1. Write down "Euler's Formula".

$$
e^{i t}=\cos t+i \sin t \quad \text { OR } \quad \exp \left(\begin{array}{cc}
0 & -t \\
t & 0
\end{array}\right)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

2. Write down the trigonometric identity that explains the phenomenon of beats. [Hint: $\sin (u)+\sin (v)=\cdots]$

$$
\sin (u)+\sin (v)=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)
$$

3. If two pure sine waves with frequencies 440 Hz and 444 Hz are played together, what do you expect to hear?

Note that

$$
\sin (440 \cdot 2 \pi t)+\sin (444 \cdot 2 \pi t)=2 \cdot \sin (442 \cdot 2 \pi t) \cos (2 \cdot 2 \pi t)
$$

This will sound like a pure tone of frequency 442 Hz turning on and off 4 times per second (i.e., the beats have frequency 4 Hz).
4. List all of the reduced fractions between 1 and 2 in which the numerator and denominator are both less than or equal to 7 .

$$
1<\frac{7}{6}<\frac{6}{5}<\frac{5}{4}<\frac{4}{3}<\frac{7}{5}<\frac{3}{3}<\frac{5}{3}<\frac{7}{4}<2
$$

5. This is the Plomp-Levelt dissonance curve based on seven partials. Label the cusps with the fractions you wrote down in Problem 4.

Voilà, the cusps are labeled:

