
Math 661 Fall 2013
Homework 1 Solutions Drew Armstrong

1. Let H ≤ G be a subgroup. Call the identity element 1.

(a) State the definition of equivalence relation.

Proof. Let R ⊆ G × G be a subset and write a ∼ b to mean that (a, b) ∈ R. We
say that ∼ is an equivalence relation on the set G if
• ∀ a ∈ G, a ∼ a (reflexive),
• ∀ a, b ∈ G, a ∼ b⇒ b ∼ a (symmetric),
• ∀ a, b, c ∈ G, a ∼ b and b ∼ c ⇒ a ∼ c (transitive). �

(b) Define a relation on G by setting a ∼H b ⇔ a−1b ∈ H. Prove that this is an
equivalence relation on G.

Proof. Reflexive: For all a ∈ G we have a−1a = 1 ∈ H, hence a ∼H a. Sym-
metric: If a ∼H b (i.e. a−1b ∈ H) then we also have (a−1b)−1 = b−1a ∈ H (i.e.
b ∼H a). Transitive: Suppose that a ∼H b and b ∼H c (i.e. a−1b ∈ H and
b−1c ∈ H). Then we also have (a−1b)(b−1c) = a−1c ∈ H (i.e. a ∼H c). �

(c) Given an element g ∈ G we define the left coset gH := {gh : h ∈ H}. Prove that
a ∼H b if and only if aH = bH.

Proof. First suppose that a ∼H b, so that a = bk for some k ∈ H, and let ah (with
h ∈ H) be an artibrary element of aH. Then we have ah = bkh = b(kh) ∈ bH,
hence aH ⊆ bH. The proof of bH ⊆ aH is similar.

Conversely, suppose that aH = bH. Since a ∈ aH = bH we have a = bk for
some k ∈ H. Then a−1b = k−1 ∈ H, hence a ∼H b. �

(d) Prove that the map g 7→ ag is a bijection from H to aH.

Proof. Consider the map G→ G defined by g 7→ a−1g. Since an arbitrary element
of aH looks like ah for some h ∈ H we see that the map sends aH → H. Since this
maps also inverts the map g 7→ ag we conclude that both maps are bijective. �

(e) If |G| is finite, prove that |H| divides |G|.

Proof. Since ∼H is an equivalence relation (by part (b)) we know that the equiv-
alence classes (left H cosets) partition the set G. Let G/H denote the set of
left H cosets. Since each coset has the same size (by part (d)) we conclude that
|G/H| · |H| = |G|. �

(f) For all a ∈ G prove that a|G| = 1. [Hint: Use part (e).]

Proof. Let H = 〈a〉 ≤ G be the cyclic subgroup generated by a, so that a|H| = 1.

Then by part (e) we have a|G| = a|H|·|G/H| = (a|H|)|G/H| = 1|G/H| = 1. �

(g) Finally, let G = (Z/nZ)× (i.e. the group of units of the ring Z/nZ). What does
the result of (f) say in this case?

Proof. Let ϕ(n) := |(Z/nZ)×| (Euler’s totient function). Then for all a coprime to

n we have aϕ(n) ≡ 1 mod n. This is called Euler’s Theorem. When n is prime, it’s
called Fermat’s Little Theorem. �



2. Let K ≤ G be a subgroup and let G/K denote the set of left cosets of K. Consider
the surjective map of sets ϕ : G→ G/K defined by ϕ(a) := aK.

(a) Suppose there exists some group operation on G/K such that ϕ is a group homo-
morphism. In this case, what is the identity element of G/K? What is kerϕ?

Proof. If ϕ is a homomorphism then 1G/K = ϕ(1G) = 1K = K. Then we have
kerϕ = {a ∈ G : aK = K}, which equals K by Problem 1(c). �

(b) If G′ is any group and ψ : G→ G′ is any group homomorphism, prove that kerψ is
a normal subgroup of G (i.e. prove that gkg−1 ∈ kerψ for all g ∈ G and k ∈ kerψ).

