1. Let G be a group and consider the group homomorphism $\varphi: G \rightarrow \operatorname{Aut}(G)$ which sends $g \in G$ to the map $x \mapsto g x g^{-1}$ in $\operatorname{Aut}(G)$. The orbits $\operatorname{Orb}(x):=\left\{g x g^{-1}: g \in G\right\}$ are called conjgacy classes and the stabilizers $C(x):=\left\{g \in G: g x g^{-1}=x\right\}$ are called centralizers.
(a) For all $x \in G$ prove that the map $g x g^{-1} \mapsto g C(x)$ is well-defined and is a bijection of sets $\operatorname{Orb}(x) \rightarrow G / C(x)$.
Proof. Fix $x \in G$. Then for all $g, h \in G$ we have

$$
\begin{aligned}
g x g^{-1}=h x h^{-1} & \Longleftrightarrow h^{-1} g x g^{-1} h=x \\
& \Longleftrightarrow\left(h^{-1} g\right) x\left(h^{-1} g\right)^{-1}=x \\
& \Longleftrightarrow h^{-1} g \in C(x) \\
& \Longleftrightarrow g C(x)=h C(x) .
\end{aligned}
$$

The right arrows prove that the map is well-defined and the left arrows prove that the map is injective. The map is obviously surjective.
(b) Define the center by $Z(G):=\{g \in G: g x=x g$ for all $x \in G\}$. If G is finite, prove that there exist group elements $x_{i} \in G$ such that

$$
|G|=|Z(G)|+\sum_{i}|G| /\left|C\left(x_{i}\right)\right| .
$$

[Hint: Note that $C(x)=G$ if and only if $x \in Z(G)$.]
Proof. Let G be a finite group. By part (a) and Lagrange's Theorem we know that $|\operatorname{Orb}(x)|=|G| /|C(x)|$ for all $x \in G$. If we let $x_{1}, x_{2}, x_{3}, \ldots$ be representatives of the conjugacy classes then we can write G as a disjoint union:

$$
\begin{aligned}
G & =\sqcup_{i} \operatorname{Orb}\left(x_{i}\right) \\
|G| & =\sum_{i}\left|\operatorname{Orb}\left(x_{i}\right)\right| \\
|G| & =\sum_{i}|G| /\left|C\left(x_{i}\right)\right| .
\end{aligned}
$$

Finally, note that $|G| /|C(x)|=1$ if and only if $x \in Z(G)$. Using this we can take the singleton conjugacy classes out of the sum to get

$$
\begin{aligned}
|G| & =(1+1+\cdots+1)+\sum_{i}|G| /\left|C\left(x_{i}\right)\right| \\
|G| & =|Z(G)|+\sum_{i}|G| /\left|C\left(x_{i}\right)\right|,
\end{aligned}
$$

where the sum on the right is now over the nontrivial conjugacy classes.
(c) Now let p be prime and let $|G|=p^{2}$. Use part (b) to prove that p divides $|Z(G)|$.

Proof. Let p be prime and assume that $|G|=p^{2}$. Consider the Class Equation from (b). If $|G| /\left|C\left(x_{i}\right)\right| \neq 1$ then Lagrange says that $|G| /\left|C\left(x_{i}\right)\right|=p$ or p^{2}. In either case, p divides $|G| /\left|C\left(x_{i}\right)\right|$ and hence p divides the sum on the right side. Since p also divides $|G|$ we conclude that p divides $|Z(G)|$.
(d) Use part (c) to prove that G is abelian. [Hint: Prove that $G / Z(G)$ is cyclic.]

