Math 661 Fall 2013
Homework 1 Solutions Drew Armstrong

1. Let H < G be a subgroup. Call the identity element 1.

(a)

State the definition of equivalence relation.

Proof. Let R C G x G be a subset and write a ~ b to mean that (a,b) € R. We
say that ~ is an equivalence relation on the set G if

e Va € G, an~ a (reflexive),

e Va,be G, a~b= b~ a (symmetric),

e Va,b,ce G,a~band b~ c= a~ c (transitive). ]

Define a relation on G by setting a ~p b < a~'b € H. Prove that this is an
equivalence relation on G.

Proof. Reflexive: For all a € G we have a~'a = 1 € H, hence a ~5 a. Sym-

metric: If a ~y b (i.e. a='b € H) then we also have (a='b)™! = b~ta € H (ie.
b ~y a). Transitive: Suppose that a ~y b and b ~y ¢ (i.e. a~'b € H and
b=lc € H). Then we also have (a~'b)(b=!c) =a~lc € H (ie. a ~y ¢). O

Given an element g € G we define the left coset gH := {gh : h € H}. Prove that
a ~pg bif and only if aH = bH.

Proof. First suppose that a ~p b, so that a = bk for some k € H, and let ah (with
h € H) be an artibrary element of aH. Then we have ah = bkh = b(kh) € bH,
hence aH C bH. The proof of bH C aH is similar.

Conversely, suppose that aH = bH. Since a € aH = bH we have a = bk for
some k € H. Then a='b=k~' € H, hence a ~p b. O

Prove that the map g — ag is a bijection from H to aH.

Proof. Consider the map G — G defined by g — a~!g. Since an arbitrary element
of aH looks like ah for some h € H we see that the map sends aH — H. Since this
maps also inverts the map g — ag we conclude that both maps are bijective. [

If |G| is finite, prove that |H| divides |G]|.

Proof. Since ~p is an equivalence relation (by part (b)) we know that the equiv-
alence classes (left H cosets) partition the set G. Let G/H denote the set of
left H cosets. Since each coset has the same size (by part (d)) we conclude that
|G/H|-[H| = 1G] 0

For all a € G prove that al®l = 1. [Hint: Use part (e).]

Proof. Let H = (a) < G be the cyclic subgroup generated by a, so that alfl = 1.
Then by part (e) we have alCl = glHIG/HI = (g HNIG/H] = 11G/H] — 1, O
Finally, let G = (Z/nZ)* (i.e. the group of units of the ring Z/nZ). What does
the result of (f) say in this case?

Proof. Let p(n) := [(Z/nZ)*| (Euler’s totient function). Then for all a coprime to
n we have a®™ =1 mod n. This is called Euler’s Theorem. When n is prime, it’s
called Fermat’s Little Theorem. 0



2. Let K < G be a subgroup and let G/K denote the set of left cosets of K. Consider
the surjective map of sets ¢ : G — G/K defined by ¢(a) := aK.

(a)

Suppose there exists some group operation on G/K such that ¢ is a group homo-
morphism. In this case, what is the identity element of G/K? What is ker ¢?

Proof. If ¢ is a homomorphism then 1g/x = ¢(1g) = 1K = K. Then we have
kerp = {a € G : aK = K}, which equals K by Problem 1(c). O

If G’ is any group and ¢ : G — G’ is any group homomorphism, prove that ker v is
a normal subgroup of G (i.e. prove that gkg~! € ker for all g € G and k € kerv).

Proof. Given a,b € kert we have 9 (a='b) = v(a) " *(b) = 1711 = 1, hence
a~'b € kert and we conclude that ker is a subgroup of G (you didn’t need to
show this). Now consider any g € G and k € kert. Then we have ¢(gkg™!) =

() (k)p(9)~" = ¥(9)1v(g)~" = ¥(9)(9)~" = 1, hence gkg™" € kery) and we
conclude that kery < G. O

Now suppose that K <IG is normal (i.e. suppose that gkg—! € K for all g € G and
k € K). In this case, prove that the operation (G/K) x (G/K) — G/K given by
(aK,bK) — (ab)K is well-defined.

Proof. Suppose that (aK,bK) = (d’K,V'K), so by Problem 1(c) we have a =
a'k; € K and b = b'ky € K. In this case we wish to show that (ab)K = (a'b')K.
So consider an arbitrary element abk € (ab)K with k£ € K. Then we have abk =
a'kyb kok = 't/ ((b') k16 ) kok, and since (') ~'k1b’ € K by normality, we conclude
that abk € (a'b')K, hence (ab)K C (a'b/)K. The proof of (a'b/)K C (ab)K is

O

similar.

Moreover, prove that this operation makes G/K into a group. (And hence the
original ¢ is a group homomorphism.)

Proof. Let’s call the operation aK -bK = (ab)K. We must show that this operation
is associative, with an identity element, and that inverses exist. Associative:
For all a,b,c € G we have aK - (bK - cK) = aK - (bc)K = (a(bc))K = ((ab)e)K =
(ab)K -cK = (aK -bK) - cK, since G is a group. Identity: Note that for all a € G
we have aK - 1K = (al)K = aK = (la)K = 1K - aK, hence 1K is an identity
element for G/K. Inverses: For all a € G we have aK -a 'K = (aa ) )K = 1K =
(a7'a)K = a 1K - aK, hence a 'K is an inverse for aK. O

Finally, let H < G be any subgroup. Prove that H is normal if and only if there
exists a group G’ and a group homomorphism p : G — G’ such that ker u = H.

Proof. First suppose that p : G — G’ is a group homomorphism with ker y = H.
Then by part (b) we see that H < G.

Conversely, suppose that H < G. Then by parts (a), (b) and (d) we can define
a group G/H such that the map p : G — G/H defined by g — ¢gH is a group
homomorphism with ker y = H. 0



3. Let R be a commutative ring with 1 and let I < R be an ideal.

(a)

(b)

()

()

(f)

(2)

Finish the sentence: We say that R is an integral domain if ...

Proof. for all a,b € R with ab =0 we have a =0 or b = 0. O
Finish the sentence: We say that I is a prime ideal if ...

Proof. for all a,b € R with ab€ I we havea € [ or b e I. O
If R/I is an integral domain, prove that I must be prime.

Proof. Let R/I be an integral domain and suppose that ab € I for some a,b € R.
Then we have (a+I)(b+ 1) = ab+ 1 = I. Since R/I is an integral domain this
impliesa+I=1 (ie.ael)orb+1=1 (ie. bel). O

If I is prime, prove that R/I must be an integral domain.
Proof. Let I be prime and suppose that (a4 I)(b+ I) = I for some a,b € R. Then

we have ab+ 1 = (a+ I1)(b+ 1) = I, hence ab € I. Since [ is prime this implies
acl(ie.a+tI=1I)orbel (ie. b+1=1). O

Finish the sentence: We say that R is a field if ...

Proof. every nonzero element 0 # a € R has a multiplicative inverse a=' € R. O
Finish the sentence: We say that I is a maximal ideal if ...

Proof. for all ideals I < J we have J = R. g
If R/I is a field, prove that I must be maximal.

Proof. Let R/I be a field. The correspondence theorem says there is a 1-1 corre-
spondence between nontrivial ideals of R/I and ideals of R strictly between I and
R. Suppose that J < R/I is a nonzero ideal with a+1 € J. Since R/I is a field we
have b+1 € R/I with (a+1I)(b+1)=1+1 € J. But then (r+I1)(14+1)=r+I € J
for all » € R, hence J = R/I. We conclude that R/I has no nontrivial ideals, and
hence there are no ideals between I and R. g

If I is maximal, prove that R/I must be a field.

Proof. Suppose that the ideal I < R is maximal and consider a nonzero element
a+1 € R/I (i,e. a ¢ I). Then the inclusion of ideals I < (a) + I implies that
(a) +1 = R. Since 1 € R = (a) + I there exists b € R and u € I such that
1 = ab+ u. Finally we have (a+I)(b+1) =ab+ 1 =1—u+1 =141, hence
(a + I) is invertible. O

Finally, explain why every maximal ideal is prime.

Proof. If I is maximal then R/I is a field by part (h). But then R/I is also an
integral domain, hence I is prime by part (c). O



4. Let F C K be a field extension with o € K, and consider the ring of polynomials F[x].
Let ¢, : F[z] — K be the ring homomorphism defined by ¢, (x) := «a and ¢, (a) := a for
all a € F. We use the notation ¢, (f(z)) = f(«a).

(a)

Prove that I := ker ¢, is an ideal of F[z].

Proof. Given any two elements f(x),g(z) € I we have po(f(z) + g(z)) = f(a) +
g(a) =040 =0, hence f(z)+g(z) € I. Furthermore, for any f(z) € I and h(z) €
F[z] we have @ (f(z)h(x)) = f(a)h(a) =0 h(a) = 0, hence f(z)h(z) € I. O

Prove that this ideal I < F[z] is principal. [Hint: If I # (0) then choose 0 #
f(z) € I with minimal degree. Show that I C (f(x)).]

Proof. If I = (0) there is nothing to show. So suppose that I # (0) and choose
nonzero f(z) € I with minimal degree (this is possible by the well-ordering princi-
ple). Since f(z) € I we have (f(x)) C I. We wish to show that I C (f(x)).

To do this, choose any g(z) € I and divide by f(z) to get g(z) = q(z) f(x)+r(x)
where either: (1) deg(r) < deg(f) or (2) r is the zero polynomial. We note that
(1) is impossible since r(z) = g(x) — ¢(z)f(x) € I and f(x) was assumed to have
minimal degree. Hence r(z) = 0 and we conclude that g(x) € (f(x)). This shows
that I C (f(z)) as desired. O

By part (b) we can write I = (mq(z)) for some monic mq(x) € F[z]. Prove that
this mq(x) is irreducible over F.

Proof. Suppose that mq(z) = f(x)g(z) for some f(z),g(x) € Flz]. Applying the
evaluation map ¢, gives f(a)g(a) = mqy(a) = 0, and without loss of generality
we suppose that f(a) = 0 (i.e. f(z) € (ma(x))). We now know that mq(x) =
f(z)g(z) and f(x) = mqa(x)h(x) for some h(x) € F[z], hence f(z) = f(x)g(z)h(x)
or f(z)(1 —g(x)h(z)) = 0. Since Fx] is a domain this implies g(z)h(z) = 1 hence
g(x),h(x) are units and f(z), mq(x) are associates. We conclude that m,(x) has
no proper factor. O

Use the first isomorphism theorem to prove that F' C im ¢, C K is a field.

Proof. Clearly we have F' C im ¢, C K. Then by the first isomorphism theorem we
have im ¢, =~ F[z]/ ker o = Flx]/(mq(x)). Since F[z] is a PID, any strictly larger
ideal (mq(z)) < (p(x)) would imply a proper factor. But mq(x) is irreducible by
part (c), hence the ideal (mq(z)) is maximal. By Problem 2(h) we conclude that
im @, is a field. g

If L is any intermediate field F' C L C K such that o € L, prove that imy, C L.
(Hence im ¢, is the smallest subfield of K containing F' and «.)

Proof. Let f(z) = 3, axz® be any element of F[z]. Then by definition we have
va(f(z)) = f(a) = 3, ara®. Since L is a field containing a; and o’ for all i, we
have f(a) € L. O



