part (a) we wish to show that the map $\theta_{a}: H \rightarrow G$ defined by $\theta_{a}(h):=a h a^{-1}$ is actually in $\operatorname{Aut}(H)$. Well, since $a \in N_{G}(a)$ we know that $a H a^{-1}=H$, hence for every $h \in H$ we have $a h a^{-1} \in a H a^{-1}=H$. So the map θ_{a} sends H to itself. The map is a homomorphism because for all $h_{1}, h_{2} \in H$ we have

$$
\theta_{a}\left(h_{1}\right) \theta_{a}\left(h_{2}\right)=\left(a h_{1} a^{-1}\right)\left(a h_{2} a^{-1}\right)=a\left(h_{1} h_{2}\right) a^{-1}=\theta_{a}\left(h_{1} h_{2}\right) .
$$

Finally, the map is invertible because $\theta_{a}^{-1}=\theta_{a^{-1}}$. We conclude that $\theta_{a} \in \operatorname{Aut}(H)$.
By part (a) we have a function $\theta: N_{G}(H) \rightarrow \operatorname{Aut}(H)$ given by $a \mapsto \theta_{a}$. For part (b) we will show that θ is a homomorphism. Indeed, consider $a, b \in N_{G}(H)$. Then for all $h \in H$ we have

$$
\theta_{a} \circ \theta_{b}(h)=\theta_{a}\left(b h b^{-1}\right)=a\left(b h b^{-1}\right) a^{-1}=(a b) h(a b)^{-1}=\theta_{a b}(h),
$$

which implies that $\theta_{a} \circ \theta_{b}=\theta_{a b}$ as functions. Indeed, note that $\theta_{a}: H \rightarrow H$ is the identity map if and only if $a h a^{-1}=h$ for all $h \in H$, i.e., if and only if $a \in C_{G}(H)$.

For part (d) we apply the Fundamental Homomorphism Theorem to $\theta: N_{G}(H) \rightarrow \operatorname{Aut}(H)$ to conclude that

$$
\frac{N_{G}(H)}{C_{G}(H)}=\frac{N_{G}(H)}{\operatorname{ker} \theta} \approx \operatorname{im} \theta \leq \operatorname{Aut}(H) .
$$

[Some Words (to ignore if you want): If $T \leq G$ is a maximal abelian subgroup of a compact Lie group G, then $N_{G}(T) / C_{G}(T)$ is called the Weyl group of G. It is important.]
3. Given two groups H, K and a group homomorphism $\theta: H \rightarrow \operatorname{Aut}(K)$, we define the semidirect product of H and K with respect to θ as follows: The underlying set is the Cartesian product $H \times K$ and the group operation is

$$
\left(h_{1}, k_{1}\right) \bullet\left(h_{2}, k_{2}\right):=\left(h_{1} h_{2}, \theta_{h_{2}}^{-1}\left(k_{1}\right) k_{2}\right)
$$

(a) Show that this is indeed a group. We call it $H \ltimes_{\theta} K$.
(b) Identify H and K with subgroups of $H \ltimes_{\theta} K$ via that maps $h \mapsto\left(h, 1_{K}\right)$ for $h \in H$ and $k \mapsto\left(1_{H}, k\right)$ for $k \in K$. Show that

$$
H \cap K=1, \quad K \unlhd H \ltimes_{\theta} K, \quad \text { and } \quad H K=H \ltimes_{\theta} K .
$$

(c) Furthermore, show that for all $h \in H$ and $k \in K$ we have $\theta_{h}(k)=h k h^{-1}$.

Proof. For part (a), we must show that the operation is associative, with an identity element and inverses. First note that $(1,1)$ is an identity element because

$$
(1,1) \bullet(h, k)=\left(1 h, \theta_{1}^{-1}(1) k\right)=(1 h, 1 k)=(h, k) .
$$

Next observe that $(h, k)^{-1}=\left(h^{-1}, \theta_{h}\left(k^{-1}\right)\right)$ because

$$
\begin{aligned}
(h, k) \bullet\left(h^{-1}, \theta_{h}\left(k^{-1}\right)\right) & =\left(h h^{-1}, \theta_{h^{-1}}^{-1}(k) \theta_{h}\left(k^{-1}\right)\right) \\
& =\left(1, \theta_{h}(k) \theta_{h}\left(k^{-1}\right)\right) \\
& =\left(1, \theta_{h}\left(k k^{-1}\right)\right) \\
& =\left(1, \theta_{h}(1)\right) \\
& =(1,1) .
\end{aligned}
$$