Proof. Since p divides $|Z(G)|$ we have $|G| /|Z(G)|=1$ or p. In either case we see that $G / Z(G)$ is cyclic, say $G / Z(G)=\langle x Z(G)\rangle$. We claim that this implies that G is abelian. Indeed, consider any $g, h \in G$. Since g and h are contained in some cosets of $Z(G)$ and every coset looks like $(x Z(G))^{k}=x^{k} Z(G)$ for some $k \in \mathbb{Z}$ we conclude that $g=x^{k} z$ and $h=x^{\ell} z^{\prime}$ for some $k, \ell \in \mathbb{Z}$ and $z, z^{\prime} \in Z(G)$. Finally we have

$$
g h=x^{k} z x^{\ell} z^{\prime}=x^{k} x^{\ell} z z^{\prime}=x^{k+\ell} z^{\prime} z=x^{\ell+k} z^{\prime} z=x^{\ell} x^{k} z z^{\prime}=x^{\ell} z^{\prime} x^{k} z=h g .
$$

We conclude that G is abelian.
(e) Finally, if G is not cyclic, use part (d) to prove that $G \approx \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$. [Hint: Choose $1 \neq x \in G$. Since $\langle x\rangle \neq G$ there exists $y \in G-\langle x\rangle$. Prove that $G=\langle x\rangle \times\langle y\rangle$ by showing $\langle x\rangle \cap\langle y\rangle=1$, and $\langle x\rangle\langle y\rangle=G$.]

Proof. Again suppose that $|G|=p^{2}$ and assume that G is not cyclic. Then there exists $1 \neq x \in G$ such that $\langle x\rangle \neq G$. Choosing $y \in G-\langle x\rangle$ gives us two cyclic subgroups $\langle x\rangle$ and $\langle y\rangle$. Note that $|\langle x\rangle|=|\langle y\rangle|=p$ by Lagrange because neither is trivial or equal to the full group. Hence $\langle x\rangle \approx\langle y\rangle \approx \mathbb{Z} / p \mathbb{Z}$. We claim that $G=\langle x\rangle \times\langle y\rangle$. Indeed, by Lagrange the intersection has size 1 or p. If $|\langle x\rangle \cap\langle y\rangle|=p$ then we have $\langle x\rangle=\langle x\rangle \cap\langle y\rangle=\langle y\rangle$, contradiction. Finally, note that $G=\langle x\rangle\langle y\rangle$. This follows, for example, because $\langle x\rangle\langle y\rangle$ properly contains $\langle x\rangle$. Since $|\langle x\rangle\langle y\rangle|$ divides p^{2} and is strictly greater than p we have $|\langle x\rangle\langle y\rangle|=p^{2}$.
2. Consider the general linear group $G=G L(n, K)$ over a field K. Let P be the subset

$$
P:=\left\{\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right)\right\} \subseteq G
$$

where A is $r \times r$ and B is $(n-r) \times(n-r)$.
(a) Prove that P is a subgroup of G. [Hint: Find the inverse of an element of P.]

Proof. Consider the general element of P. Since it is invertible the left r columns must be independent, hence $A \in G L(r, K)$. Similarly, the bottom $n-r$ rows must be independent, hence $B \in G L(n-r, K)$. [Remark: You didn't need to check this.] To show that P is a subgroup of G we first note that it is closed under multiplication:

$$
\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right)\left(\begin{array}{c|c}
A^{\prime} & C^{\prime} \\
\hline 0 & B^{\prime}
\end{array}\right)=\left(\begin{array}{c|c}
A A^{\prime} & A C^{\prime}+C B^{\prime} \\
\hline 0 & B B^{\prime}
\end{array}\right)
$$

Then solving the previous equation for $A A^{\prime}=I, B B^{\prime}=I$ and $A C^{\prime}+C B^{\prime}=0$ shows us that $A^{\prime}=A^{-1}, B^{\prime}=B^{-1}$, and $A C^{\prime}=-C B^{\prime} \Rightarrow C^{\prime}=A^{-1} C B^{-1}$. Hence P is closed under inversion:

$$
\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right)^{-1}=\left(\begin{array}{c|c}
A^{-1} & -A^{-1} C B^{-1} \\
\hline 0 & B^{-1}
\end{array}\right) .
$$

(b) Let L be the subset

$$
L:=\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)\right\} \subseteq P .
$$

Prove that L is a subgroup of P isomorphic to $G L(r, K) \times G L(n-r, K)$.