Proof. Given a, b ∈ kerψ we have ψ(a−1b) = ψ(a)−1ψ(b) = 1−11 = 1, hence
a−1b ∈ kerψ and we conclude that kerψ is a subgroup of G (you didn’t need to
show this). Now consider any g ∈ G and k ∈ kerψ. Then we have ψ(gkg−1) =
ψ(g)ψ(k)ψ(g)−1 = ψ(g)1ψ(g)−1 = ψ(g)ψ(g)−1 = 1, hence gkg−1 ∈ kerψ and we
conclude that kerψ EG. �

(c) Now suppose that K EG is normal (i.e. suppose that gkg−1 ∈ K for all g ∈ G and
k ∈ K). In this case, prove that the operation (G/K) × (G/K) → G/K given by
(aK, bK) 7→ (ab)K is well-defined.

Proof. Suppose that (aK, bK) = (a′K, b′K), so by Problem 1(c) we have a =
a′k1 ∈ K and b = b′k2 ∈ K. In this case we wish to show that (ab)K = (a′b′)K.
So consider an arbitrary element abk ∈ (ab)K with k ∈ K. Then we have abk =
a′k1b

′k2k = a′b′((b′)−1k1b
′)k2k, and since (b′)−1k1b

′ ∈ K by normality, we conclude
that abk ∈ (a′b′)K, hence (ab)K ⊆ (a′b′)K. The proof of (a′b′)K ⊆ (ab)K is
similar. �

(d) Moreover, prove that this operation makes G/K into a group. (And hence the
original ϕ is a group homomorphism.)

Proof. Let’s call the operation aK ·bK = (ab)K. We must show that this operation
is associative, with an identity element, and that inverses exist. Associative:
For all a, b, c ∈ G we have aK · (bK · cK) = aK · (bc)K = (a(bc))K = ((ab)c)K =
(ab)K · cK = (aK · bK) · cK, since G is a group. Identity: Note that for all a ∈ G
we have aK · 1K = (a1)K = aK = (1a)K = 1K · aK, hence 1K is an identity
element for G/K. Inverses: For all a ∈ G we have aK ·a−1K = (aa−1)K = 1K =
(a−1a)K = a−1K · aK, hence a−1K is an inverse for aK. �

(e) Finally, let H ≤ G be any subgroup. Prove that H is normal if and only if there
exists a group G′ and a group homomorphism µ : G→ G′ such that kerµ = H.

Proof. First suppose that µ : G → G′ is a group homomorphism with kerµ = H.
Then by part (b) we see that H EG.

Conversely, suppose that H E G. Then by parts (a), (b) and (d) we can define
a group G/H such that the map µ : G → G/H defined by g 7→ gH is a group
homomorphism with kerµ = H. �



3. Let R be a commutative ring with 1 and let I ≤ R be an ideal.

(a) Finish the sentence: We say that R is an integral domain if . . .

Proof. for all a, b ∈ R with ab = 0 we have a = 0 or b = 0. �

(b) Finish the sentence: We say that I is a prime ideal if . . .

Proof. for all a, b ∈ R with ab ∈ I we have a ∈ I or b ∈ I. �

(c) If R/I is an integral domain, prove that I must be prime.

Proof. Let R/I be an integral domain and suppose that ab ∈ I for some a, b ∈ R.
Then we have (a + I)(b + I) = ab + I = I. Since R/I is an integral domain this
implies a+ I = I (i.e. a ∈ I) or b+ I = I (i.e. b ∈ I). �

(d) If I is prime, prove that R/I must be an integral domain.

Proof. Let I be prime and suppose that (a+ I)(b+ I) = I for some a, b ∈ R. Then
we have ab + I = (a + I)(b + I) = I, hence ab ∈ I. Since I is prime this implies
a ∈ I (i.e. a+ I = I) or b ∈ I (i.e. b+ I = I). �

(e) Finish the sentence: We say that R is a field if . . .

Proof. every nonzero element 0 6= a ∈ R has a multiplicative inverse a−1 ∈ R. �

(f) Finish the sentence: We say that I is a maximal ideal if . . .

Proof. for all ideals I < J we have J = R. �

(g) If R/I is a field, prove that I must be maximal.

Proof. Let R/I be a field. The correspondence theorem says there is a 1-1 corre-
spondence between nontrivial ideals of R/I and ideals of R strictly between I and
R. Suppose that J < R/I is a nonzero ideal with a+ I ∈ J . Since R/I is a field we
have b+I ∈ R/I with (a+I)(b+I) = 1+I ∈ J . But then (r+I)(1+I) = r+I ∈ J
for all r ∈ R, hence J = R/I. We conclude that R/I has no nontrivial ideals, and
hence there are no ideals between I and R. �

(h) If I is maximal, prove that R/I must be a field.

