
Math 592 Spring 2015
Homework 2 Drew Armstrong

1. Beats Again. Show that the phenomenon of beats is independent of “phase shifts”. [Hint:
Consider the superposition sin(f1 · 2πt+ ϕ) + sin(f2 · 2πt+ µ).]

Applying the identity sin(u) + sin(v) = 2 sin
(
u+v
2

)
cos
(
u−v
2

)
gives

sin(f1 · 2πt+ ϕ) + sin(f2 · 2πt+ µ) =

2 · sin
(
f1 + f2

2
· 2πt+

ϕ+ µ

2

)
· cos

(
f1 − f2

2
· 2πt+

ϕ− µ
2

)
This means if we draw the graph of the superposition of two sine waves of frequency f1

and f2 (independent of phase shifts), we get an envelope sine wave of frequency (f1 − f2)/2
containing a sine wave oscillating at frequency (f1 + f2)/2. The phase shifts (ϕ − µ)/2 and
(ϕ+ µ)/2 do not change the overall look of the graph, and they do not change the sound: it
still sounds like a tone of frequency (f1 + f2)/2 turning on and off |f1 − f2| times per second.

2. Galileo’s Theory of Dissonance. Let a, b, A,B ∈ R. Show that the function

x(t) = A sin(at) +B cos(bt)

is periodic if and only if the number a/b equals a fraction of whole numbers. In this case,
what is the period? Galileo believed that this is the reason we prefer ratios of small whole
numbers: so that our eardrum is not “kept in perpetual torment”. [Hint: If x(t) has period
T then so does x′′(t) + b2x(t). Does this put any restriction on T?]

Note that A sin(at) has period 2π/a and B cos(bt) has period 2π/b. If there exist integers
m,n ∈ Z such that m2π/a = n2π/b = T (in other words, if a/b = m/n ∈ Q) then for all t we
have

x(t+ T ) = A sin(a(t+ T )) +B cos(b(t+ T ))

= A sin(a(t+m2π/a)) +B cos(b(t+ n2π/b))

= A sin(at+m2π) +B cos(bt+ n2π)

= A sin(at) +B cos(bt)

= x(t),

and we conclude that x(t) is periodic with period T .
Conversely, assume that x(t) is periodic with some period T . In other words, assume that

x(t+ T ) = x(t) for all t. Then we also have x′′(t+ T ) = x′′(t) for all t, and hence

x′′(t+ T ) + b2x(t+ T ) = x′′(t) + b2x(t), for all t.

Since x′′(t) + b2x(t) = (b2 − a2)A sin(at), this implies that

(b2 − a2)A sin(a(t+ T )) = (b2 − a2)A sin(at), for all t.

I forgot to assume that A 6= 0 so I’ll do that now. If b2 − a2 = 0 then certainly a/b = ±1,
which is a rational number. Otherwise, we can cancel the constant (b2−a2)A from both sides
to get

sin(at+ aT ) = sin(at), for all t,

which implies that aT = 2πm for some integer m ∈ Z.



Similarly, we know that the function x′′(t) + a2x(t) = (a2 − b2)B cos(bt) is periodic with
period T , which implies that cos(bt + bT ) = cos(bt) for all t, and hence bT = 2πn for some
integer n ∈ Z. We conclude that

2πm

a
= T =

2πn

b

and hence a/b = m/n ∈ Q. ///

3. Damped Harmonic Oscillator. In class we found that the damped harmonic oscillator
x′′(t) + x′(t) + x(t) = 0 with initial condition x′(0) = 0 has solution

x(t) =
2x(0)√

3
· e−t/2 · cos

(√
3

2
t− π

6

)
.

(a) For what values of t does x(t) = ±2x(0)√
3
e−t/2?

(b) For what values of t does x(t) have a local maximum/minimum?

(c) Graph the function x(t) along with ±2x(0)√
3
e−t/2.

For part (a), we are looking for t such that cos
(√

3
2 t−

π
6

)
= ±1. We have x(t) = 2x(0)√

3
e−t/2

when

cos

(√
3

2
t− π

6

)
= 1⇐⇒

√
3

2
t− π

6
= 2πk ⇐⇒ t =

π

3
√

3
+

4π√
3
k

for some k ∈ Z, and we have x(t) = −2x(0)√
3
e−t/2 when

cos

(√
3

2
t− π

6

)
= −1⇐⇒

√
3

2
t− π

6
= π + 2π`⇐⇒ t =

7π

3
√

3
+

4π√
3
`

for some ` ∈ Z.
For part (b) we first compute the derivative using the product rule:

x′(t) =
2x(0)√

3

[
−1

2
e−t/2 · cos

(√
3

2
t− π

6

)
−
√

3

2
e−t/2 sin

(√
3

2
t− π

6

)]

= −2x(0)√
3
e−t/2

[
1

2
cos

(√
3

2
t− π

6

)
+

√
3

2
sin

(√
3

2
t− π

6

)]

= −2x(0)√
3
e−t/2 cos

(√
3

2
t− π

2

)

= −2x(0)√
3
e−t/2 sin

(√
3

2
t

)
.

[Wait, how did I do the second-last step? I used the angle-sum identity

cos

(√
3

2
t− π

6
+ ϕ

)
= cosϕ · cos

(√
3

2
t− π

6

)
− sinϕ · sin

(√
3

2
t− π

6

)



and then I solved the equations cosϕ = 1
2 and sinϕ = −

√
3
2 to get ϕ = −π

3 .] Now assume that

x(0) 6= 0. Since e−t/2 is never zero we conclude that

x′(t) = 0⇐⇒ sin

(√
3

2
t

)
= 0⇐⇒

√
3

2
t = πm⇐⇒ t =

2π√
3
m

for some m ∈ Z. Even m correspond to local maxima and odd m correspond to local minima.
For part (c) let’s choose x(0) = 1. Then here are the graphs of x(t) and ± 2√

3
e−t/2 from

t = 0 to t = 6π√
3
. The vertical lines show the locations of local maxima/minima and where the

curves touch. Note that there is a slight delay after each local minimum/maximum until the
curves touch. How much of a delay? Exactly π

3
√
3
≈ 0.6046.

[Now you know everything you ever wanted to know about x′′(t) + x′(t) + x(t) = 0.]

4. Hyperbolic Functions. Recall the definition of the hyperbolic functions:

cosh(t) :=
et + e−t

2
and sinh(t) :=

et − e−t

2
.

(a) Verify that cosh2(t)− sinh2(t) = 1 for all t ∈ R.
(b) Show that the parametrized curve x(t) = (cosh(t), sinh(t)) is one branch of a hyperbola.
(c) Compute the velocity vector x′(t) at time t.
(d) Find a formula for the speed at time t. Is it constant?

For part (a) we have

cosh2(t)− sinh2(t) =
1

4
(et + e−t)2 − 1

4
(et − e−t)2

=
1

4
(e2t + 2 + e−2t)− 1

4
(e2t − 2 + e−2t)

=
1

4
(2)− 1

4
(−2)

= 1.

For part (b), recall that x2 − y2 = 1 is the equation of a hyperbola:



If we define x(t) = (x(t), y(t)) := (cosh(t), sinh(t)) then from part (a) we know that x(t)2 −
y(t)2 = 1, so the point x(t) is always on the hyperbola. Since x(0) = (1, 0) is on the right
branch and since x(t) is a continuous function of t, we know that x(t) is always on the right
branch. We also know that for t1 6= t2 we have x(t1) 6= x(t2) so the curve never backtracks.
It must therefore trace out the whole right branch of the parabola. (We also need to verify
that the velocity never goes to zero, which we’ll do below.)

For part (c) we first compute

d

dt
cosh(t) =

d

dt

et + e−t

2
=
et − e−t

2
= sinh(t)

and
d

dt
sinh(t) =

d

dt

et − e−t

2
=
et + e−t

2
= cosh(t)

Then the velocity of the curve x(t) = (cosh(t), sinh(t)) at time t is

x′(t) = (x′(t), y′(t)) = (sinh(t), cosh(t)).



The (squared) speed of the curve at time t is given by

|x′(t)|2 = x′(t)2 + y′(t)2

= cosh2(t) + sinh2(t)

=
1

4
(et + e−t)2 +

1

4
(et − e−t)2

=
1

4
(e2t + 2 + e−2t) +

1

4
(e2t − 2 + e−2t)

=
1

2
(e2t + e−2t)

= cosh(2t).

This is certainly not constant. It goes to +∞ as t → +∞ or t → −∞ and it has a global
minimum of |x′(t)| = 1 at t = 0. Here is a graph of the speed |x′(t)| for −4 < t < 4.

5. Eigenvalues. Consider a matrix A = ( a cb d ) and a vector x = (x, y). We say that x 6= (0, 0)
is an eigenvector of A if there exists a constant λ such that(

a c
b d

)(
x
y

)
= λ

(
x
y

)
.

Explicitly try to solve this system of two linear equations to obtain x, y in terms of a, b, c, d, λ,
and show that it has a solution only if (a− λ)(d− λ)− bc = 0. [Hint: Assume that it has a
solution (x, y) 6= (0, 0) and try to prove that (a − λ)(d − λ) − bc = 0. If c 6= 0 then subtract
(d−λ)/c times the first equation from the second equation to obtain bx−(a−λ)(d−λ)x/c = 0.
Since c 6= 0 we must have x 6= 0 (why?), which implies that (a− λ)(d− λ)− bc = 0. If c = 0
but b 6= 0 then subtract (a−λ)/b times the second equation from the first equation. Conclude
again that (a− λ)(d− λ)− bc = 0. Finally, if both c = 0 and b = 0, show that we must still
have (a− λ)(d− λ)− bc = 0. There is no escape!]



Proof. Assume that the system has a solution (x, y) with x and y not both zero, and write
the matrix equation as a system of two linear equations

(a− λ)x+ cy = 0(1)

bx+ (d− λ)y = 0.(2)

If c 6= 0 then we can subtract (d− λ)/c times equation (1) from equation (2) to obtain

(bx+ (d− λ)y)− (d− λ)

c
((a− λ)x+ cy) = 0− 0

bx+ (d− λ)y − (d− λ)(a− λ)

c
x− (d− λ)y = 0

bx− (d− λ)(a− λ)

c
x = 0

bcx− (d− λ)(a− λ)x = 0

(bc− (d− λ)(a− λ))x = 0.

Note that x cannot be zero, otherwise equation (1) says cy = 0 which since c 6= 0 implies
y = 0. But then x and y are both zero; contradiction. Thus we can cancel x in the previous
equation to conclude that

bc− (a− λ)(d− λ) = 0,

as desired.
If c = 0 but b 6= 0 then we can subtract (a− λ)/b times equation (2) from equation (1) to

obtain

((a− λ)x+ cy)− (a− λ)

b
(bx+ (d− λ)y) = 0− 0

(a− λ)x+ cy − (a− λ)x− (a− λ)(d− λ)

b
y = 0

cy − (a− λ)(d− λ)

b
y = 0

bcy − (a− λ)(d− λ)y = 0

(bc− (a− λ)(d− λ))y = 0.

Note that y cannot be be zero, otherwise equation (2) says bx = 0 shich since b 6= 0 implies
x = 0. But then x and y are both zero; contradiction. Thus we can cancel y in the above
equation to conclude that

bc− (a− λ)(d− λ) = 0,

as desired.
Finally, if c = 0 and b = 0 then equations (1) and (2) become

(a− λ)x = 0

(d− λ)y = 0.

Since x and y are not both zero, this implies that at least one of (a− λ) and (d− λ) must be
zero, and hence (a− λ)(d− λ) = 0. This implies that

(a− λ)(d− λ)− bc = 0− 0 = 0,

as desired. �

[If you’ve taken linear algebra then you probably already knew this. But maybe you never proved
it before. Now you have. From now on you can use it with impunity.]