Proof. We can identify $G L(r, K)$ and $G L(n-k, K)$ with the subgroups

$$
G_{r}:=\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & I
\end{array}\right)\right\} \quad \text { and } \quad G_{n-r}:=\left\{\left(\begin{array}{l|l}
I & 0 \\
\hline 0 & B
\end{array}\right)\right\} .
$$

We clearly have $G_{r} \cap G_{n-r}=1$. Next note that $L=G_{r} G_{n-r}$ because

$$
\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)=\left(\begin{array}{l|l}
A & 0 \\
\hline 0 & I
\end{array}\right)\left(\begin{array}{l|l}
I & 0 \\
\hline 0 & B
\end{array}\right)
$$

and finally note that $G_{r} G_{n-r}=G_{r} G_{n-r}$ because

$$
\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & I
\end{array}\right)\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & B
\end{array}\right)=\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)=\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & B
\end{array}\right)\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & I
\end{array}\right) .
$$

We conclude that $L=G_{r} \times G_{n-r}$.
(c) Prove that the map $\varphi: P \rightarrow L$ defined by

$$
\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right) \mapsto\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)
$$

is a group homomorphism. Let $U \triangleleft P$ denote the kernel of φ.
Proof. The map is a homomorphism because

$$
\begin{aligned}
\varphi\left(\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right)\left(\begin{array}{c|c}
A^{\prime} & C^{\prime} \\
\hline 0 & B^{\prime}
\end{array}\right)\right) & =\varphi\left(\left(\begin{array}{c|c}
A A^{\prime} & A C^{\prime}+C B^{\prime} \\
\hline 0 & B B^{\prime}
\end{array}\right)\right) \\
& =\left(\begin{array}{c|c}
A A^{\prime} & 0 \\
\hline 0 & B B^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{c|c|c}
A & 0 & \left.\begin{array}{c}
A^{\prime} \\
\hline
\end{array}\right) \\
\hline 0 & B & 0 \\
\hline 0 & B^{\prime}
\end{array}\right) \\
& =\varphi\left(\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right)\right) \varphi\left(\left(\begin{array}{c|c}
A^{\prime} & C^{\prime} \\
\hline 0 & B^{\prime}
\end{array}\right)\right)
\end{aligned}
$$

(d) Prove that U is isomorphic to the additive group $\operatorname{Mat}_{r, n-r}(K)$ of $r \times(n-r)$ matrices. Proof. Note that the kernel of $\varphi: P \rightarrow L$ has the form

$$
\operatorname{ker} \varphi=: U=\left\{\left(\begin{array}{c|c}
I & C \\
\hline 0 & I
\end{array}\right)\right\} .
$$

The map sending such a matrix to C is clearly a bijection between U and the set $\operatorname{Mat}_{r, n-r}(K)$ of $k \times(n-r)$ matrices. In fact this map is an isomorphism between U and $\operatorname{Mat}_{r, n-k}(K)$ as an additive group because

$$
\left(\begin{array}{c|c}
I & C \\
\hline 0 & I
\end{array}\right)\left(\begin{array}{c|c}
I & C^{\prime} \\
\hline 0 & I
\end{array}\right)=\left(\begin{array}{c|c}
I & C+C^{\prime} \\
\hline 0 & I
\end{array}\right) .
$$

(e) Prove that $P=L \ltimes U$. [Hint: Show that $L \cap U=1$ and $L U=P$.]

Proof. Note that we have

$$
\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)=\left(\begin{array}{c|c}
I & C \\
\hline 0 & I
\end{array}\right)
$$

if and only if $A=I, B=I$, and $C=0$. Hence $L \cap U=1$. Next note that

$$
\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)\left(\begin{array}{c|c}
I & A^{-1} C \\
\hline 0 & I
\end{array}\right)=\left(\begin{array}{c|c}
A & C \\
\hline 0 & B
\end{array}\right),
$$

hence $L U=P$. Since U is normal (it is a kernel) we conclude that $P=L \ltimes U$. [Remark: Note that P is not a direct product because

$$
\left.\left(\begin{array}{c|c}
I & C \\
\hline 0 & I
\end{array}\right)\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)\left(\begin{array}{c|c}
I & -C \\
\hline 0 & I
\end{array}\right)=\left(\begin{array}{c|c}
A & -A C+C B \\
\hline 0 & B
\end{array}\right) \notin L .\right]
$$

(f) Prove that the action of L on U by conjugation is isomorphic to the action of $G L(r, K) \times$ $G L(n-r, K)$ on $\mathrm{Mat}_{r, n-r}(K)$ by $(A, B) \cdot C:=A C B^{-1}$.

Proof. Since $P=L \ltimes U$ we know that L acts on U by conjugation. Explicitly, we have

$$
\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)\left(\begin{array}{c|c}
I & C \\
\hline 0 & I
\end{array}\right)\left(\begin{array}{c|c}
A^{-1} & 0 \\
\hline 0 & B^{-1}
\end{array}\right)=\left(\begin{array}{c|c}
I & A C B^{-1} \\
\hline 0 & I
\end{array}\right)
$$

If we identify L with $G L(r, K) \times G L(n-r, K)$ and we identify U with $\operatorname{Mat}_{r, n-r}(K)$ then this is just our favorite action $(A, B) \cdot C=A C B^{-1}$.
3. Let G be a group, let K be a field, and let $K G$ be the group algebra. That is, $K G$ is the vector space of formal K-linear combinations of group elements with an associative multiplication defined by the group operation.
(a) State the definition of a $K G$-module. State the definition of a $K G$-submodule.

Proof. The group algebra $K G$ is in particular a ring, so we define a $K G$-module as an additive abelian group V together with a map $K G \times V \rightarrow V$ satisfying:

- $1 u=u$,
- $r(u+v)=r u+r v$,
- $(r+s) u=r u+s u$,
- $r(s u)=(r s) u$,
for all $r, s \in K G$ and $u, v \in V$. Note that $1 \in K G$ is the element $1_{K} 1_{G}$. We say that $U \subseteq V$ is a $K G$-submodule if:
- U is an additive subgroup of V, and
- $r u \in U$ for all $r \in K G$ and $u \in U$.
(b) Let U and V be $K G$-modules and let $\varphi: U \rightarrow V$ be a function of sets. What does it mean to say that φ is a morphism of $K G$-modules?

Proof. Let U and V be $K G$-modules and let $\varphi: U \rightarrow V$ be a function. We say that φ is a morphism of $K G$-modules if:

- $\varphi: U \rightarrow V$ is a homomorphism of abelian groups, and
- for all $r \in K G$ and $u \in U$ we have $\varphi(r u)=r \varphi(u)$. That is, the following diagram commutes.

(c) We say that a $K G$-module is irreducible if it has no nontrivial $K G$-submodules. If U and V are irreducible $K G$-modules, prove that any nonzero morphism $\varphi: U \rightarrow V$ must be an isomorphism.

Proof. Let U and V be irreducible $K G$-modules and let $\varphi: U \rightarrow V$ be a nonzero morphism. Then $\operatorname{ker} \varphi \subseteq U$ is a $K G$-submodule of U. (Proof: For all $r \in K G$ and $u \in \operatorname{ker} \varphi$ we have $\varphi(r u)=r \varphi(u)=r 0=0$, hence $r u \in \operatorname{ker} \varphi$.) Since U is irreducible and we assumed that $\operatorname{ker} \varphi \neq U$ this implies $\operatorname{ker} \varphi=0$, hence φ is injective. Similarly, the image $\operatorname{im} \varphi \subseteq V$ is a $K G$-submodule of V. (Proof: For all $r \in K G$ and $v \in \operatorname{im} \varphi$ there exists $u \in U$ such that $r v=r \varphi(u)=\varphi(r u)$. Since $r u \in U$ we conclude that $r v \in \operatorname{im} \varphi$.) Then since V is irreducible and we assumed that $\operatorname{im} \varphi \neq 0$ we conclude that $\operatorname{im} \varphi=V$, hence φ is surjective.
(d) If $K=\mathbb{C}$ (or any algebraically closed field) prove that the isomorphism from part (c) is a scalar multiple of the identity. [Hint: If we choose bases for U and V then φ is an invertible matrix. Since \mathbb{C} is algebraically closed, φ has an eigenvalue $\lambda \in \mathbb{C}^{\times}$.]

Proof. Let U and V be isomorphic irreducible $\mathbb{C} G$-modules and let $\varphi: U \rightarrow V$ be an isomorphism. If we choose bases for U and V then φ becomes a square matrix and then since \mathbb{C} is algebraphically closed φ has an eigenvalue $\lambda \in \mathbb{C}^{\times}$(which must be nonzero because φ is invertible). Now consider the map $(\varphi-\lambda I): U \rightarrow V$, where I is the identity matrix. This is still a morphism of $\mathbb{C} G$-modules because for all $r \in \mathbb{C} G$ and $u \in U$ we have

$$
(\varphi-\lambda I)(r u)=\varphi(r u)-\lambda I(r u)=r \varphi(u)-r \lambda I(u)=r(\varphi-\lambda I)(u)
$$

Since $\varphi-\lambda I$ is not injective (λ is an eigenvalue) and hence is not bijective, part (c) implies that $\varphi-\lambda I=0$, or $\varphi=\lambda I$.
(e) If G is abelian, use part (d) to prove that any irreducible $\mathbb{C} G$-module is 1-dimensional. [Hint: If V is any $\mathbb{C} G$-module, show that for all $g \in G$ the map $g: V \rightarrow V$ is a nonzero morphism of $\mathbb{C} G$-modules.]

Proof. Let G be abelian and let V be an irreducible $\mathbb{C} G$-module. For all $g \in G$ consider the invertible \mathbb{C}-linear map $g: V \rightarrow V$. For all $r=\sum_{h \in G} \alpha_{h} h \in K G$ and for all $v \in V$
we have

$$
\begin{aligned}
g(r v) & =g\left(\left(\sum_{h} \alpha_{h} h\right) v\right) \\
& =g\left(\sum_{h} \alpha_{h}(h v)\right) \\
& =\sum_{h} \alpha_{h} g(h v) \\
& =\sum_{h} \alpha_{h}(g h) v \\
& =\sum_{h} \alpha_{h}(h g) v \\
& =\sum_{h} \alpha_{h} h(g v) \\
& =\left(\sum_{h} \alpha_{h} h\right)(g v) \\
& =r(g v) .
\end{aligned}
$$

Thus $g: V \rightarrow V$ is an isomorphism of $\mathbb{C} G$-modules. Since g is nonzero (it is invertible) part (d) implies that $g=\lambda I$ for some $\lambda \in \mathbb{C}^{\times}$. We have shown that every element of G acts like a scalar on V. It follows that every vector subspace of V is a $\mathbb{C} G$-submodule. Since V is irreducible this implies that V has no nontrivial subspaces. Hence V is 1 -dimensional. [I guess you could also allow that $V=0$. Is zero irreducible? Probably not, for the same reason that 1 is not prime.]
(f) Tell me all the irreducible representations of the Klein Vierergruppe $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Proof. Let $G=\{1, a, b, a b\}$ be the Klein Vierergruppe, where $a^{2}=b^{2}=1$ and $a b=b a$, and let $\varphi: G \rightarrow G L(V)$ be an irreducible $\mathbb{C} G$-module. Since G is abelian we know from part (e) that V is 1-dimensional and hence we have $\varphi: G \rightarrow \mathbb{C}^{\times}$. Note that the representation is determined by the numbers $\varphi(a), \varphi(b) \in \mathbb{C}^{\times}$because $\varphi(a b)=$ $\varphi(a) \varphi(b)$. Note also that we have

$$
\varphi(a)^{2}=\varphi\left(a^{2}\right)=\varphi(1)=1
$$

and hence $\varphi(a)= \pm 1$. Similarly we have $\varphi(b)= \pm 1$. This gives us a total of four possibilities. These are listed in the following ("character") table:

	1	a	b	$a b$
φ_{1}	1	1	1	1
φ_{2}	1	-1	1	-1
φ_{3}	1	1	-1	-1
φ_{4}	1	-1	-1	1

