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1 Complex Numbers

1.1 Cardano’s Formula

One could say that algebra began with the study of quadratic equations. Given any numbers
a, b, c we want to find all numbers x such that

ax2 ` bx` c “ 0.

If a “ 0 then there is nothing interesting to do, so let us assume that a ‰ 0. First we divide
both sides by a to obtain

x2 `
b

a
x`

c

a
“ 0

x2 `
b

a
x “ ´

c

a
.

Now there is a famous trick called “completing the square.” We add the the quantity pb{2aq2

to both sides and observe that the left side factors:

x2 `
b

a
x “ ´

c

a

x2 `
b

a
x`

ˆ

b

2a

˙2

“ ´
c

a
`

ˆ

b

2a

˙2
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ˆ

x`
b

2a

˙ˆ

x`
b

2a

˙

“ ´
c

a
`

b2

4a2

ˆ

x`
b

2a

˙2

“
b2 ´ 4ac

4a2
.

Finally, we can take the square root of the left side and solve for x:

ˆ

x`
b

2a

˙2

“
b2 ´ 4ac

4a2

x`
b

2a
“
˘
?
b2 ´ 4ac

2a

x “ ´
b

2a
`
˘
?
b2 ´ 4ac

2a

“
´b˘

?
b2 ´ 4ac

2a
.

I’m sure that you already knew already this. But let me point out a subtlety that you may
not have thought about. If b2 ´ 4ac ‰ 0 then the square root symbol

?
b2 ´ 4ac can refer to

two different numbers. When b2 ´ 4ac ą 0 then we usually assume that
?
b2 ´ 4ac refers to

the positive real square root. However, if b2´4ac is negative or non-real then it is not so clear
what the symbol

?
b2 ´ 4ac should refer to. For example, we often write i “

?
´1 to refer to

“the” square root of ´1, but the number ´1 actually has two square roots and there is no
good way to distinguish between them. So we should really say:

Let i denote an arbitrary symbol satisfying i2 “ ´1. Then the equation x2 “ 1
has exactly two solutions: i and ´i, which are the two square roots of ´1.

Later we will prove that any nonzero number of the form a ` b
?
´1 has exactly two square

roots, which are negatives of each other. With this in mind, here is a modern statement of
the quadratic formula.

Modern Version of the Quadratic Formula

Let a, b, c be any numbers and let ∆ “ b2´4ac denote the “discriminant” of the equation
ax2 ` bx` c “ 0. By completing the square we showed above that any solution has the
form x “ p´b ` δq{2a, where δ is some number satisfying δ2 “ ∆. Conversely, one can
check that any x of this form is a solution. Thus we have one solution x for each square
root of ∆. If ∆ “ 0 then δ “ 0 is the only square root. Otherwise, if δ is an arbitrary
square root of ∆ then ∆ has exactly two square roots: δ and ´δ. And the quadratic
equation has exactly two solutions:

x “
´b` δ

2a
or x “

´b` p´δq

2a
.
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The quadratic formula was known to ancient civilizations. The next progress only came in
the 1500s, when several Italian mathematicians discovered algorithms for the solution of cubic
and quartic equations. These formulas were first published by Gerolamo Cardano in the Ars
Magna (1545). For now I will just state the formula without proof.

Cardano’s Formula (1545)

Let a, b, c, d be any numbers with a ‰ 0 and consider the cubic equation

ax3 ` bx2 ` cx` d “ 0.

To solve this we first divide both sides by a and then we substitute x “ y ´ b{p3aq to
obtain the so-called “depressed form” of the equation:

y3 ` 3py ` 2q “ 0,

where1

p “
3ac´ b2

9a2
and q “

27a2d´ 9abc` 2b3

54a3
.

Then Cardano’s formula says that

y “
3

b

´q `
a

q2 ` p3 `
3

b

´q ´
a

q2 ` p3.

We could expand all of this to write a formula for x in terms of a, b, c, d, but that would
look horrible.

This formula is quite difficult to interpret. In Cardano’s time only real numbers were accepted,
which led to two immediate problems:

(1) Sometimes there is an obvious solution but the formula does not see it.

