Math 592 Spring 2015
Homework 1 Drew Armstrong

0. Compute the length of a chord of the unit circle subtended by an arc of length t.

Consider the chord and the half-chord subtended by an arc of length ¢:

1/2

If crd(t) is the length of the chord then fcrd(t) is the length of the half-chord. Since the
half-chord is the opposite side of a right triangle with angle ¢/2 and hypotenuse of length 1
(the circle has radius 1) we conclude that 1crd(t) = sin(t/2), and hence

crd(t) = 2sin(t/2).
/1]

1. Given an arbitrary matrix A = (¢ 5) we can define a function from R? to R? by x — Ax,
in other words,
x . a c T\ _ (az +cy '
Y b d) \y br + dy
Prove that this is a linear function.
For all vectors (z,y), (z',y') € R? and all constants «, 3 € R, we have
a ¢\ (x a c\ (2 _ [alar+ cy) Blaz" + cy')
« (b d) <y> +5 <b d) <y'> = <a b + dy)> * <ﬁ(bx’ +dy)

(
alaz + cy) + Blaz’ + cy’)>
(bx + dy) + (b’ + dy)

(ax + B2') + c(ay + BY)
(az + B2') + d(ay + BY')

c\ (az+ px’
d) \ oy + By

bl ()
as desired. /1]

Let f : R? — R2 be a linear function and consider the standard basis of R? consisting of e; = (1,0)
and ez = (0,1). If f(e1) = (a,b) and f(e2) = (¢, d) then we define the matrix

1= 5)-



Given x € R? we will write [x] for the corresponding column vector. Then we define the product
of a matrix and a column by [f][x] = [f(x)]. [Why do we do this?]

2. Let f and g be linear functions from R? to R2.

(a) Prove that the composite f o g : R? — R? is also linear.
(b) We define the matrix product by [f][g] := [fog]. If [f] = (§§) and [g] = (% &), use
the definition to compute the matrix product [f][g].

(a) Assume that f and g are linear functions R? — R2. Then for all vectors x,y € R? and all
constants o, 8 € R we have

(fog)(ax+ By) = f(g(ax+ By))
= [(ag(x) + Bg(y))
=af(g(x)) + Bf(9(y))
=a(fog)(x)+B(fog)y),

hence f o g is a linear function. ///

(b) Since fog is linear it can be represented by a matrix which we call [f][g]. We will compute
this matrix, assuming that [f] = (¢ $) and [g] = (% 7 d,) To do this, we consider any vector
(x,y) € R2. Then applying f o g to (,y) (writing everything in standard coordinates) gives

o0 () -s(6()
696
(hetat)

f

-5 o) Gera)

(a de+cdy)+cz+dy ))
(

<

bld'z+ cy) +d(b'z + d'y)

(ad' + b )z + (ad + cd')y
ba' + db' )z + (b —i—dd’)

a +cb ad +cd
ba' +db b + dd '
aa’+cb’ ac’+cd’
fogl= ( ba’ Idb’ be! Idd’ ) /1]

[Remark: That is a computation that everyone should do at least once in their life. Now you have.]

We conclude that (¢ §) (‘g// fll/) = [fllg]

3. Let R; : R? — R? be the (linear) function that rotates the plane counterclockwise by angle
t. Recall that we can express this in coordinates by

cost —sint
= ).
sint  cost
(a) Explain why [R;]® = [R3;] without doing any work.

(b) Use part (a) to express cos(3t) as a polynomial in cos(¢). This is an example of a
Chebyshev polynomial of the first kind.



(a) The function R; rotates the plane counterclockwise by angle t. Therefore the function
R; o R; o Ry rotates the plane counterclockwise by angle 3t, i.e., we have R; o Ry o Ry = Rgy.
Writing this in coordinates gives

[Ri])* = [Ri][R][R] = [Ry © Ry o Ry] = [Ray].
///

(b) The equation from part (a) says that

cost —sint 3_ cos(3t) —sin(3t)
sint cost )~ \sin(3t) cos(3t) )’

On the other hand, using the formula from Problem 2(b) gives

cost —sint 3 __[cost —sint cost —sint cost —sint
sint cost ~ \sint cost sint cost sint cost
_ (cos t —sin t> (cos2 t —sin®t —2sintcost )

sint cost 2sintcost cos?t —sin? ¢

_ (cost(cos®t —sin?t) — 2sin®tcost —2sintcos?t — sint(cos?t — sin?¢)
~ \2sintcos?t +sint(cos®t —sin®t)  cost(cos?t —sin?t) — 2sin?tcost

Comparing the top-left entries of the two matrices gives
cos(3t) = cost(cos®t — sin?t) — 2sin®t cost
= cos®t —sin®tcost — 2sin®t cost
=cos®t — 3sin®tcost
= cos>t — 3(1 — cos® t) cost
= cos>t + 3cos>t — 3cost
= 4cos®t — 3cost.

This polynomial is called a Chebyshev polynomial of the first kind. We use the notation T3(x) =
423 — 3x. The general polynomial T},(x) expresses cos(nt) as a polynomial in cost; that is, we
have T),(cost) = cos(nt). These polynomials appear everywhere and have lots of uses.  ///

4. Use the “angle sum fomulas” to verify the following trigonometric identities.
(a) 2sinasin 8 = cos(a — B) — cos(a + B3)
(b) 2cosacos 8 = cos(a — ) + cos(a + )

Recall that the angle sum formulas say

(1) cos(a+ ) = cosacos 3 — sin asin 3
(2) sin(a + ) = sinacos 8 + cos asin 3
From these, using the fact that cos(—f) = cos f and sin(—() = — sin 3, we obtain
(3) cos(aw — 3) = cosacos 3 + sin asin 3
(4) sin(a — ) = sinacos f — cosasin 8

For part (a) we subtract formula (1) from formula (3) to get

cos(a — ) — cos(a + ) = (cosaccos B + sinasin 3) — (cos acos B — sin asin )

= 2sin asin 5.



For part (b) we add formula (1) to formula (3) to get

cos(a — ) + cos(a + ) = (cosaccos B + sinasin ) + (cos acos B — sin asin )

= 2cosacosf3.

/1]

5. Use the identities from Problem 4 to verify the following integrals.

2
= 0
(a) / sin(mt) sin(nt) dt = o n;é
0 0 otherwise
o 2r m=n=0
(b) / cos(mt)cos(nt)dt =<m m=n#0
0

0 otherwise

(a) First we use Problem 4(a) to write
sin(mt) sin(nt) = %[cos((m —n)t) — cos((m + n)t)].

If m —n # 0 and m + n # 0 then we integrate to obtain

2T 27
/0 sin(mt) sin(nt) dt = % /0 [cos((m — n)t) — cos((m +n)t)] dt
1 [sin((m —n)t)  sin((m+n)t)]*"
T2 [ m-—n * m+n ]0

1 [sin((m —n)27)  sin((m + n)2m)

m-—n m-+n

If m —n and m + n are both half-integers then sin((m — n)27) = sin((m + n)27) = 0, so
the integral evaluates to zero. We are probably assuming that m and n are non-negative
integers, but it’s nice to pay attention to how the assumption is used.

If m = n = 0 then the integral is fOQW sin(0) sin(0) dt = 0% 0dt =0.

If m = n # 0 then the integral is

[cos(0) — cos(2mt)] dt

[t N sin(th)] 2
2 0
i Art

N 5111(7721 T )}

O\t"o
3

27
/ sin(mt) sin(mt) dt =
0

| — |
¢
3
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In the last step I assumed that m is a quarter-integer so that sin(mdm) = 0.



Finally, if m = —n # 0 then we have
2w 27r
/ sin(mt) sin( / cos(2mt) — cos(0)] dt
0 0

sm 2mt }
0

N = N = N)\»ﬂ

4 t
[smm T —27r]
—T.

Again, I assumed that m is a quarter-integer. This case does not appear in the problem,
because, again, in the problem I was probably assuming that m and n are non-negative

integers. ///

(b) Here I'll just assume at the outset that m and n are non-negative integers, and ignore the
other cases. We will use the following identity from Problem 4(b):
1
cos(mt) cos(nt) = i[cos((m —n)t) 4 cos((m + n)t)].

If m # n then we have

2 1 2w
/0 cos(mt) cos(nt) dt = B /0 [cos((m — n)t) + cos((m + n)t)] dt

21

[sin((m —n)t) n sin((m + n)t)

1
5 m-—n m—+n 0
0

If m = n = 0 then we have
2m 2m
/ cos(0) cos(0) dt = / 1dt = 2m.

0 0
If m =n # 0 then we have

2T 1 2

/ cos(mt) cos(mt) dt = 5 / [cos(0) + cos(2mt)] dt
0 0

1 [ sin(2mt)] 2m
t4
0

2 2

—lp + 0]

= T.

/1]

[Remark: It is not clear right now what these formulas are good for. We will see later that they
are the foundation of the theory of Fourier series.]



