- **1.** Consider the lattice of subgroups $\mathscr{L}(G)$ of a group G. For each $H \in \mathscr{L}(G)$ and $g \in G$ let $qHq^{-1} := \{qhq^{-1} : h \in H\}.$
 - (a) Show that qHq^{-1} is a subgroup of G.
 - (b) Show that the map $G \times \mathscr{L}(G) \to \mathscr{L}(G)$ defined by $(g, H) \mapsto gHg^{-1}$ is a group action.
 - (c) The stabilizer of $H \in \mathscr{L}(G)$ under this action is called the normalizer of H:

$$N_G(H) := \{g \in G : gHg^{-1} = H\}.$$

Show that $N_G(H)$ is the largest subgroup of G in which H is normal.

- **2.** Let $H \leq G$ be a subgroup.
 - (a) For each $a \in N_G(H)$, define a function $\theta_a : H \to G$ by $\theta_a(h) := aha^{-1}$. Show that θ_a is actually in Aut(H), the group of automorphisms (i.e. self-isomorphisms) of H.
 - (b) Show that the map $\theta: N_G(H) \to \operatorname{Aut}(H)$ is a group homomorphism.
 - (c) Show that the kernel of θ is the centralizer of H

$$C_G(H) := \{ g \in G : ghg^{-1} = h \text{ for all } h \in H \}.$$

(d) Conclude that $C_G(H)$ is normal in $N_G(H)$ and that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).

[Some Words (to ignore if you want): If $T \leq G$ is a maximal abelian subgroup of a compact Lie group G, then $N_G(T)/C_G(T)$ is called the Weyl group of G. It is important.]

3. Given two groups H, K and a group homomorphism $\theta : H \to \operatorname{Aut}(K)$, we define the semidirect product of H and K with respect to θ as follows: The underlying set is the Cartesian product $H \times K$ and the group operation is

$$(h_1, k_1) \bullet (h_2, k_2) := (h_1 h_2, \theta_{h_2}^{-1}(k_1) k_2).$$

- (a) Show that this is indeed a group. We call it $H \ltimes_{\theta} K$.
- (b) Identify H and K with subgroups of $H \ltimes_{\theta} K$ via that maps $h \mapsto (h, 1_K)$ for $h \in H$ and $k \mapsto (1_H, k)$ for $k \in K$. Show that

 $H \cap K = 1$, $K \leq H \ltimes_{\theta} K$, and $HK = H \ltimes_{\theta} K$.

(c) Furthermore, show that for all $h \in H$ and $k \in K$ we have $\theta_h(k) = hkh^{-1}$.

4. Let G be a group. If G acts on a set X via $\alpha : G \to \operatorname{Aut}(X)$, we say that the pair (X, α) is a G-set. Given two G-sets (X, α) and (Y, β) , we say that a function $\varphi : X \to Y$ is a G-set homomorphism if for all $g \in G$ the following diagram commutes:

That is, for all $x \in X$ and $g \in G$ we have $\varphi(\beta_g(x)) = \alpha_g(\varphi(x))$. We say that two *G*-sets are isomorphic if there exists a bijective *G*-set homomorphism between them.

(a) If $\varphi: X \to Y$ is a G-set homomorphism, show that for all $x \in X$ we have

 $\operatorname{Stab}(x) \leq \operatorname{Stab}(\varphi(x)).$

(b) If $\varphi: X \to Y$ is a G-set isomorphism, show that for all $x \in X$ we have

 $\operatorname{Stab}(x) = \operatorname{Stab}(\varphi(x)).$

(c) Given a subgroup $H \leq G$ we put a *G*-set structure on G/H by left-multiplication. Show that this *G*-set is **transitive**. Moreover, show that **any transitive** *G*-set is isomorphic to G/H for some $H \leq G$.

5. Given a G-set X, let $\operatorname{Aut}_G(X)$ denote the group of G-set automorphisms of X. In this problem you will show that for all **transitive** G-sets X we have $\operatorname{Aut}_G(X) \approx N_G(H)/H$, where H is the stabilizer of a point and $N_G(H)$ is the normalizer of H in G. By Problem 4(c) we can replace X with G/H.

- (a) Given $n \in N_G(H)$, show that **right multiplication** by n^{-1} defines a *G*-set automorphism $G/H \to G/H$. Call this automorphism θ_n .
- (b) Show that $\theta: N_G(H) \to \operatorname{Aut}_G(G/H)$ is a homomorphism with kernel H.
- (c) Show that the homomorphism θ from part (b) is surjective. [Hint: Let $\varphi : G/H \to G/H$ be any G-set automorphism and suppose $\varphi(H) = n^{-1}H$. Use Problem 4(b) to conclude that $n \in N_G(H)$. Finally, show that for all $g \in G$ we have $\varphi(gH) = gHn^{-1}$.]
- (d) If G acts freely and transitively on X, conclude that $\operatorname{Aut}_G(X) \approx G$.