Finally, observe that the operation is associative. Given $h_{1}, h_{2}, h_{3} \in H$ and $k_{1}, k_{2}, k_{3} \in K$ we have

$$
\begin{aligned}
{\left[\left(h_{1}, k_{1}\right) \bullet\left(h_{2}, k_{2}\right)\right] \bullet\left(h_{3}, h_{3}\right) } & =\left(h_{1} h_{2}, \theta_{h_{2}}^{-1}\left(k_{1}\right) k_{2}\right) \bullet\left(h_{3}, k_{3}\right) \\
& =\left(\left(h_{1} h_{2}\right) h_{3}, \theta_{h_{3}}^{-1}\left(\theta_{h_{2}}^{-1}\left(k_{1}\right) k_{2}\right) k_{3}\right) \\
& =\left(\left(h_{1} h_{2}\right) h_{3}, \theta_{h_{3}}^{-1} \circ \theta_{h_{2}}^{-1}\left(k_{1}\right) \theta_{h_{3}}^{-1}\left(k_{2}\right) k_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(h_{1}, k_{1}\right) \bullet\left[\left(h_{2}, k_{2}\right) \bullet\left(h_{3}, k_{3}\right)\right] & =\left(h_{1}, k_{1}\right) \bullet\left(h_{2} h_{3}, \theta_{h_{3}}^{-1}\left(k_{2}\right) k_{3}\right) \\
& =\left(h_{1}\left(h_{2} h_{3}\right), \theta_{h_{2} h_{3}}^{-1}\left(k_{1}\right) \theta_{h_{3}}^{-1}\left(k_{2}\right) k_{3}\right) .
\end{aligned}
$$

Since $\left(h_{1} h_{2}\right) h_{3}=h_{1}\left(h_{2} h_{3}\right)$ and $\theta_{h_{3}}^{-1} \circ \theta_{h_{2}}^{-1}=\left(\theta_{h_{2}} \circ \theta_{h_{3}}\right)^{-1}=\theta_{h_{2} h_{3}}^{-1}$, the two expressions are equal.

For part (b) we will identify H and K with a subgroups of $H \ltimes_{\theta} K$ via the maps $h \leftrightarrow(h, 1)$ and $k \leftrightarrow(1, k)$. Under these identifications we will show that the external semidirect product
agrees with the corresponding internal semidirect product, i.e. $H \ltimes_{\theta} K=H \ltimes K$. There are three steps. First note that $H \ltimes_{\theta} K=H K$ because for all $h \in H$ and $k \in K$ we have

$$
(h, k)=(h, 1) \bullet(1, k) .
$$

Next, note that $H \cap K=1$ because the only element simultaneously of the form ($h, 1$) and $(1, k)$ is the identity element $(1,1)$. Finally, we will show that K is normal in $H \ltimes_{\theta} K$. Indeed, for all $(1, a) \in K$ and $(h, k) \in H \ltimes_{\theta} K$ we have

$$
\begin{aligned}
(h, k) \bullet(1, a) \bullet(h, k)^{-1} & =(h, k) \bullet(1, a) \bullet\left(h^{-1}, \theta_{h}\left(k^{-1}\right)\right) \\
& =\left(h 1, \theta_{1}^{-1}(k) a\right) \bullet\left(h^{-1}, \theta_{h}\left(k^{-1}\right)\right) \\
& =(h, k a) \bullet\left(h^{-1}, \theta_{h}\left(k^{-1}\right)\right) \\
& =\left(h h^{-1}, \theta_{h^{-1}}^{-1}(k a) \theta_{h}\left(k^{-1}\right)\right) \\
& =\left(1, \theta_{h}(k a) \theta_{h}\left(k^{-1}\right)\right) \\
& =\left(1, \theta_{h}\left(k a k^{-1}\right)\right) \in K .
\end{aligned}
$$

