1. Beats Again. Show that the phenomenon of beats is independent of "phase shifts". [Hint: Consider the superposition $\sin \left(f_{1} \cdot 2 \pi t+\varphi\right)+\sin \left(f_{2} \cdot 2 \pi t+\mu\right)$.]
2. Galileo's Theory of Dissonance. Let $a, b, A, B \in \mathbb{R}$. Show that the function

$$
x(t)=A \sin (a t)+B \cos (b t)
$$

is periodic if and only if the number a / b equals a fraction of whole numbers. In this case, what is the period? Galileo believed that this is the reason we prefer ratios of small whole numbers: so that our eardrum is not "kept in perpetual torment".
3. Damped Harmonic Oscillator. In class we found that the damped harmonic oscillator $x^{\prime \prime}(t)+x^{\prime}(t)+x(t)=0$ with initial condition $x^{\prime}(0)=0$ has solution

$$
x(t)=\frac{2 x(0)}{\sqrt{3}} \cdot e^{-t / 2} \cdot \cos \left(\frac{\sqrt{3}}{2} t-\frac{\pi}{6}\right) .
$$

(a) For what values of t does $x(t)= \pm \frac{2 x(0)}{\sqrt{3}} e^{-t / 2}$?
(b) For what values of t does $x(t)$ have a local maximum/minimum?
(c) Graph the function $x(t)$ along with $\pm \frac{2 x(0)}{\sqrt{3}} e^{-t / 2}$.
4. Hyperbolic Functions. Recall the definition of the hyperbolic functions:

$$
\cosh (t):=\frac{e^{t}+e^{-t}}{2} \quad \text { and } \quad \sinh (t):=\frac{e^{t}-e^{-t}}{2}
$$

(a) Verify that $\cosh ^{2}(t)-\sinh ^{2}(t)=1$ for all $t \in \mathbb{R}$.
(b) Show that the parametrized curve $\mathbf{x}(t)=(\cosh (t), \sinh (t))$ is one branch of a hyperbola.
(c) Compute the velocity vector $\mathbf{x}^{\prime}(t)$ at time t.
(d) Find a formula for the speed at time t. Is it constant?
5. Eigenvalues. Consider a matrix $A=\left(\begin{array}{cc}a & c \\ b & d\end{array}\right)$ and a vector $\mathbf{x}=(x, y)$. We say that $\mathbf{x} \neq(0,0)$ is an eigenvector of A if there exists a constant λ such that

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y} .
$$

Explicitly try to solve this system of two linear equations to obtain x, y in terms of a, b, c, d, λ, and show that it has a solution only if $(a-\lambda)(d-\lambda)-b c=0$. [Hint: Assume that it has a solution $(x, y) \neq(0,0)$ and try to prove that $(a-\lambda)(d-\lambda)-b c=0$. If $c \neq 0$ then subtract $(d-\lambda) / c$ times the first equation from the second equation to obtain $b x-(a-\lambda)(d-\lambda) x / c=0$. Since $c \neq 0$ we must have $x \neq 0$ (why?), which implies that $(a-\lambda)(d-\lambda)-b c=0$. If $c=0$ but $b \neq 0$ then subtract $(a-\lambda) / b$ times the second equation from the first equation. Conclude again that $(a-\lambda)(d-\lambda)-b c=0$. Finally, if both $c=0$ and $b=0$, show that we must still have $(a-\lambda)(d-\lambda)-b c=0$. There is no escape!]

