1. Let $H \leq G$ be a subgroup. Call the identity element 1 .
(a) State the definition of equivalence relation.

Proof. Let $R \subseteq G \times G$ be a subset and write $a \sim b$ to mean that $(a, b) \in R$. We say that \sim is an equivalence relation on the set G if

- $\forall a \in G, a \sim a$ (reflexive),
- $\forall a, b \in G, a \sim b \Rightarrow b \sim a$ (symmetric),
- $\forall a, b, c \in G, a \sim b$ and $b \sim c \Rightarrow a \sim c$ (transitive).
(b) Define a relation on G by setting $a \sim_{H} b \Leftrightarrow a^{-1} b \in H$. Prove that this is an equivalence relation on G.

Proof. Reflexive: For all $a \in G$ we have $a^{-1} a=1 \in H$, hence $a \sim_{H} a$. Symmetric: If $a \sim_{H} b$ (i.e. $a^{-1} b \in H$) then we also have $\left(a^{-1} b\right)^{-1}=b^{-1} a \in H$ (i.e. $b \sim_{H} a$). Transitive: Suppose that $a \sim_{H} b$ and $b \sim_{H} c$ (i.e. $a^{-1} b \in H$ and $\left.b^{-1} c \in H\right)$. Then we also have $\left(a^{-1} b\right)\left(b^{-1} c\right)=a^{-1} c \in H$ (i.e. $a \sim_{H} c$).
(c) Given an element $g \in G$ we define the left coset $g H:=\{g h: h \in H\}$. Prove that $a \sim_{H} b$ if and only if $a H=b H$.

Proof. First suppose that $a \sim_{H} b$, so that $a=b k$ for some $k \in H$, and let $a h$ (with $h \in H)$ be an artibrary element of $a H$. Then we have $a h=b k h=b(k h) \in b H$, hence $a H \subseteq b H$. The proof of $b H \subseteq a H$ is similar.

Conversely, suppose that $a H=b H$. Since $a \in a H=b H$ we have $a=b k$ for some $k \in H$. Then $a^{-1} b=k^{-1} \in H$, hence $a \sim_{H} b$.
(d) Prove that the map $g \mapsto a g$ is a bijection from H to $a H$.

Proof. Consider the map $G \rightarrow G$ defined by $g \mapsto a^{-1} g$. Since an arbitrary element of $a H$ looks like $a h$ for some $h \in H$ we see that the map sends $a H \rightarrow H$. Since this maps also inverts the map $g \mapsto a g$ we conclude that both maps are bijective.
(e) If $|G|$ is finite, prove that $|H|$ divides $|G|$.

Proof. Since \sim_{H} is an equivalence relation (by part (b)) we know that the equivalence classes (left H cosets) partition the set G. Let G / H denote the set of left H cosets. Since each coset has the same size (by part (d)) we conclude that $|G / H| \cdot|H|=|G|$.
(f) For all $a \in G$ prove that $a^{|G|}=1$. [Hint: Use part (e).]

Proof. Let $H=\langle a\rangle \leq G$ be the cyclic subgroup generated by a, so that $a^{|H|}=1$. Then by part (e) we have $a^{|G|}=a^{|H| \cdot|G / H|}=\left(a^{|H|}\right)^{|G / H|}=1^{|G / H|}=1$.
(g) Finally, let $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$(i.e. the group of units of the ring $\mathbb{Z} / n \mathbb{Z}$). What does the result of (f) say in this case?

Proof. Let $\varphi(n):=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|$(Euler's totient function). Then for all a coprime to n we have $a^{\varphi(n)} \equiv 1 \bmod n$. This is called Euler's Theorem. When n is prime, it's called Fermat's Little Theorem.
2. Let $K \leq G$ be a subgroup and let G / K denote the set of left cosets of K. Consider the surjective map of sets $\varphi: G \rightarrow G / K$ defined by $\varphi(a):=a K$.
(a) Suppose there exists some group operation on G / K such that φ is a group homomorphism. In this case, what is the identity element of G / K ? What is $\operatorname{ker} \varphi$?
Proof. If φ is a homomorphism then $1_{G / K}=\varphi\left(1_{G}\right)=1 K=K$. Then we have $\operatorname{ker} \varphi=\{a \in G: a K=K\}$, which equals K by Problem 1(c).
(b) If G^{\prime} is any group and $\psi: G \rightarrow G^{\prime}$ is any group homomorphism, prove that $\operatorname{ker} \psi$ is a normal subgroup of G (i.e. prove that $g k g^{-1} \in \operatorname{ker} \psi$ for all $g \in G$ and $k \in \operatorname{ker} \psi$).
Proof. Given $a, b \in \operatorname{ker} \psi$ we have $\psi\left(a^{-1} b\right)=\psi(a)^{-1} \psi(b)=1^{-1} 1=1$, hence $a^{-1} b \in \operatorname{ker} \psi$ and we conclude that $\operatorname{ker} \psi$ is a subgroup of G (you didn't need to show this). Now consider any $g \in G$ and $k \in \operatorname{ker} \psi$. Then we have $\psi\left(g k g^{-1}\right)=$ $\psi(g) \psi(k) \psi(g)^{-1}=\psi(g) 1 \psi(g)^{-1}=\psi(g) \psi(g)^{-1}=1$, hence $g k g^{-1} \in \operatorname{ker} \psi$ and we conclude that $\operatorname{ker} \psi \unlhd G$.
(c) Now suppose that $K \unlhd G$ is normal (i.e. suppose that $g \mathrm{~kg}^{-1} \in K$ for all $g \in G$ and $k \in K)$. In this case, prove that the operation $(G / K) \times(G / K) \rightarrow G / K$ given by $(a K, b K) \mapsto(a b) K$ is well-defined.

Proof. Suppose that $(a K, b K)=\left(a^{\prime} K, b^{\prime} K\right)$, so by Problem 1(c) we have $a=$ $a^{\prime} k_{1} \in K$ and $b=b^{\prime} k_{2} \in K$. In this case we wish to show that $(a b) K=\left(a^{\prime} b^{\prime}\right) K$. So consider an arbitrary element $a b k \in(a b) K$ with $k \in K$. Then we have $a b k=$ $a^{\prime} k_{1} b^{\prime} k_{2} k=a^{\prime} b^{\prime}\left(\left(b^{\prime}\right)^{-1} k_{1} b^{\prime}\right) k_{2} k$, and since $\left(b^{\prime}\right)^{-1} k_{1} b^{\prime} \in K$ by normality, we conclude that $a b k \in\left(a^{\prime} b^{\prime}\right) K$, hence $(a b) K \subseteq\left(a^{\prime} b^{\prime}\right) K$. The proof of $\left(a^{\prime} b^{\prime}\right) K \subseteq(a b) K$ is similar.
(d) Moreover, prove that this operation makes G / K into a group. (And hence the original φ is a group homomorphism.)
Proof. Let's call the operation $a K \cdot b K=(a b) K$. We must show that this operation is associative, with an identity element, and that inverses exist. Associative: For all $a, b, c \in G$ we have $a K \cdot(b K \cdot c K)=a K \cdot(b c) K=(a(b c)) K=((a b) c) K=$ $(a b) K \cdot c K=(a K \cdot b K) \cdot c K$, since G is a group. Identity: Note that for all $a \in G$ we have $a K \cdot 1 K=(a 1) K=a K=(1 a) K=1 K \cdot a K$, hence $1 K$ is an identity element for G / K. Inverses: For all $a \in G$ we have $a K \cdot a^{-1} K=\left(a a^{-1}\right) K=1 K=$ $\left(a^{-1} a\right) K=a^{-1} K \cdot a K$, hence $a^{-1} K$ is an inverse for $a K$.
(e) Finally, let $H \leq G$ be any subgroup. Prove that H is normal if and only if there exists a group G^{\prime} and a group homomorphism $\mu: G \rightarrow G^{\prime}$ such that $\operatorname{ker} \mu=H$.

Proof. First suppose that $\mu: G \rightarrow G^{\prime}$ is a group homomorphism with $\operatorname{ker} \mu=H$. Then by part (b) we see that $H \unlhd G$.

Conversely, suppose that $H \unlhd G$. Then by parts (a), (b) and (d) we can define a group G / H such that the map $\mu: G \rightarrow G / H$ defined by $g \mapsto g H$ is a group homomorphism with $\operatorname{ker} \mu=H$.
3. Let R be a commutative ring with 1 and let $I \leq R$ be an ideal.
(a) Finish the sentence: We say that R is an integral domain if \ldots

Proof. for all $a, b \in R$ with $a b=0$ we have $a=0$ or $b=0$.
(b) Finish the sentence: We say that I is a prime ideal if ...

Proof. for all $a, b \in R$ with $a b \in I$ we have $a \in I$ or $b \in I$.
(c) If R / I is an integral domain, prove that I must be prime.

Proof. Let R / I be an integral domain and suppose that $a b \in I$ for some $a, b \in R$. Then we have $(a+I)(b+I)=a b+I=I$. Since R / I is an integral domain this implies $a+I=I$ (i.e. $a \in I$) or $b+I=I$ (i.e. $b \in I$).
(d) If I is prime, prove that R / I must be an integral domain.

Proof. Let I be prime and suppose that $(a+I)(b+I)=I$ for some $a, b \in R$. Then we have $a b+I=(a+I)(b+I)=I$, hence $a b \in I$. Since I is prime this implies $a \in I$ (i.e. $a+I=I$) or $b \in I$ (i.e. $b+I=I$).
(e) Finish the sentence: We say that R is a field if ...

Proof. every nonzero element $0 \neq a \in R$ has a multiplicative inverse $a^{-1} \in R$.
(f) Finish the sentence: We say that I is a maximal ideal if ...

Proof. for all ideals $I<J$ we have $J=R$.
(g) If R / I is a field, prove that I must be maximal.

Proof. Let R / I be a field. The correspondence theorem says there is a 1-1 correspondence between nontrivial ideals of R / I and ideals of R strictly between I and R. Suppose that $J<R / I$ is a nonzero ideal with $a+I \in J$. Since R / I is a field we have $b+I \in R / I$ with $(a+I)(b+I)=1+I \in J$. But then $(r+I)(1+I)=r+I \in J$ for all $r \in R$, hence $J=R / I$. We conclude that R / I has no nontrivial ideals, and hence there are no ideals between I and R.
(h) If I is maximal, prove that R / I must be a field.

Proof. Suppose that the ideal $I<R$ is maximal and consider a nonzero element $a+I \in R / I$ (i.e. $a \notin I$). Then the inclusion of ideals $I<(a)+I$ implies that $(a)+I=R$. Since $1 \in R=(a)+I$ there exists $b \in R$ and $u \in I$ such that $1=a b+u$. Finally we have $(a+I)(b+I)=a b+I=1-u+I=1+I$, hence $(a+I)$ is invertible.
(i) Finally, explain why every maximal ideal is prime.

Proof. If I is maximal then R / I is a field by part (h). But then R / I is also an integral domain, hence I is prime by part (c).
4. Let $F \subseteq K$ be a field extension with $\alpha \in K$, and consider the ring of polynomials $F[x]$. Let $\varphi_{\alpha}: F[x] \rightarrow K$ be the ring homomorphism defined by $\varphi_{\alpha}(x):=\alpha$ and $\varphi_{\alpha}(a):=a$ for all $a \in F$. We use the notation $\varphi_{\alpha}(f(x))=f(\alpha)$.
(a) Prove that $I:=\operatorname{ker} \varphi_{\alpha}$ is an ideal of $F[x]$.

Proof. Given any two elements $f(x), g(x) \in I$ we have $\varphi_{\alpha}(f(x)+g(x))=f(\alpha)+$ $g(\alpha)=0+0=0$, hence $f(x)+g(x) \in I$. Furthermore, for any $f(x) \in I$ and $h(x) \in$ $F[x]$ we have $\varphi_{\alpha}(f(x) h(x))=f(\alpha) h(\alpha)=0 \cdot h(\alpha)=0$, hence $f(x) h(x) \in I$.
(b) Prove that this ideal $I \leq F[x]$ is principal. [Hint: If $I \neq(0)$ then choose $0 \neq$ $f(x) \in I$ with minimal degree. Show that $I \subseteq(f(x))$.
Proof. If $I=(0)$ there is nothing to show. So suppose that $I \neq(0)$ and choose nonzero $f(x) \in I$ with minimal degree (this is possible by the well-ordering principle). Since $f(x) \in I$ we have $(f(x)) \subseteq I$. We wish to show that $I \subseteq(f(x))$.

To do this, choose any $g(x) \in I$ and divide by $f(x)$ to get $g(x)=q(x) f(x)+r(x)$ where either: (1) $\operatorname{deg}(r)<\operatorname{deg}(f)$ or (2) r is the zero polynomial. We note that (1) is impossible since $r(x)=g(x)-q(x) f(x) \in I$ and $f(x)$ was assumed to have minimal degree. Hence $r(x)=0$ and we conclude that $g(x) \in(f(x))$. This shows that $I \subseteq(f(x))$ as desired.
(c) By part (b) we can write $I=\left(m_{\alpha}(x)\right)$ for some monic $m_{\alpha}(x) \in F[x]$. Prove that this $m_{\alpha}(x)$ is irreducible over F.
Proof. Suppose that $m_{\alpha}(x)=f(x) g(x)$ for some $f(x), g(x) \in F[x]$. Applying the evaluation map φ_{α} gives $f(\alpha) g(\alpha)=m_{\alpha}(\alpha)=0$, and without loss of generality we suppose that $f(\alpha)=0$ (i.e. $f(x) \in\left(m_{\alpha}(x)\right)$). We now know that $m_{\alpha}(x)=$ $f(x) g(x)$ and $f(x)=m_{\alpha}(x) h(x)$ for some $h(x) \in F[x]$, hence $f(x)=f(x) g(x) h(x)$ or $f(x)(1-g(x) h(x))=0$. Since $F[x]$ is a domain this implies $g(x) h(x)=1$ hence $g(x), h(x)$ are units and $f(x), m_{\alpha}(x)$ are associates. We conclude that $m_{\alpha}(x)$ has no proper factor.
(d) Use the first isomorphism theorem to prove that $F \subseteq \operatorname{im} \varphi_{\alpha} \subseteq K$ is a field.

Proof. Clearly we have $F \subseteq \operatorname{im} \varphi_{\alpha} \subseteq K$. Then by the first isomorphism theorem we have $\operatorname{im} \varphi_{\alpha} \approx F[x] / \operatorname{ker} \varphi_{\alpha}=F[x] /\left(m_{\alpha}(x)\right)$. Since $F[x]$ is a PID, any strictly larger ideal $\left(m_{\alpha}(x)\right)<(p(x))$ would imply a proper factor. But $m_{\alpha}(x)$ is irreducible by part (c), hence the ideal $\left(m_{\alpha}(x)\right)$ is maximal. By Problem 2(h) we conclude that $\operatorname{im} \varphi_{\alpha}$ is a field.
(e) If L is any intermediate field $F \subseteq L \subseteq K$ such that $\alpha \in L$, prove that $\operatorname{im} \varphi_{\alpha} \subseteq L$. (Hence $\operatorname{im} \varphi_{\alpha}$ is the smallest subfield of K containing F and α.)
Proof. Let $f(x)=\sum_{k} a_{k} x^{k}$ be any element of $F[x]$. Then by definition we have $\varphi_{\alpha}(f(x))=f(\alpha)=\sum_{k} a_{k} \alpha^{k}$. Since L is a field containing a_{i} and α^{i} for all i, we have $f(\alpha) \in L$.