(2) Sometimes there are 3 solutions but the formula only sees one of them.

These problems were eventually solved by the introduction of “complex numbers” of the form
a` b

?
´1. The first hint of this idea was observed by Bombelli.

Bombelli’s Example (1572)

1These complicated expressions are one of the reasons why the cubic equation is not studied in high school.
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Consider the following cubic equation:

x3 ´ 15x´ 4 “ 0.

One can easily check that x “ 4. On the other hand, by applying Cardano’s formula
with p “ ´5 and q “ ´2 we obtain

x “
3

b

´p´2q `
a

p´2q2 ` p´5q3 `
3

b

´p´2q ´
a

p´2q2 ` p´5q3

“
3

b

2`
?
´121`

3

b

2´
?
´121.

Cardano would say here that the formula gives no solution because square roots of nega-
tive numbers do not exist. Bombelli’s idea was to just pretend that the expression

?
´1

is a number with the property p
?
´1q2 “ ´1 and to perform computations as usual.

After some trial and error he observed that2

p2`
?
´1q2 “ p2`

?
´1qp2`

?
´1q

“ p2`
?
´1qp4` 4

?
´1` p

?
´1q2q

“ p2`
?
´1qp4` 4

?
´1´ 1q

“ p2`
?
´1qp3` 4

?
´1q

“ 6` 11
?
´1` 4p

?
´1q2q

“ 6` 11
?
´1´ 4

“ 2` 11
?
´1

“ 2`
?

121
?
´1

“ 2`
?
´121.

And a similar computation shows that p2 ´
?
´1q3 “ 2 ´

?
´121. Therefore Bombelli

concluded that Cardano’s formula really does give the correct answer:

x “
3

b

2`
?
´121`

3

b

2´
?
´121

“ p2`��
�?
´1q ` p2´��

�?
´1q

“ 4.

In other words: The “real” solution 4 is obtained from Cardano’s formula as a sum of
two “imaginary” numbers.

In the next section I will give the modern interpretation of these computations.

2In the last step we have used the “formula”
?
ab “

?
a
?
b, which of course is not really a formula because

it depends on the specific choices of the square roots.
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1.2 Complex Numbers as a Ring

Bombelli observed that some issues with Cardano’s formula can be resolved by pretending
that the “imaginary” square roots of negative numbers actually exist. These ideas were slow
to catch on, and were regarded by some as useless speculation well into the 1700s. The modern
formulation is essentially the same as Bombelli’s, just stated with more confidence. Let i be
an abstract symbol. Then a complex number is an abstract symbol of the form a` bi, where
a and b are real numbers. The set of real numbers is denoted by R and the set of complex
numbers is denoted by

C “ ta` bi : a, b P Ru.
Let me emphasize that “a ` bi” is only an abstract expression; the plus sign does not at
first have anything to do with addition of real numbers because the symbol bi is not a real
number. In order to make sense of this we will define addition and multiplication of the
symbols “a` bi” by the following formulas:3

pa` biq ` pc` diq :“ pa` cq ` pb` dqi,

pa` biqpc` diq :“ pac´ bdq ` pad` bcqi.

Perhaps it is not surprising that these operations turn out to behave just like the addition
and multiplication of real numbers. In abstract algebra we capture this behavior with the
following definition.

Definition of Rings

A ring is a set R together with two special elements 0, 1 P R (called zero and one) and two
binary operations `, ¨ : R ˆ R Ñ R (called addition and multiplication), which satisfy
the following eight axioms:

(A1) @a, b P R, a` b “ b` a (commutative addition)

(A2) @a, b, c P R, a` pb` cq “ pa` bq ` c (associative addition)

(A3) @a P R, a` 0 “ a (additive identity)

(A4) @a P R, Db P R, a` b “ 0 (additive inversion)

(M1) @a, b P R, ab “ ba (commutative multiplication)

(M2) @a, b, c P R, apbcq “ pabqc (associative multiplication)

(M3) @a P R, a1 “ a (multiplicative identity)

(D) @a, b, c P R, apb` cq “ ab` ac (distribution)

If we delete axiom (M1) then we obtain a structure called a non-commutative ring. In
this course all rings will be commutative unless otherwise stated.