For part (c), we will verify that conjugation action of H on K agrees with the homomorphism $\theta: H \rightarrow \operatorname{Aut}(K)$ that we used to externally define the semidirect product. Indeed, for all $h \in H$ and $k \in K$ we have

$$
\begin{aligned}
" h k h^{-1 "} & =(h, 1) \bullet(1, k) \bullet(h, 1)^{-1} \\
& =(h, 1) \bullet(1, k) \bullet\left(h^{-1}, 1\right) \\
& =\left(h 1, \theta_{1}^{-1}(1) k\right) \bullet\left(h^{-1}, 1\right) \\
& =(h, k) \bullet\left(h^{-1}, 1\right) \\
& =\left(h h^{-1}, \theta_{h^{-1}}^{-1}(k) 1\right) \\
& =\left(1, \theta_{h}(k)\right)=" \theta_{h}(k) " .
\end{aligned}
$$

[Here we took two groups H, K that were not necessarily related and we created a group G such that H and K embed in G with the property that $G=H \ltimes K$. In order to do this, we needed a homomorphism $\theta: H \rightarrow \operatorname{Aut}(K)$. Without the homomorphism θ we could never get started. Semidirect products are the most basic way to create group extensions.]
4. Let G be a group. If G acts on a set X via $\alpha: G \rightarrow \operatorname{Aut}(X)$, we say that the pair (X, α) is a G-set. Given two G-sets (X, α) and (Y, β), we say that a function $\varphi: X \rightarrow Y$ is a G-set homomorphism if for all $g \in G$ the following diagram commutes:

That is, for all $x \in X$ and $g \in G$ we have $\varphi\left(\beta_{g}(x)\right)=\alpha_{g}(\varphi(x))$. We say that two G-sets are isomorphic if there exists a bijective G-set homomorphism between them.
(a) If $\varphi: X \rightarrow Y$ is a G-set homomorphism, show that for all $x \in X$ we have

$$
\operatorname{Stab}(x) \leq \operatorname{Stab}(\varphi(x))
$$

(b) If $\varphi: X \rightarrow Y$ is a G-set isomorphism, show that for all $x \in X$ we have

$$
\operatorname{Stab}(x)=\operatorname{Stab}(\varphi(x))
$$

(c) Given a subgroup $H \leq G$ we put a G-set structure on G / H by left-multiplication. Show that this G-set is transitive. Moreover, show that any transitive G-set is isomorphic to G / H for some $H \leq G$.

Proof. For part (a), consider $g \in \operatorname{Stab}(x)$. Then we have

$$
\varphi(x)=\varphi\left(\alpha_{g}(x)\right)=\beta_{g}(\varphi(x))
$$

hence $g \in \operatorname{Stab}(\varphi(x))$. For part (b), consider the inverse G-set homomorphism $\varphi^{-1}: Y \rightarrow X$. Applying part (a) to $\varphi(x) \in Y$ gives $\operatorname{Stab}(\varphi(x)) \leq \operatorname{Stab}\left(\varphi^{-1}(\varphi(x))\right)=\operatorname{Stab}(x)$. Hence $\operatorname{Stab}(x)=\operatorname{Stab}(\varphi(x))$.

For part (c), consider $H \leq G$ and for each $g \in G$ define the map $\alpha_{g}: G / H \rightarrow G / H$ by $C \mapsto g C$. It is easy to check that $\alpha: G \rightarrow \operatorname{Aut}(G / H)$ is a homomorphism. This action is transitive because for all $g_{1} H$ and $g_{2} H$ in G / H we have $\alpha_{g_{2} g_{1}^{-1}}\left(g_{1} H\right)=g_{2} H$. Now let X be any transitive G-set and let $H=\operatorname{Stab}(x)$ for some $x \in X$. Recall that we have a bijection

$$
\varphi: X \rightarrow G / H
$$

defined by $\varphi(g(x)):=g H$. (We just replace the symbol x by the symbol H.) Finally, observe that φ is in fact a G-set isomorphism. Indeed, for all $g_{1} \in G$ and $g_{2}(x) \in X$ we have

$$
g_{1}\left(\varphi\left(g_{2}(x)\right)\right)=g_{1}\left(g_{2} H\right)=\left(g_{1} g_{2}\right) H=\varphi\left(\left(g_{1} g_{2}\right)(x)\right)=\varphi\left(g_{1}\left(g_{2}(x)\right)\right) .
$$

