0. Compute the length of a chord of the unit circle subtended by an arc of length t.

Consider the chord and the half-chord subtended by an arc of length t :

If $\operatorname{crd}(t)$ is the length of the chord then $\frac{1}{2} \operatorname{crd}(t)$ is the length of the half-chord. Since the half-chord is the opposite side of a right triangle with angle $t / 2$ and hypotenuse of length 1 (the circle has radius 1) we conclude that $\frac{1}{2} \operatorname{crd}(t)=\sin (t / 2)$, and hence

$$
\operatorname{crd}(t)=2 \sin (t / 2) .
$$

1. Given an arbitrary matrix $A=\left(\begin{array}{cc}a & c \\ b & d\end{array}\right)$ we can define a function from \mathbb{R}^{2} to \mathbb{R}^{2} by $\mathbf{x} \mapsto A \mathbf{x}$, in other words,

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{x}{y}=\binom{a x+c y}{b x+d y} .
$$

Prove that this is a linear function.
For all vectors $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ and all constants $\alpha, \beta \in \mathbb{R}$, we have

$$
\begin{aligned}
\alpha\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{x}{y}+\beta\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} & =\binom{\alpha(a x+c y)}{\alpha(b x+d y)}+\binom{\beta\left(a x^{\prime}+c y^{\prime}\right)}{\beta\left(b x^{\prime}+d y^{\prime}\right)} \\
& =\binom{\alpha(a x+c y)+\beta\left(a x^{\prime}+c y^{\prime}\right)}{\alpha(b x+d y)+\beta\left(b x^{\prime}+d y^{\prime}\right)} \\
& =\binom{a\left(\alpha x+\beta x^{\prime}\right)+c\left(\alpha y+\beta y^{\prime}\right)}{b\left(\alpha x+\beta x^{\prime}\right)+d\left(\alpha y+\beta y^{\prime}\right)} \\
& =\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{\alpha x+\beta x^{\prime}}{\alpha y+\beta y^{\prime}} \\
& =\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\left[\alpha\binom{x}{y}+\beta\binom{x^{\prime}}{y^{\prime}}\right],
\end{aligned}
$$

as desired.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function and consider the standard basis of \mathbb{R}^{2} consisting of $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$. If $f\left(\mathbf{e}_{1}\right)=(a, b)$ and $f\left(\mathbf{e}_{2}\right)=(c, d)$ then we define the matrix

$$
[f]=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Given $\mathrm{x} \in \mathbb{R}^{2}$ we will write $[\mathrm{x}]$ for the corresponding column vector. Then we define the product of a matrix and a column by $[f][\mathbf{x}]=[f(\mathbf{x})]$. [Why do we do this?]
2. Let f and g be linear functions from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) Prove that the composite $f \circ g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is also linear.
(b) We define the matrix product by $[f][g]:=[f \circ g]$. If $[f]=\left(\begin{array}{cc}a & c \\ b & d\end{array}\right)$ and $[g]=\left(\begin{array}{cc}a^{\prime} & c^{\prime} \\ b^{\prime} & d^{\prime}\end{array}\right)$, use the definition to compute the matrix product $[f][g]$.
(a) Assume that f and g are linear functions $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Then for all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ and all constants $\alpha, \beta \in \mathbb{R}$ we have

$$
\begin{aligned}
(f \circ g)(\alpha \mathbf{x}+\beta \mathbf{y}) & =f(g(\alpha \mathbf{x}+\beta \mathbf{y})) \\
& =f(\alpha g(\mathbf{x})+\beta g(\mathbf{y})) \\
& =\alpha f(g(\mathbf{x}))+\beta f(g(\mathbf{y})) \\
& =\alpha(f \circ g)(\mathbf{x})+\beta(f \circ g)(\mathbf{y}),
\end{aligned}
$$

hence $f \circ g$ is a linear function.
(b) Since $f \circ g$ is linear it can be represented by a matrix, which we call $[f][g]$. We will compute this matrix, assuming that $[f]=\left(\begin{array}{cc}a & c \\ b & d\end{array}\right)$ and $[g]=\left(\begin{array}{cc}a^{\prime} & c^{\prime} \\ b^{\prime} & d^{\prime}\end{array}\right)$. To do this, we consider any vector $(x, y) \in \mathbb{R}^{2}$. Then applying $f \circ g$ to (x, y) (writing everything in standard coordinates) gives