We can also define subtraction in a ring. Given any element a P R, axiom (A4) tells us
that there exists at least one element b P R with the property a` b “ 0. In fact, there is
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exactly one such element. Indeed, if a` b “ 0 and a` b1 “ 0 then by combining axioms
(A1), (A2), (A3) we obtain

b “ b` 0 “ b` pa` b1q “ pb` aq ` b1 “ 0` b1 “ c.

Since this element is unique we will denote it by the symbol “´a”, and for any two
elements a, b P R we will define the symbol

“a´ b” :“ a` p´bq.

In other words, a ring is a “number system” in which any two numbers can be added, sub-
tracted and multiplied, and in which all of the usuals laws of arithmetic hold. One can check
that the set of complex numbers C forms a ring with the operations defined above, and with
the special elements 0 :“ 0`0i and 1 :“ 1`0i.4 This is the ultimate justification for referring
to the symbols “a` bi” as “numbers”. Here are the four most commonly discussed rings:

name symbol casual description

integers Z t. . . ,´2,´1, 0, 1, 2, . . .u
rational numbers Q ta{b : a, b P Z, b ‰ 0u

real numbers R tlimits of sequences of rational numbersu

complex numbers C ta` b
?
´1 : a, b P Ru

We can think of these as a nested sequence of “subrings”

Z Ď Q Ď R Ď C

by identifying each fraction of the form a{1 with the integer a and by identifying the complex
number of the form a` 0i with the real number a. But let me observe that the rings Q,R,C
have an important extra property that Z does not have.

Definition of Fields

Let pF,`, ¨, 0, 1q be a ring. We say that F is a field if it satisfies one further axiom:

(M4) @a P Fzt0u, Db P F, ab “ 1.

In words: For any nonzero element a P F there exists at least one element b P F with
the property ab “ 1. In fact, there is exactly one such element. Indeed, if ab “ 1 and
ab1 “ 1 then by combining axioms (M1), (M2), (M3) we obtain

b “ b1 “ bpab1q “ pbaqb1 “ 1b1 “ b1.

Since this element is unique we can give it the special name “a´1”, or “1{a”. Then for

3The symbol :“ means “is defined as”. It was adopted by mathematicians from the Pascal programming
language.
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any two elements a, b P F with b ‰ 0 we will define the notation

“a{b” “ ab´1.

You are familiar with the fact that rational numbers Q and the real numbers R are fields.
Let me quickly observe that the ring of integers Z is not a field. For example, suppose for
contradiction that there exists an integer b P Z satisfying 2b “ 1. The integer b must be
positive, which implies that b ě 1 because there are no integers between 0 and 1. But then
multiplying both sides by 2 gives a contradiction:

b ě 1

2b ě 2

1 ě 2.

1.3 Complex Numbers as a Vector Space

So Z is a ring that is not a field and Q,R are fields. In this section we will show that C is also
a field, which is surprisingly difficult. Before proving this in the next section we need to say
more about the relationship between R and C. Recall that we view each real number a as a
complex number by setting a “ a ` 0i. With this convention, the abstract symbol “a ` bi”
acquires a direct algebraic meaning:

“a` bi” “ pa` 0iq ` pb` 0iqp0` 0iq.

Of course this was the point all along. In order to formalize the relationship between R and
C I will present another of the key concepts from twentieth century abstract algebra.