5. Given a G-set X, let $\operatorname{Aut}_{G}(X)$ denote the group of G-set automorphisms of X. In this problem you will show that for all transitive G-sets X we have $\operatorname{Aut}_{G}(X) \approx N_{G}(H) / H$, where H is the stabilizer of a point and $N_{G}(H)$ is the normalizer of H in G. By Problem 4(c) we can replace X with G / H.
(a) Given $n \in N_{G}(H)$, show that right multiplication by n^{-1} defines a G-set automorphism $G / H \rightarrow G / H$. Call this automorphism θ_{n}.
(b) Show that $\theta: N_{G}(H) \rightarrow \operatorname{Aut}_{G}(G / H)$ is a homomorphism with kernel H.
(c) Show that the homomorphism θ from part (b) is surjective. [Hint: Let $\varphi: G / H \rightarrow G / H$ be any G-set automorphism and suppose $\varphi(H)=n^{-1} H$. Use Problem 4(b) to conclude that $n \in N_{G}(H)$. Finally, show that for all $g \in G$ we have $\varphi(g H)=g H n^{-1}$.]
(d) If G acts freely and transitively on X, conclude that $\operatorname{Aut}_{G}(X) \approx G$.

Proof. For part (a), let $n \in N_{G}(H)$. First note that the rule $\theta_{n}(C):=C n^{-1}$ actually defines a function $G / H \rightarrow G / H$. Indeed, given $g H \in G / H$ we have $g H n^{-1}=g n^{-1} H \in G / H$. Note that θ_{n} is a bijection because its has an inverse; namely, $\theta_{n}^{-1}=\theta_{n^{-1}}$. Finally, to see that θ_{n} is a G-set map, observe that for all $C \in G / H$ and for all $g \in G$ we have

$$
g\left(\theta_{n}(C)\right)=g\left(C n^{-1}\right)=(g C) n^{-1}=\theta_{n}(g C) .
$$

For part (b), observe that for all $C \in G / H$ and for all $m, n \in N_{G}(H)$ we have

$$
\theta_{m n}(C)=C(m n)^{-1}=C\left(n^{-1} m^{-1}\right)=\left(C n^{-1}\right) m^{-1}=\theta_{m} \circ \theta_{n}(C),
$$

hence θ is a homomorphism. Note that we have $\theta_{n}=$ id if and only if $g H=g H n^{-1}$ for all $g \in G$, which happens if and only if $n \in H$. Hence $\operatorname{ker} \theta=H$.

For part (c), let $\varphi: G / H \rightarrow G / H$ be any G-set isomorphism and suppose that $\varphi(H)=$ $n^{-1} H$ for some $n \in G$. By Problem 4(b) we know that

$$
H=\operatorname{Stab}(H)=\operatorname{Stab}(\varphi(H))=\operatorname{Stab}\left(n^{-1} H\right)=n^{-1} \operatorname{Stab}(H) n=n^{-1} H n,
$$

hence $n \in N_{G}(H)$. Finally, for all $g \in G$ we have by assumption that $\varphi(g H)=g(\varphi(H))$, hence

$$
\varphi(g H)=g(\varphi(H))=g\left(n^{-1} H\right)=g H n^{-1} .
$$

We conclude that the homomorphism $\theta: N_{G}(H) \rightarrow \operatorname{Aut}_{G}(G / H)$ is surjective, and the Fundamental Homomorphism Theorem says that

$$
\operatorname{Aut}_{G}(G / H)=\operatorname{im} \theta \approx \frac{N_{G}(H)}{\operatorname{ker} \theta}=\frac{N_{G}(H)}{H} .
$$

For part (d), suppose that G acts freely and transitively on X. In this case the stabilizer is trivial (i.e. $H=1$), so we have

$$
\operatorname{Aut}_{G}(X) \approx \frac{N_{G}(1)}{1}=\frac{G}{1} \approx G .
$$

[Thinking Problem: I originally made a mistake by thinking that $\operatorname{Aut}_{G}(X)$ should be isomorphic to Aut $(G) \ltimes G$. Can anyone figure out what I meant to say? That is, if G acts freely and transitively on a set X, is there some appropriate notion of "automorphism" such that "Aut" $(X) \approx \operatorname{Aut}(G) \ltimes G$?]

