1. Write down the solution of the undamped harmonic oscillator $x^{\prime \prime}(t)+\omega^{2} x(t)=0$ with initial conditions $x(0)$ and $x^{\prime}(0)$.

$$
x(t)=x(0) \cos (\omega t)+\frac{x^{\prime}(0)}{\omega} \sin (\omega t)
$$

2. What is the frequency of the damped harmonic oscillator $x^{\prime \prime}(t)+x^{\prime}(t)+x(t)=0$?

$$
\frac{\sqrt{3}}{2} \text { radians per second } \quad \text { OR } \quad \frac{\sqrt{3}}{4 \pi} \text { cycles per second }
$$

3. For which (real) values of γ will the following system oscillate?

$$
x^{\prime \prime}(t)+\gamma x^{\prime}(t)+x(t)=0 .
$$

The frequency of the general damped oscillator $x^{\prime \prime}(t)+\gamma x^{\prime}(t)+\omega^{2} x(t)=0$ is

$$
\omega^{\prime}=\frac{1}{2} \sqrt{4 \omega^{2}-\gamma^{2}} .
$$

(Note that $\omega^{\prime}=\omega$ when $\gamma=0$.) However, if ω^{\prime} is imaginary (i.e., if $4 \omega^{2}-\gamma^{2}<0$) then the solution is given by hyperbolic functions and the system doesn't really oscillate. It will oscillate if there is not too much damping, i.e., if

$$
\begin{aligned}
4 \omega^{2}-\gamma^{2} & >0 \\
4 \omega^{2} & >\gamma^{2} \\
2|\omega| & >|\gamma| .
\end{aligned}
$$

In our case we have $\omega=1$ so the system will oscillate when

$$
|\gamma|<2 .
$$

4. Express $\frac{1}{2} \cos (\omega t)-\frac{\sqrt{3}}{2} \sin (\omega t)$ in the form $r \cdot \cos (\omega t+\varphi)$.

Using the angle sum formula gives

$$
r \cdot \cos (\omega t+\varphi)=r \cos \varphi \cos (\omega t)-r \sin \varphi \sin (\omega t) .
$$

Then letting $r \cos \varphi=\frac{1}{2}$ and $-r \sin \varphi=-\frac{\sqrt{3}}{2}$ gives

$$
r=1 \quad \text { and } \quad \varphi=\frac{\pi}{3}
$$

We conclude that

$$
\frac{1}{2} \cos (\omega t)-\frac{\sqrt{3}}{2} \sin (\omega t)=\cos \left(\omega t+\frac{\pi}{3}\right)
$$

5. Compute the exponential of the matrix $\left(\begin{array}{cc}-t & -2 t \\ 2 t & -t\end{array}\right)$.

Note that $\left(\begin{array}{cc}-t & -2 t \\ 2 t & -t\end{array}\right)=\left(\begin{array}{cc}-t & 0 \\ 0 & -t\end{array}\right)+\left(\begin{array}{cc}0 & -2 t \\ 2 t & 0\end{array}\right)$. Since these two matrices commute (indeed, $\left(\begin{array}{cc}-t & 0 \\ 0 & -t\end{array}\right)$ is just a multiple of the identity matrix so it commutes with everything), we have

$$
\begin{aligned}
\exp \left(\begin{array}{cc}
-t & -2 t \\
2 t & -t
\end{array}\right) & =\exp \left(\left(\begin{array}{cc}
-t & 0 \\
0 & -t
\end{array}\right)+\left(\begin{array}{cc}
0 & -2 t \\
2 t & 0
\end{array}\right)\right) \\
& =\exp \left(\begin{array}{cc}
-t & 0 \\
0 & -t
\end{array}\right) \exp \left(\begin{array}{cc}
0 & -2 t \\
2 t & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-t}
\end{array}\right)\left(\begin{array}{cc}
\cos (2 t) & -\sin (2 t) \\
\sin (2 t) & \cos (2 t)
\end{array}\right) \\
& =e^{-t}\left(\begin{array}{cc}
\cos (2 t) & -\sin (2 t) \\
\sin (2 t) & \cos (2 t)
\end{array}\right)
\end{aligned}
$$