Definition of Vector Spaces and Dimension

A vector space consists of a set V (of vectors), a field F (of scalars), an operation ` :
V ˆ V Ñ V (called vector addition), and an operation ¨ : F ˆ V Ñ V (called scalar
multiplication), which satisfy the following eight axioms:

(V1) @u,v P V , u` v “ v ` u (commutative addition)

(V2) @u,v,w P V , u` pv `wq “ pu` vq `w (associative addition)

(V3) D0 P V,@u P V , u` 0 “ u (zero vector)

(V4) @u P V , Dv P V , u` v “ 0 (additive inversion)

(V5) @u P V , 1u “ u (unit scalar)

(V6) @a, b P F, u P V , apbuq “ pabqu (associative multiplication)

(V7) @a, b P F, u P V , pa` bqu “ au` bu (distribution)

4The proof is extremely boring.
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(V8) @a P F, u,v P V , apu` vq “ au` av (distribution)

We can also define subtraction of vectors. Given any v P V , axiom (V4) tells us that
there exists at least one element u P V satisfying u`v “ 0. In fact, there is exactly one
such element. Indeed, if v ` u “ 0 and v ` u1 “ 0 then axioms (V1), (V2), (V3) imply
that

u “ u` 0 “ u` pv ` u1q “ pu` vq ` u1 “ 0` u1 “ u1.

We will call this unique element “´v” and use it to define subtraction:

“u´ v” :“ u` p´vq.

We say that a vector space V over F is n-dimensional if there exists a set of n vectors
u1, . . . ,un P V with the property that every vector v P V has a unique expression of
the form

v “ a1u1 ` a2u2 ` ¨ ¨ ¨ ` anun with a1, . . . , an P F.

In this case we say that u1, . . . ,un is a basis for V over F.

Remark: The definition of vector space does not include a way to multiply two vectors. Later
we will discuss the definition of “inner product space”, which includes a way to multiply two
vectors to obtain a scalar. (Example: The dot product.) It is almost never possible to multiply
two vectors to obtain another vector but we will see that the complex numbers are a special
case.

The abstract definition of vector space is inspired by the following familiar example.

Prototype of a Vector Space: Cartesian Coordinates

Let Rn denote the set of ordered n-tuples of real numbers:

Rn :“ tx “ px1, . . . , xnq : xi P R for all iu.

It is easy (and boring) to check that the following operations make the set Rn in to a
vector space over the field of scalars R:

px1, . . . , xnq ` py1, . . . , ynq :“ px1 ` y1, . . . , x2 ` y2q

a ¨ px1, . . . , xnq :“ pax1, . . . , axnq.

As you know, we can view the vector x as a point in n-dimensional space. We can also
view it as a directed line segment whose head is at the point x and whose tail is at
the “origin” 0 “ p0, . . . , 0q. Then the addition of vectors can be viewed as the familiar
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“head-to-tail” addition of directed line segments. This idea goes back at least to Isaac
Newton, who used it to describe forces acting on rigid bodies.

It is not surprising that the vector space Rn is n-dimensional. To prove this, we can
observe that the set of n vectors

e1 “ p1, 0, 0, . . . , 0, 0q

e2 “ p0, 1, 0, . . . , 0, 0q

...

en “ p0, 0, 0, . . . , 0, 1q

is a basis of Rn, called the standard basis. Indeed, for vector x “ px1, . . . , xnq we have

x “ x1e1 ` x2e2 ` ¨ ¨ ¨ ` xnen,

and by definition these “coordinates” x1, . . . , xn are unique.

So what? The point of this section is that the complex numbers C naturally form a two-
dimensional vector space over the field of real numbers R.

C is a Two-Dimensional Vector Space over R

We can view C as a vector space over R where 0 “ 0 ` 0i is the “zero vector” and
where “vector addition” and “scalar multiplication” are given by the usual addition and
multiplication of numbers:

pa` biq ` pc` diq “ pa` cq ` pb` dqi

apb` ciq “ pabq ` pacqi.

It is easy and boring to check that the eight vector space axioms hold in this situation.
To see that this vector space is two-dimensional I claim that the set of two elements
1, i P C is a basis. Indeed, any complex number can be expressed in the form a1` bi for
some a, b P R, and we only need to check that this representation is unique. For this
purpose, suppose that we have a` bi “ c`di with a, b, c, d P R. Our goal is to show that
a “ c and b “ d. So let us suppose for contradiction that b ‰ d. Then we have

a` bi “ c` di

0` pb´ dqi “ pc´ aq ` 0i

0` 1i “

ˆ

c´ a

b´ d

˙

` 0i,

which implies that i is a real number. But i is not real because any real number a P R
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satisfies a2 ě 0, but i2 “ ´1 ă 0. This contradiction implies that b “ d, hence also

a` bi “ c` di

a`��bi “ c`��bi

a “ c.

In summary, we have

a` bi “ c` di ðñ a “ c and b “ d.

You might have noticed here that the vector space C “ ta` bi : a, b P Ru is basically just the
vector space R2 “ tpa, bq : a, b P Ru in disguise. In technical jargon we will say that C and R2

are isomorphic as vector spaces. This just means that we have a one-to-one correspondence
that preserves all of the vector space operations. In this case the one-to-one correspondence
is particularly obvious:

C Ø R2

a` bi Ø pa, bq.

The word “isomorphism” literally means “same structure”. We use it in mathematics when two
different mathematical structures are “essentially the same”; that is, when there is a one-to-one
correspondence between their elements that preserves all of the relevant structure/operations.

1.4 Complex Numbers as a Field

By using scalar multiplication we can “divide” any complex number a`bi P C by any nonzero
real number c P R:

a` bi

c
“

ˆ

1

c

˙

pa` biq “
´a

c

¯

`

ˆ

b

c

˙

i.

The question is whether we can also divide by complex numbers:

a` bi

c` di
“ psome real number?q ` psome real number?q i.

This can be quite difficult unless you know a clever trick called “rationalizing the denomina-
tor”. The idea is to multiply both the numerator and denominator of the hypothetical fraction
“pa` biq{pc` diq” by the “complex conjugate” of the denominator:

a` bi

c` di
“
a` bi

c` di
¨
c´ di

c´ di

“
pa` biqpc´ diq

pc` diqpc´ diq

“
pac` bdq ` pbc´ adqi

c2 ` d2

“

ˆ

ac` bd

c2 ` d2

˙

`

ˆ

bc´ ad

c2 ` d2

˙

i.
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For this to work we require that c2 ` d2 ‰ 0, which will be true if c` di ‰ 0` 0i. Indeed, if
c ` di ‰ 0 ` 0i then we must have c ‰ 0 or d ‰ 0, in which case c2 ` d2 ą 0. Thus we can
divide by any nonzero complex number.

This trick of rationalizing the denominator is so useful that we turn it into a general concept.

Complex Conjugation and Absolute Value

For any complex number α “ a`bi P C we define its complex conjugate α˚ P C as follows:

pa` biq˚ :“ a´ bi.

Then we define the absolute value |α| P R as the non-negative real square root of a2`b2 P
R and we observe that

αα˚ “ pa` biqpa´ biq “ pa2 ` b2q ` 0i “ a2 ` b2 “ |α|2.

For all complex numbers α, β P C, I claim that the following properties hold:

• α “ 0 if and only if |α| “ 0.

• α “ α˚ if and only if α P R,

• pα` βq˚ “ α˚ ` β˚,

• pαβq˚ “ α˚β˚,

• |αβ| “ |α||β|.

You will prove all of these assertions on the homework. The final property (the multiplica-
tivity of the absolute value) is probably the deepest fact about the complex numbers. It
was first glimpsed by Diophantus of Alexandria (3rd century), who used the “two-square
identity”

pa2 ` b2qpc2 ` d2q “ pac´ bdq2 ` pad` bcq2

to study “Pythagorean triples of whole numbers”, such as 32`42 “ 52 and 52`122 “ 132.

We can use the ideas of conjugation and absolute value to give a slicker proof that C is a field.

Multiplicative Inverses in C

For any nonzero complex number α P C we have |α| ‰ 0. It follows that

αα˚ “ |α|2

αpα˚{|α|2q “ 1,
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so the multiplicative inverse of α has the explicit formula

α´1 “
α˚

|α|2
.

On the homework you will use the same ideas to show that the following set is a field:

Qp
?

2q :“ ta` b
?

2 : a, b P Qu.

Later we will incorporate all of this into a general theory of “quadratic field extensions”.

