0. Compute the length of a chord of the unit circle subtended by an arc of length t.

1. Given an arbitrary matrix $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ we can define a function from \mathbb{R}^2 to \mathbb{R}^2 by $\mathbf{x} \mapsto A\mathbf{x}$, in other words,

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + cy \\ bx + dy \end{pmatrix}.$$

Prove that this is a linear function.

Let $f:\mathbb{R}^2 \to \mathbb{R}^2$ be a linear function and consider the standard basis of \mathbb{R}^2 consisting of $\mathbf{e}_1=(1,0)$ and $e_2 = (0,1)$. If $f(e_1) = (a,b)$ and $f(e_2) = (c,d)$ then we define the matrix

$$[f] = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$

Given $\mathbf{x} \in \mathbb{R}^2$ we will write $[\mathbf{x}]$ for the corresponding column vector. Then we define the product of a matrix and a column by $[f][\mathbf{x}] = [f(\mathbf{x})]$. [Why do we do this?]

2. Let f and g be linear functions from \mathbb{R}^2 to \mathbb{R}^2 .

(a) Prove that the composite $f \circ g : \mathbb{R}^2 \to \mathbb{R}^2$ is also linear.

(b) We define the matrix product by $[f][g] := [f \circ g]$. If $[f] = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ and $[g] = \begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix}$, use the definition to compute the matrix product [f][g].

3. Let $R_t: \mathbb{R}^2 \to \mathbb{R}^2$ be the (linear) function that rotates the plane counterclockwise by angle t. Recall that we can express this in coordinates by

$$[R_t] = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}.$$

(a) Explain why $[R_t]^3 = [R_{3t}]$ without doing any work.

(b) Use part (a) to express cos(3t) as a polynomial in cos(t). This is an example of a Chebyshev polynomial of the first kind.

4. Use the "angle sum formulas" to verify the following trigonometric identities.

(a) $2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$

(b) $2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$

5. Use the identities from Problem 4 to verify the following integrals.

(a)
$$\int_0^{2\pi} \sin(mt) \sin(nt) dt = \begin{cases} \pi & m = n \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

(a)
$$\int_0^{2\pi} \sin(mt) \sin(nt) dt = \begin{cases} \pi & m = n \neq 0 \\ 0 & \text{otherwise} \end{cases}$$
(b)
$$\int_0^{2\pi} \cos(mt) \cos(nt) dt = \begin{cases} 2\pi & m = n = 0 \\ \pi & m = n \neq 0 \\ 0 & \text{otherwise} \end{cases}$$