1. In the one-dimensional wave equation $u_{t t}=c^{2} u_{x x}$, what does the number c represent? How can you compute c in the case of a stretched string?

The number c is the "speed of propagation". In the case of a stretched string with tension T and linear density ρ we have

$$
c=\sqrt{\frac{T}{\rho}}
$$

2. Explicitly verify that $u(x, t)=\sin (x) \sin (c t)$ is a solution to $u_{t t}=c^{2} u_{x x}$.

Note that

$$
u_{x x}(x, t)=\frac{\partial^{2}}{\partial x^{2}} \sin (x) \sin (c t)=\frac{\partial}{\partial x} \cos (x) \sin (c t)=-\sin (x) \sin (c t)
$$

and

$$
u_{t t}(x, t)=\frac{\partial^{2}}{\partial t^{2}} \sin (x) \sin (c t)=\frac{\partial}{\partial t} c \sin (x) \cos (c t)=-c^{2} \sin (x) \sin (c t)=c^{2} u_{x x}(x, t) .
$$

3. Suppose that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are orthonormal vectors in some inner product space. In that case, what is the length of the vector $\mathbf{v}=a \mathbf{u}_{1}+b \mathbf{u}_{2}+c \mathbf{u}_{3}$?

We have

$$
\begin{array}{rlll}
\|\mathbf{v}\|^{2}= & \left\langle a \mathbf{u}_{1}+b \mathbf{u}_{2}+c \mathbf{u}_{3}, a \mathbf{u}_{1}+b \mathbf{u}_{2}+c \mathbf{u}_{3}\right\rangle \\
& a^{2}\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle & +a b\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}\right\rangle & +a c\left\langle\mathbf{u}_{1}, \mathbf{u}_{3}\right\rangle \\
= & +b a\left\langle\mathbf{u}_{2}, \mathbf{u}_{1}\right\rangle & +b^{2}\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle & +b c\left\langle\mathbf{u}_{2}, \mathbf{u}_{3}\right\rangle \\
& +a c\left\langle\mathbf{u}_{3}, \mathbf{u}_{1}\right\rangle & +b c\left\langle\mathbf{u}_{3}, \mathbf{u}_{2}\right\rangle & +c^{2}\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle \\
= & 1 a^{2} & +0 a b & +0 a c \\
= & +0 b a & +1 b^{2} & +0 b c \\
& +0 a c & +0 b c & +1 c^{2} \\
= & a^{2}+b^{2}+c^{2} &
\end{array}
$$

4. State the definition of the inner product of functions that makes

$$
1 / \sqrt{2}, \sin (x), \cos (x), \sin (2 x), \cos (2 x), \ldots
$$

into an orthonormal set.

Answer:

$$
\langle f, g\rangle=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) g(x) d x
$$

5. Compute all of the coefficients in the Fourier expansion of $\cos ^{2} x$:

$$
\cos ^{2} x=a_{0} \frac{1}{\sqrt{2}}+\sum_{n \geq 1}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

[Hint: No integration is necessary. Use $\cos (2 x)=\cos ^{2} x-\sin ^{2} x$.]

We have

$$
\cos (2 x)=\cos ^{2} x-\sin ^{2} x=\cos ^{2} x-\left(1-\cos ^{2} x\right)=2 \cos ^{2} x-1
$$

and hence

$$
\cos ^{2} x=\frac{\cos (2 x)+1}{2}=\frac{1}{2}+\frac{1}{2} \cos (2 x) .
$$

We conclude that

$$
\begin{aligned}
& a_{0}=1 / \sqrt{2}, \\
& a_{2}=1 / 2,
\end{aligned}
$$

and the rest of the Fourier coefficients are zero.