Proof. Suppose that the ideal I < R is maximal and consider a nonzero element
a + I ∈ R/I (i.e. a 6∈ I). Then the inclusion of ideals I < (a) + I implies that
(a) + I = R. Since 1 ∈ R = (a) + I there exists b ∈ R and u ∈ I such that
1 = ab + u. Finally we have (a + I)(b + I) = ab + I = 1 − u + I = 1 + I, hence
(a+ I) is invertible. �

(i) Finally, explain why every maximal ideal is prime.

Proof. If I is maximal then R/I is a field by part (h). But then R/I is also an
integral domain, hence I is prime by part (c). �



4. Let F ⊆ K be a field extension with α ∈ K, and consider the ring of polynomials F [x].
Let ϕα : F [x]→ K be the ring homomorphism defined by ϕα(x) := α and ϕα(a) := a for
all a ∈ F . We use the notation ϕα(f(x)) = f(α).

(a) Prove that I := kerϕα is an ideal of F [x].

Proof. Given any two elements f(x), g(x) ∈ I we have ϕα(f(x) + g(x)) = f(α) +
g(α) = 0 + 0 = 0, hence f(x) + g(x) ∈ I. Furthermore, for any f(x) ∈ I and h(x) ∈
F [x] we have ϕα(f(x)h(x)) = f(α)h(α) = 0 · h(α) = 0, hence f(x)h(x) ∈ I. �

(b) Prove that this ideal I ≤ F [x] is principal. [Hint: If I 6= (0) then choose 0 6=
f(x) ∈ I with minimal degree. Show that I ⊆ (f(x)).]

Proof. If I = (0) there is nothing to show. So suppose that I 6= (0) and choose
nonzero f(x) ∈ I with minimal degree (this is possible by the well-ordering princi-
ple). Since f(x) ∈ I we have (f(x)) ⊆ I. We wish to show that I ⊆ (f(x)).

To do this, choose any g(x) ∈ I and divide by f(x) to get g(x) = q(x)f(x)+r(x)
where either: (1) deg(r) < deg(f) or (2) r is the zero polynomial. We note that
(1) is impossible since r(x) = g(x) − q(x)f(x) ∈ I and f(x) was assumed to have
minimal degree. Hence r(x) = 0 and we conclude that g(x) ∈ (f(x)). This shows
that I ⊆ (f(x)) as desired. �

(c) By part (b) we can write I = (mα(x)) for some monic mα(x) ∈ F [x]. Prove that
this mα(x) is irreducible over F .

Proof. Suppose that mα(x) = f(x)g(x) for some f(x), g(x) ∈ F [x]. Applying the
evaluation map ϕα gives f(α)g(α) = mα(α) = 0, and without loss of generality
we suppose that f(α) = 0 (i.e. f(x) ∈ (mα(x))). We now know that mα(x) =
f(x)g(x) and f(x) = mα(x)h(x) for some h(x) ∈ F [x], hence f(x) = f(x)g(x)h(x)
or f(x)(1− g(x)h(x)) = 0. Since F [x] is a domain this implies g(x)h(x) = 1 hence
g(x), h(x) are units and f(x),mα(x) are associates. We conclude that mα(x) has
no proper factor. �

(d) Use the first isomorphism theorem to prove that F ⊆ imϕα ⊆ K is a field.

Proof. Clearly we have F ⊆ imϕα ⊆ K. Then by the first isomorphism theorem we
have imϕα ≈ F [x]/ kerϕα = F [x]/(mα(x)). Since F [x] is a PID, any strictly larger
ideal (mα(x)) < (p(x)) would imply a proper factor. But mα(x) is irreducible by
part (c), hence the ideal (mα(x)) is maximal. By Problem 2(h) we conclude that
imϕα is a field. �

(e) If L is any intermediate field F ⊆ L ⊆ K such that α ∈ L, prove that imϕα ⊆ L.
(Hence imϕα is the smallest subfield of K containing F and α.)

Proof. Let f(x) =
∑

k akx
k be any element of F [x]. Then by definition we have

ϕα(f(x)) = f(α) =
∑

k akα
k. Since L is a field containing ai and αi for all i, we

have f(α) ∈ L. �


