Math 562/662 Spring 2024
Homework 3 Drew Armstrong

1. One Step Ideal Test. Let I be a subset of a commutative ring (R, +,-,0,1). We say
that I is an ideal of R when the following two properties hold:

(1) I is a subgroup of (R, +,0).

(2) For all a € R and b € I we have ab € I.

Prove that these two properties are equivalent to the following single property:
(3) For all a,b € I and ¢ € R we have a + bc € 1.
[Hint: You may use the One Step Subgroup Test from last semester.]

Suppose that (1) and (2) hold. Then for any a,b € I and ¢ € R we have bc € I by (2) and
then a + bc € I by (1). Hence (3) holds. Conversely, suppose that (3) holds. We will use the
One Step Subgroup Test to prove (1). So consider any a,b € I. Then by taking ¢ = —1 we
have a — b = a + bc € I, as desired. In particular we have 0 € I. Now taking a = 0 in the
statement of (3) says that b € I and ¢ € R imply bc = 0 + be € I, hence (2) holds.

2. First Isomorphism Theorem for Rings. Let ¢ : R — S be a ring homomorphism. We
define the image and kernel as follows:

imy = {p(a) : a € R},
ker¢o ={a € R: ¢(a) = 0}.

(a) Prove that ker ¢ C R is an ideal.

(b) Prove that im C S is a subring (i.e., a subset containing 0 and 1 that is closed under
addition and multiplication).

(c) From last semester we know that the function ® : R/ker ¢ — im ¢ defined by [a] —
¢(a) is an isomorphism of additive groups. Prove that ® also preserves multiplication,
hence it gives a ring isomorphism R/ ker ¢ = im .

(a): We will use the One Step Ideal Test. For any a,b € ker p and b € R we have

pla+bc) = p(a) + (b)p(c) = 0+ 0p(c) =0,
and hence a + bc € ker .

(b): First note that im ¢ contains 0 and 1 because 0 = ¢(0) and 1 = ¢(1). Now consider
any two elements a,b € imy. By definition, this means that a = (a’) and b = (V)
for some o/, € R. But then we have a + b = p(d') + ¢(b') = p(a’ + V) € imp and
ab = @(a")p(b') = p(a't') € im @, as desired.

(c): For any a € R let [a] denote the additive coset a + ker ¢. We know from last semes-
ter that the operation [a] 4+ [b] := [a + b] is well-defined and makes R/ker ¢ into a group.
Furthermore, the function ® : R/kery — im¢ defined by ®([a]) := ¢(a) is a well-defined
group isomorphism. On HW2 you showed that the operation [a][b] := [ab] is well-defined and
makes R/ ker ¢ into a ring. Then & is also a ring homomorphism because ®([1]) = ¢(1) =1
and ®([a][b]) = ®([ab]) = w(ab) = p(a)p(b) = ®([a])P([b]). Hence ® is a ring isomorphism
R/ ker ¢ = im .



3. Characteristic of a Ring. For any ring R there exists a unique ring homomorphism
tr : Z — R from the ring of integers. Since ker g is an ideal of Z we must have ker g = nZ
for some unique natural number n € N. We call this the characteristic of R:

char(R) := n.

(a) Prove that im (g is the smallest subring of R.

(b) If R is a domain, prove that char(R) = 0 or char(R) = p for some prime p > 2. [Hint:
By the first isomorphism theorem, Z/ ker ¢y is isomorphic to a subring of R.]

(c) Let F be a field and let F/ C F be the smallest subﬁeldm Since every field is a domain,
we know from part (b) that char(F) = 0 or char(F) = p > 2. In the first case show
that I’ = Q. In the second case show that F' = Z/pZ. [Hint: From part (a) we know
that R := im(p is the smallest subring of F. Show that Frac(R) = F" and then use the
First Isomorphism Theorem.]

(a): The function tg can be described as tg(n) = n - 1z where

g +1p+---+1p n=>1,
n-1lp: =<0 n =20,
—1lgp—1p—---—1p n<-—1.

This notation satisfies (m+mn)-1r = m-1g+n-1g, which shows that im ¢ is a subring of R.
(Or just use the fact that any image is a subring.) Now let R’ C R be the smallest subring of
R. Since im g is a subring of R we must have R’ C im . Conversely, since 1z € R’ we can
show by induction that n -1 € R’ for all n € Z, and hence imtg C R'.

(b): Let R be a domain. Since kercp is an ideal of Z we have kertp = nZ for some unique
n € N, and we write n = char(R). I claim that n = 0 or n = p for prime p > 2. Indeed, by the
First Isomorphism Theorem we know that Z/nZ = Z/kertp = imtg C R. Since imtp is a
subring of a domain, it is also a domain. Then since Z/nZ is a domain we know that nZ C Z
is a prime ideal. Hence n = 0 or n = p for prime p > 2.

(¢): Let IF be a field with smallest subfield F’ C F and smallest subring R’ C F, so that R’ C F’.
I claim that F' = Frac(R'), where Frac(R') is defined as the set {ab~!:a,b € R';b# 0} CF.
Indeed, for all a,b € R’ with b # 0 we have a,b € F/ and hence ab~! € F’, so that Frac(R') C IF.
Conversely, since Frac(R') is a subfield of F and since F’ is the smallest subfield we have
F’ C Frac(R').

Since F is a domain we know from (b) that R’ = Z/0Z = Z or R' = Z/pZ for prime p > 2.
Hence F' = Frac(Z) = Q or F' = Frac(Z/pZ) = Z/pZ.

4. Minimal Polynomials. Given an element o € E D F of a field extension we have a
ring homomorphism ¢, : F[z] — E defined by f(x) — f(a). Since F[z] is Euclidean we know
that ker ¢, = mq(x)F[z] for some unique monic polynomial m,(z) € F[z] called the minimal
polynomial of o over F. We will assume that m,(x) # qﬂ and deg(mg) = n.

(a) Prove that mg(z) is irreducible over F. [Hint: Suppose for contradiction that m(z) =
f(z)g(z) with deg(f),deg(g) > 1. Evaluating  — « gives f(a)g(a) = 0 so without
loss of generality we can assume that f(a) = 0. But this implies that f(x) € ker ¢, so
that f(x) = mq(z)h(x) for some h(z) € F[z].]

1A subfield is a subring that is also a field.
2That is, we will assume that « is algebraic over F.



(b) Recall that we define F[a] := im¢,. Prove that every element of F[a| can be written
in the form ag+aja+---+an_10™ ! with ag, ...,a,_1 € F. [Hint: By definition every
element 8 € F[a] has the form 8 = f(a) for some polynomial f(z) € F[z]|. Divide f(x)
by the nonzero polynomial mq(x) and then substitute x — a.]

(¢) For any ag,...,an—1,b0,...,bn—1 € F prove that

Zakak:Zbkak <— qp=byforall0<k<n-—1.

(a): Suppose for contradiction that mq(z) = f(z)g(x) for some f(x),g(x) € Fl[z] with
deg(f),deg(g) > 1. Since deg(my) = deg(f) + deg(g) this implies that deg(f),deg(g) <
deg(mg). Now evaluating x — « gives f(a)g(a) = mq(a) = 0. Since E is a domain this
implies that f(a) =0 or g(a) = 0. Without loss of generality, let’s say f(a) = 0. By the def-
inition of mg(x) this means that f(z) = mq(x )h( ) for some h(z) € F[x]. But since f(z) #0
this implies that deg(f) = deg(mgy) + deg( ) > deg(mg), which contradicts the fact that

deg(f) < deg(my,)-

(b): Let deg(mq) = n and consider any element 5 € F[a]. By definition this means that
B = f(«) for some polynomial f(x) € F[x]. Divide f(x) by the minimal polynomial mq(z) to
obtain ¢(z),r(x) € Flz| satisfying

{ f(@) = ma(z)q(x) +r(z),
r(z) =0 or deg(r) < n.

In any case we can write r7(z) = ag + a1 + - - + a,_12" ! for some ag,...,a,_1 € F. Then
evaluating x — « gives

B=fla)
= ma(a)g(a) +r(a)
= 0g(@) + ()
= ()

n—1
=aptaa+---+ap_1Q )

as desired.

(¢): Consider any two polynomials f(z) = ag+ -+ an—12" " and g(z) = by + - - + by_12™
in F[x] of degree < n. If a;, = by, for all k then f(z) = g(x) and hence f(a) = g(a). Conversely,
suppose that f(a) = g(«) and consider the polynomial h(z) = f(z) — g(x) € F[z]. Our goal
is to show that h(z) = 0, which implies that each of its coefficients ay — by, is zero, and hence
ar = bx. So suppose for contradiction that h(zx) # 0. Since h(a) = f(a) — g(a) = 0 we
have h(z) = mq(x)p(z) for some p(z) € F[z] and since h(z) # 0 this implies that deg(h) =
deg(my,) + deg(p) > deg(my) = n. But this contradicts the fact that deg(h) = deg(f — g) <
max{deg(f),deg(g)} <n.

5. Irreducible Polynomials of Small Degree. Let F be a domain and let f(x) € F[x] be
a polynomial of degree 2 or 3. Prove that
f(z) is irreducible over F <= f(z) has no root in F.

[Hint: If f(a) = 0 for some a € F then Descartes’ Factor Theorem says that f(z) = (z—a)g(x)
for some g(x) € F[z]. Conversely, suppose that f(z) = g(z)h(x) for some g(x),h(x) with
deg(g),deg(h) > 1. Now what?]



Let deg(f) = 2 or 3. If f(x) € F[z] has a root a € F then f(z) = (x — a)g(x) for some
g(z) € F[z], which implies that f(x) is not irreducible. Conversely, suppose that f(x) is
reducible, say f(x) = g(z)h(z) for some deg(g),deg(h) > 1. Since deg(f) = 2 or 3, this
implies that deg(g) = 1 or deg(h) = 1. Without loss of generality, suppose that deg(g) =1 so
that g(x) = a + bx with a,b € F and b # 0. But then

f(=ab™') = g(—ab~YHh(—ab™!) = Oh(—ab™t) =0,
which shows that f(z) has a root —ab~! € F.

6. The Rational Root Test. Let f(z) be a polynomial of degree n with integer coefficients:
co+ 1z + -+ cpa™ € Zx] with ¢, # 0.

(a) Suppose that f(a/b) = 0 for some integers a,b € Z with b # 0 and ged(a,b) = 1. In
this case prove that alcy and b|c,. [Hint: Multiply both sides of f(a/b) = 0 by b"
to obtain an equation involving only integers. Show that b|c,a™ and a|cob”, then use
Euclid’s Lemma.]

(b) Use part (a) to show that the polynomial 23 — 2 has no rational roots. It follows from
Problem 5 that 22 — 2 is irreducible over Q.

(c) Let a := ¥/2 be the real cube root of 2. Use part (b) to prove that > —2 is the minimal
polynomial of o over Q. [Hint: Let mq(z) € Q[x] be the minimal polynomial of o over
Q. Since (a)? — 2 = 0 we know that 2% — 2 = m(z)f(z) for some f(z) € Q[z].]

(a): Suppose that f(a/b) = 0 for some integers a,b € Z with b # 0 and gcd(a,b) = 1.
Multiplying both sides of this equation by b" gives

fla/b) =0
co+ci(a/b)+ -+ cp(a/b)" =0
cob” + c1ab™ 4+ -+ cpa™ = 0.

On the one hand we have —cpb"™ = c1ab” ! + - + ca™ = a(e1b” ' + - + cpa™ 1), Then
since alcpb™ and ged(a,b) = 1, Euclid’s Lemma implies that a|cg. On the other hand we
have —cpa™ = cob™ + -+ + ¢p_1a" b = b(cpb" ! + -+ + ¢,_1a™ ). Then since blec,a™ and
ged(a, b) = 1, Euclid’s Lemma implies that b|ay,.

(b): Suppose that (a/b)> —2 = 0 for some a,b € Z with ged(a,b) = 1. From part (a) this
implies that a|2 and b|1, hence a/b = +£1,42. But (£1)® — 2 # 0 and (+2)3 — 2 # 0. Hence
this polynomial has no rational roots. Since 2> — 2 has degree 3, it follows from Problem 5
that 23 — 2 is irreducible over Q.

(c): Let o := /2 be the real cube root of 2, so that a® — 2 = 0. By definition this means that
23 — 2 =mq(z)f(z) for some f(x) € Q[x], where m,(x) € Q[z] is the minimal polynomial of
a over Q. But we know from part (b) that 23 — 2 is irreducible over Q, hence we must have
23 — 2 ~ my(x), and since my(x) is monic we must have 2% — 2 = m(z).