$$
\begin{aligned}
(f \circ g)\binom{x}{y} & =f\left(g\binom{x}{y}\right) \\
& =f\left(\left(\begin{array}{ll}
a^{\prime} & c^{\prime} \\
b^{\prime} & d^{\prime}
\end{array}\right)\binom{x}{y}\right) \\
& =f\binom{a^{\prime} x+c^{\prime} y}{b^{\prime} x+d^{\prime} y} \\
& =\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\binom{a^{\prime} x+c^{\prime} y}{b^{\prime} x+d^{\prime} y} \\
& =\binom{a\left(a^{\prime} x+c^{\prime} y\right)+c\left(b^{\prime} x+d^{\prime} y\right)}{b\left(a^{\prime} x+c^{\prime} y\right)+d\left(b^{\prime} x+d^{\prime} y\right)} \\
& =\binom{\left(a a^{\prime}+c b^{\prime}\right) x+\left(a c^{\prime}+c d^{\prime}\right) y}{\left(b a^{\prime}+d b^{\prime}\right) x+\left(b c^{\prime}+d d^{\prime}\right) y} \\
& =\left(\begin{array}{ll}
a a^{\prime}+c b^{\prime} & a c^{\prime}+c d^{\prime} \\
b a^{\prime}+d b^{\prime} & b c^{\prime}+d d^{\prime}
\end{array}\right)\binom{x}{y} .
\end{aligned}
$$

We conclude that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\left(\begin{array}{cc}a^{\prime} & c^{\prime} \\ b^{\prime} & d^{\prime}\end{array}\right)=[f][g]=[f \circ g]=\left(\begin{array}{c}a a^{\prime}+c b^{\prime} \\ b a^{\prime}+d b^{\prime} \\ b c^{\prime}+c d d^{\prime}\end{array}\right)$.
[Remark: That is a computation that everyone should do at least once in their life. Now you have.]
3. Let $R_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the (linear) function that rotates the plane counterclockwise by angle t. Recall that we can express this in coordinates by

$$
\left[R_{t}\right]=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

(a) Explain why $\left[R_{t}\right]^{3}=\left[R_{3 t}\right]$ without doing any work.
(b) Use part (a) to express $\cos (3 t)$ as a polynomial in $\cos (t)$. This is an example of a Chebyshev polynomial of the first kind.
(a) The function R_{t} rotates the plane counterclockwise by angle t. Therefore the function $R_{t} \circ R_{t} \circ R_{t}$ rotates the plane counterclockwise by angle $3 t$, i.e., we have $R_{t} \circ R_{t} \circ R_{t}=R_{3 t}$. Writing this in coordinates gives

$$
\left[R_{t}\right]^{3}=\left[R_{t}\right]\left[R_{t}\right]\left[R_{t}\right]=\left[R_{t} \circ R_{t} \circ R_{t}\right]=\left[R_{3 t}\right]
$$

(b) The equation from part (a) says that

$$
\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)^{3}=\left(\begin{array}{cc}
\cos (3 t) & -\sin (3 t) \\
\sin (3 t) & \cos (3 t)
\end{array}\right)
$$

On the other hand, using the formula from Problem 2(b) gives

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)^{3} & =\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
\cos ^{2} t-\sin ^{2} t & -2 \sin t \cos t \\
2 \sin t \cos t & \cos ^{2} t-\sin ^{2} t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos t\left(\cos ^{2} t-\sin ^{2} t\right)-2 \sin ^{2} t \cos t & -2 \sin t \cos ^{2} t-\sin t\left(\cos ^{2} t-\sin ^{2} t\right) \\
2 \sin t \cos ^{2} t+\sin t\left(\cos ^{2} t-\sin ^{2} t\right) & \cos t\left(\cos ^{2} t-\sin ^{2} t\right)-2 \sin ^{2} t \cos t
\end{array}\right)
\end{aligned}
$$

Comparing the top-left entries of the two matrices gives

$$
\begin{aligned}
\cos (3 t) & =\cos t\left(\cos ^{2} t-\sin ^{2} t\right)-2 \sin ^{2} t \cos t \\
& =\cos ^{3} t-\sin ^{2} t \cos t-2 \sin ^{2} t \cos t \\
& =\cos ^{3} t-3 \sin ^{2} t \cos t \\
& =\cos ^{3} t-3\left(1-\cos ^{2} t\right) \cos t \\
& =\cos ^{3} t+3 \cos ^{3} t-3 \cos t \\
& =4 \cos ^{3} t-3 \cos t
\end{aligned}
$$

This polynomial is called a Chebyshev polynomial of the first kind. We use the notation $T_{3}(x)=$ $4 x^{3}-3 x$. The general polynomial $T_{n}(x)$ expresses $\cos (n t)$ as a polynomial in $\cos t$; that is, we have $T_{n}(\cos t)=\cos (n t)$. These polynomials appear everywhere and have lots of uses.
4. Use the "angle sum fomulas" to verify the following trigonometric identities.
(a) $2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)$
(b) $2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)$

Recall that the angle sum formulas say

$$
\begin{align*}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \tag{1}\\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \tag{2}
\end{align*}
$$

From these, using the fact that $\cos (-\beta)=\cos \beta$ and $\sin (-\beta)=-\sin \beta$, we obtain

$$
\begin{align*}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \tag{3}\\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \tag{4}
\end{align*}
$$

For part (a) we subtract formula (1) from formula (3) to get

$$
\begin{aligned}
\cos (\alpha-\beta)-\cos (\alpha+\beta) & =(\cos \alpha \cos \beta+\sin \alpha \sin \beta)-(\cos \alpha \cos \beta-\sin \alpha \sin \beta) \\
& =2 \sin \alpha \sin \beta
\end{aligned}
$$

For part (b) we add formula (1) to formula (3) to get

$$
\begin{aligned}
\cos (\alpha-\beta)+\cos (\alpha+\beta) & =(\cos \alpha \cos \beta+\sin \alpha \sin \beta)+(\cos \alpha \cos \beta-\sin \alpha \sin \beta) \\
& =2 \cos \alpha \cos \beta
\end{aligned}
$$

5. Use the identities from Problem 4 to verify the following integrals.
(a) $\int_{0}^{2 \pi} \sin (m t) \sin (n t) d t= \begin{cases}\pi & m=n \neq 0 \\ 0 & \text { otherwise }\end{cases}$
(b) $\int_{0}^{2 \pi} \cos (m t) \cos (n t) d t= \begin{cases}2 \pi & m=n=0 \\ \pi & m=n \neq 0 \\ 0 & \text { otherwise }\end{cases}$
(a) First we use Problem 4(a) to write

$$
\sin (m t) \sin (n t)=\frac{1}{2}[\cos ((m-n) t)-\cos ((m+n) t)]
$$

If $m-n \neq 0$ and $m+n \neq 0$ then we integrate to obtain

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (m t) \sin (n t) d t & =\frac{1}{2} \int_{0}^{2 \pi}[\cos ((m-n) t)-\cos ((m+n) t)] d t \\
& =\frac{1}{2}\left[\frac{\sin ((m-n) t)}{m-n}+\frac{\sin ((m+n) t)}{m+n}\right]_{0}^{2 \pi} \\
& =\frac{1}{2}\left[\frac{\sin ((m-n) 2 \pi)}{m-n}+\frac{\sin ((m+n) 2 \pi)}{m+n}\right] .
\end{aligned}
$$

If $m-n$ and $m+n$ are both half-integers then $\sin ((m-n) 2 \pi)=\sin ((m+n) 2 \pi)=0$, so the integral evaluates to zero. We are probably assuming that m and n are non-negative integers, but it's nice to pay attention to how the assumption is used.

If $m=n=0$ then the integral is $\int_{0}^{2 \pi} \sin (0) \sin (0) d t=\int_{0}^{2 \pi} 0 d t=0$.
If $m=n \neq 0$ then the integral is

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (m t) \sin (m t) d t & =\frac{1}{2} \int_{0}^{2 \pi}[\cos (0)-\cos (2 m t)] d t \\
& =\frac{1}{2}\left[t+\frac{\sin (2 m t)}{2}\right]_{0}^{2 \pi} \\
& =\frac{1}{2}\left[2 \pi+\frac{\sin (m 4 \pi t)}{2}\right] \\
& =\pi
\end{aligned}
$$

In the last step I assumed that m is a quarter-integer so that $\sin (m 4 \pi)=0$.

Finally, if $m=-n \neq 0$ then we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (m t) \sin (-m t) d t & =\frac{1}{2} \int_{0}^{2 \pi}[\cos (2 m t)-\cos (0)] d t \\
& =\frac{1}{2}\left[\frac{\sin (2 m t)}{2}-t\right]_{0}^{2 \pi} \\
& =\frac{1}{2}\left[\frac{\sin (m 4 \pi t)}{2}-2 \pi\right] \\
& =-\pi .
\end{aligned}
$$

Again, I assumed that m is a quarter-integer. This case does not appear in the problem, because, again, in the problem I was probably assuming that m and n are non-negative integers.
(b) Here I'll just assume at the outset that m and n are non-negative integers, and ignore the other cases. We will use the following identity from Problem 4(b):

$$
\cos (m t) \cos (n t)=\frac{1}{2}[\cos ((m-n) t)+\cos ((m+n) t)] .
$$

If $m \neq n$ then we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos (m t) \cos (n t) d t & =\frac{1}{2} \int_{0}^{2 \pi}[\cos ((m-n) t)+\cos ((m+n) t)] d t \\
& =\frac{1}{2}\left[\frac{\sin ((m-n) t)}{m-n}+\frac{\sin ((m+n) t)}{m+n}\right]_{0}^{2 \pi} \\
& =0
\end{aligned}
$$

If $m=n=0$ then we have

$$
\int_{0}^{2 \pi} \cos (0) \cos (0) d t=\int_{0}^{2 \pi} 1 d t=2 \pi
$$

If $m=n \neq 0$ then we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \cos (m t) \cos (m t) d t & =\frac{1}{2} \int_{0}^{2 \pi}[\cos (0)+\cos (2 m t)] d t \\
& =\frac{1}{2}\left[t+\frac{\sin (2 m t)}{2}\right]_{0}^{2 \pi} \\
& =\frac{1}{2}[2 \pi+0] \\
& =\pi
\end{aligned}
$$

[Remark: It is not clear right now what these formulas are good for. We will see later that they are the foundation of the theory of Fourier series.]