1.5 Complex Numbers as Linear Functions

The complex numbers are a central object in mathematics, which means that they can be
viewed from many different angles. So far we have viewed C as a ring (specifically, a field)
and as a two-dimensional vector space over R. Recall that we have a bijection

C Ø R2

a` bi Ø pa, bq

that preserves the operations of vector addition and scalar multiplication. To be specific, the
addition of vectors corresponds to addition of complex numbers and the scalar multiplication
of vectors by real numbers corresponds to the usual multiplication of complex numbers by real
numbers.

However, there is also a natural way to multiply any two complex numbers. What does this
correspond to in R2? In general there is no sensible way to multiply two vectors in a vector
space to obtain another vector, so this case must be very special. The key to understanding
it is to express complex numbers in “polar form”.

Polar Form of Complex Numbers

Based on the isomorphism C – R2 we can view the complex number a` bi as the point
pa, bq in the Cartesian plane. But we can also express points of R2 in polar coordinates.
That is, for any pair of real numbers pa, bq, not both zero, there exist a unique pair of
real numbers r and θ satisfying

a “ r cos θ, b “ r sin θ, r ą 0 and θ P r0, 2πq.

In other words, for any nonzero complex number a` bi, there exist unique real numbers
r ą 0 and θ P r0, 2πq such that

a` bi “ pr cos θq ` pr sin θqi “ rpcos θ ` i sin θq.

In geometric terms, r “ |α| “ `
?
a2 ` b2 is the length of the vector pa, bq and and we

view θ as the angle of the vector pa, bq, measured counterclockwise from the “real axis”:

13



Using these ideas, we have the following geometric interpretation of complex multiplication.

Geometric Interpretation of Complex Multiplication

Let α, β P C be nonzero complex numbers, thought of as vectors in the Cartesian plane
R2. Suppose that α, β have lengths r, s ą 0 and angles θ, λ P r0, 2πq, so that

α “ rpcos θ ` i sin θq,

β “ spcosλ` i sinλq.

Then I claim that the complex number αβ has length rs and angle θ`λ (up to a suitable
multiple of 2π). In other words:

the lengths multiply and the angles add.

Here is a quick and dirty proof, using the “angle sum identities” from trigonometry:

αβ “ rpcos θ ` i sin θq ¨ spcosλ` i sinλq

“ prsqpcos θ ` i sin θqpcosλ` i sinλq

“ prsqrpcos θ cosλ´ sin θ sinλq ` ipcos θ sinλ` sin θ cosλqs

“ prsqrcospθ ` λq ` i sinpθ ` λqs.

14



But this proof is not good because it seems like a coincidence. The true meaning of the
theorem is revealed when we view complex numbers as “linear functions”.

Linear Functions and Matrices

Consider the vector space Rn over the field R. We say that a function L : Rn Ñ Rn is
R-linear if it preserves vector addition and scalar multiplication by R. That is, for all
u,v P Rn and a P R we must have

• Lpu` vq “ Lpuq ` Lpvq (preserves addition)

• Lpauq “ aLpuq (preserves scalar multiplication)

Equivalently, we can combine these by saying that L preserves “linear combinations”:5

Lpau` bvq “ aLpuq ` bLpvq.

I claim that there is a one-to-one correspondence between linear functions from Rn Ñ Rn
and nˆ n matrices with entries from R:

"

linear functions
from Rn to Rn

*

ÐÑ

"

nˆ n matrices with
entries from R

*

.

In order to find such a correspondence, we will identify each vector u “ pu1, . . . , unq P Rn
with the corresponding nˆ 1 column vector:

rus “

¨

˚

˚

˚

˝

u1

u2

...
un

˛

‹

‹

‹

‚

.

Then the standard basis vectors are written as follows:

re1s “

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

, re2s “

¨

˚

˚

˚

˝

0
1
...
0

˛

‹

‹

‹

‚

, . . . , rens “

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

.

And the column rus has a unique expression as a linear combination of basis vectors:

rus “

¨

˚

˚

˚

˝

u1

u2

...
un

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

u1

0
...
0

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

0
u2

...
0

˛

‹

‹

‹

‚

` ¨ ