- **1.** Let $H \leq G$ be a subgroup. Call the identity element 1.
 - (a) State the definition of equivalence relation.

Proof. Let $R \subseteq G \times G$ be a subset and write $a \sim b$ to mean that $(a, b) \in R$. We say that \sim is an equivalence relation on the set G if

- $\forall a \in G, a \sim a \text{ (reflexive)},$
- $\forall a, b \in G, a \sim b \Rightarrow b \sim a \text{ (symmetric)},$
- $\forall a, b, c \in G, a \sim b \text{ and } b \sim c \Rightarrow a \sim c \text{ (transitive)}.$
- (b) Define a relation on G by setting $a \sim_H b \Leftrightarrow a^{-1}b \in H$. Prove that this is an **equivalence** relation on G.

Proof. Reflexive: For all $a \in G$ we have $a^{-1}a = 1 \in H$, hence $a \sim_H a$. Symmetric: If $a \sim_H b$ (i.e. $a^{-1}b \in H$) then we also have $(a^{-1}b)^{-1} = b^{-1}a \in H$ (i.e. $b \sim_H a$). Transitive: Suppose that $a \sim_H b$ and $b \sim_H c$ (i.e. $a^{-1}b \in H$ and $b^{-1}c \in H$). Then we also have $(a^{-1}b)(b^{-1}c) = a^{-1}c \in H$ (i.e. $a \sim_H c$).

(c) Given an element $g \in G$ we define the left coset $gH := \{gh : h \in H\}$. Prove that $a \sim_H b$ if and only if aH = bH.

Proof. First suppose that $a \sim_H b$, so that a = bk for some $k \in H$, and let ah (with $h \in H$) be an artibrary element of aH. Then we have $ah = bkh = b(kh) \in bH$, hence $aH \subseteq bH$. The proof of $bH \subseteq aH$ is similar.

Conversely, suppose that aH = bH. Since $a \in aH = bH$ we have a = bk for some $k \in H$. Then $a^{-1}b = k^{-1} \in H$, hence $a \sim_H b$.

(d) Prove that the map $g \mapsto ag$ is a **bijection** from H to aH.

Proof. Consider the map $G \to G$ defined by $g \mapsto a^{-1}g$. Since an arbitrary element of aH looks like ah for some $h \in H$ we see that the map sends $aH \to H$. Since this maps also inverts the map $g \mapsto ag$ we conclude that both maps are bijective. \Box

(e) If |G| is finite, prove that |H| divides |G|.

Proof. Since \sim_H is an equivalence relation (by part (b)) we know that the equivalence classes (left H cosets) partition the set G. Let G/H denote the set of left H cosets. Since each coset has the same size (by part (d)) we conclude that $|G/H| \cdot |H| = |G|$.

(f) For all $a \in G$ prove that $a^{|G|} = 1$. [Hint: Use part (e).]

Proof. Let $H = \langle a \rangle \leq G$ be the cyclic subgroup generated by a, so that $a^{|H|} = 1$. Then by part (e) we have $a^{|G|} = a^{|H| \cdot |G/H|} = (a^{|H|})^{|G/H|} = 1^{|G/H|} = 1$. \Box

(g) Finally, let $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$ (i.e. the group of units of the ring $\mathbb{Z}/n\mathbb{Z}$). What does the result of (f) say in this case?

Proof. Let $\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ (Euler's totient function). Then for all *a* coprime to n we have $a^{\varphi(n)} \equiv 1 \mod n$. This is called Euler's Theorem. When n is prime, it's called Fermat's Little Theorem. \Box

2. Let $K \leq G$ be a subgroup and let G/K denote the **set** of left cosets of K. Consider the surjective **map of sets** $\varphi : G \to G/K$ defined by $\varphi(a) := aK$.

(a) **Suppose** there exists some group operation on G/K such that φ is a group homomorphism. In this case, what is the identity element of G/K? What is ker φ ?

Proof. If φ is a homomorphism then $1_{G/K} = \varphi(1_G) = 1K = K$. Then we have $\ker \varphi = \{a \in G : aK = K\}$, which equals K by Problem 1(c).

(b) If G' is any group and $\psi : G \to G'$ is any group homomorphism, prove that ker ψ is a **normal** subgroup of G (i.e. prove that $gkg^{-1} \in \ker \psi$ for all $g \in G$ and $k \in \ker \psi$).

Proof. Given $a, b \in \ker \psi$ we have $\psi(a^{-1}b) = \psi(a)^{-1}\psi(b) = 1^{-1}1 = 1$, hence $a^{-1}b \in \ker \psi$ and we conclude that $\ker \psi$ is a subgroup of G (you didn't need to show this). Now consider any $g \in G$ and $k \in \ker \psi$. Then we have $\psi(gkg^{-1}) = \psi(g)\psi(k)\psi(g)^{-1} = \psi(g)1\psi(g)^{-1} = \psi(g)\psi(g)^{-1} = 1$, hence $gkg^{-1} \in \ker \psi$ and we conclude that $\ker \psi \leq G$.

(c) Now suppose that $K \trianglelefteq G$ is normal (i.e. suppose that $gkg^{-1} \in K$ for all $g \in G$ and $k \in K$). In this case, prove that the operation $(G/K) \times (G/K) \to G/K$ given by $(aK, bK) \mapsto (ab)K$ is well-defined.

Proof. Suppose that (aK, bK) = (a'K, b'K), so by Problem 1(c) we have $a = a'k_1 \in K$ and $b = b'k_2 \in K$. In this case we wish to show that (ab)K = (a'b')K. So consider an arbitrary element $abk \in (ab)K$ with $k \in K$. Then we have $abk = a'k_1b'k_2k = a'b'((b')^{-1}k_1b')k_2k$, and since $(b')^{-1}k_1b' \in K$ by normality, we conclude that $abk \in (a'b')K$, hence $(ab)K \subseteq (a'b')K$. The proof of $(a'b')K \subseteq (ab)K$ is similar.

(d) Moreover, prove that this operation makes G/K into a **group**. (And hence the original φ is a group homomorphism.)

Proof. Let's call the operation $aK \cdot bK = (ab)K$. We must show that this operation is **associative**, with an **identity element**, and that **inverses exist**. **Associative**: For all $a, b, c \in G$ we have $aK \cdot (bK \cdot cK) = aK \cdot (bc)K = (a(bc))K = ((ab)c)K =$ $(ab)K \cdot cK = (aK \cdot bK) \cdot cK$, since G is a group. **Identity**: Note that for all $a \in G$ we have $aK \cdot 1K = (a1)K = aK = (1a)K = 1K \cdot aK$, hence 1K is an identity element for G/K. **Inverses:** For all $a \in G$ we have $aK \cdot a^{-1}K = (aa^{-1})K = 1K =$ $(a^{-1}a)K = a^{-1}K \cdot aK$, hence $a^{-1}K$ is an inverse for aK.

(e) Finally, let $H \leq G$ be any subgroup. Prove that H is **normal if and only if** there exists a group G' and a group homomorphism $\mu: G \to G'$ such that ker $\mu = H$.

Proof. First suppose that $\mu : G \to G'$ is a group homomorphism with ker $\mu = H$. Then by part (b) we see that $H \leq G$.

Conversely, suppose that $H \leq G$. Then by parts (a), (b) and (d) we can define a group G/H such that the map $\mu : G \to G/H$ defined by $g \mapsto gH$ is a group homomorphism with ker $\mu = H$.

- **3.** Let R be a commutative ring with 1 and let $I \leq R$ be an ideal.
 - (a) Finish the sentence: We say that R is an integral domain if ...
 Proof. for all a, b ∈ R with ab = 0 we have a = 0 or b = 0.
 - (b) Finish the sentence: We say that I is a prime ideal if ... *Proof.* for all $a, b \in R$ with $ab \in I$ we have $a \in I$ or $b \in I$.
 - (c) If R/I is an integral domain, prove that I must be prime.

Proof. Let R/I be an integral domain and suppose that $ab \in I$ for some $a, b \in R$. Then we have (a + I)(b + I) = ab + I = I. Since R/I is an integral domain this implies a + I = I (i.e. $a \in I$) or b + I = I (i.e. $b \in I$).

(d) If I is prime, prove that R/I must be an integral domain.

Proof. Let I be prime and suppose that (a + I)(b + I) = I for some $a, b \in R$. Then we have ab + I = (a + I)(b + I) = I, hence $ab \in I$. Since I is prime this implies $a \in I$ (i.e. a + I = I) or $b \in I$ (i.e. b + I = I).

(e) Finish the sentence: We say that R is a field if ...

Proof. every nonzero element $0 \neq a \in R$ has a multiplicative inverse $a^{-1} \in R$. \Box

(f) Finish the sentence: We say that I is a maximal ideal if ...

Proof. for all ideals I < J we have J = R.

(g) If R/I is a field, prove that I must be maximal.

Proof. Let R/I be a field. The correspondence theorem says there is a 1-1 correspondence between nontrivial ideals of R/I and ideals of R strictly between I and R. Suppose that J < R/I is a nonzero ideal with $a + I \in J$. Since R/I is a field we have $b+I \in R/I$ with $(a+I)(b+I) = 1+I \in J$. But then $(r+I)(1+I) = r+I \in J$ for all $r \in R$, hence J = R/I. We conclude that R/I has no nontrivial ideals, and hence there are no ideals between I and R.

(h) If I is maximal, prove that R/I must be a field.

Proof. Suppose that the ideal I < R is maximal and consider a nonzero element $a + I \in R/I$ (i.e. $a \notin I$). Then the inclusion of ideals I < (a) + I implies that (a) + I = R. Since $1 \in R = (a) + I$ there exists $b \in R$ and $u \in I$ such that 1 = ab + u. Finally we have (a + I)(b + I) = ab + I = 1 - u + I = 1 + I, hence (a + I) is invertible.

(i) Finally, explain why every maximal ideal is prime.

Proof. If I is maximal then R/I is a field by part (h). But then R/I is also an integral domain, hence I is prime by part (c).

4. Let $F \subseteq K$ be a field extension with $\alpha \in K$, and consider the ring of polynomials F[x]. Let $\varphi_{\alpha} : F[x] \to K$ be the ring homomorphism defined by $\varphi_{\alpha}(x) := \alpha$ and $\varphi_{\alpha}(a) := a$ for all $a \in F$. We use the notation $\varphi_{\alpha}(f(x)) = f(\alpha)$.

(a) Prove that $I := \ker \varphi_{\alpha}$ is an **ideal** of F[x].

Proof. Given any two elements $f(x), g(x) \in I$ we have $\varphi_{\alpha}(f(x) + g(x)) = f(\alpha) + g(\alpha) = 0 + 0 = 0$, hence $f(x) + g(x) \in I$. Furthermore, for any $f(x) \in I$ and $h(x) \in F[x]$ we have $\varphi_{\alpha}(f(x)h(x)) = f(\alpha)h(\alpha) = 0 \cdot h(\alpha) = 0$, hence $f(x)h(x) \in I$. \Box

(b) Prove that this ideal $I \leq F[x]$ is **principal**. [Hint: If $I \neq (0)$ then choose $0 \neq f(x) \in I$ with minimal degree. Show that $I \subseteq (f(x))$.]

Proof. If I = (0) there is nothing to show. So suppose that $I \neq (0)$ and choose nonzero $f(x) \in I$ with minimal degree (this is possible by the well-ordering principle). Since $f(x) \in I$ we have $(f(x)) \subseteq I$. We wish to show that $I \subseteq (f(x))$.

To do this, choose any $g(x) \in I$ and divide by f(x) to get g(x) = q(x)f(x) + r(x)where either: (1) deg(r) < deg<math>(f) or (2) r is the zero polynomial. We note that (1) is impossible since $r(x) = g(x) - q(x)f(x) \in I$ and f(x) was assumed to have minimal degree. Hence r(x) = 0 and we conclude that $g(x) \in (f(x))$. This shows that $I \subseteq (f(x))$ as desired.

(c) By part (b) we can write $I = (m_{\alpha}(x))$ for some monic $m_{\alpha}(x) \in F[x]$. Prove that this $m_{\alpha}(x)$ is **irreducible** over F.

Proof. Suppose that $m_{\alpha}(x) = f(x)g(x)$ for some $f(x), g(x) \in F[x]$. Applying the evaluation map φ_{α} gives $f(\alpha)g(\alpha) = m_{\alpha}(\alpha) = 0$, and without loss of generality we suppose that $f(\alpha) = 0$ (i.e. $f(x) \in (m_{\alpha}(x))$). We now know that $m_{\alpha}(x) = f(x)g(x)$ and $f(x) = m_{\alpha}(x)h(x)$ for some $h(x) \in F[x]$, hence f(x) = f(x)g(x)h(x) or f(x)(1 - g(x)h(x)) = 0. Since F[x] is a domain this implies g(x)h(x) = 1 hence g(x), h(x) are units and $f(x), m_{\alpha}(x)$ are associates. We conclude that $m_{\alpha}(x)$ has no proper factor.

(d) Use the first isomorphism theorem to prove that $F \subseteq \operatorname{im} \varphi_{\alpha} \subseteq K$ is a **field**.

Proof. Clearly we have $F \subseteq \operatorname{im} \varphi_{\alpha} \subseteq K$. Then by the first isomorphism theorem we have $\operatorname{im} \varphi_{\alpha} \approx F[x]/\ker \varphi_{\alpha} = F[x]/(m_{\alpha}(x))$. Since F[x] is a PID, any strictly larger ideal $(m_{\alpha}(x)) < (p(x))$ would imply a proper factor. But $m_{\alpha}(x)$ is irreducible by part (c), hence the ideal $(m_{\alpha}(x))$ is maximal. By Problem 2(h) we conclude that $\operatorname{im} \varphi_{\alpha}$ is a field.

(e) If L is any intermediate field $F \subseteq L \subseteq K$ such that $\alpha \in L$, prove that im $\varphi_{\alpha} \subseteq L$. (Hence im φ_{α} is the **smallest** subfield of K containing F and α .)

Proof. Let $f(x) = \sum_k a_k x^k$ be any element of F[x]. Then by definition we have $\varphi_{\alpha}(f(x)) = f(\alpha) = \sum_k a_k \alpha^k$. Since L is a field containing a_i and α^i for all i, we have $f(\alpha) \in L$.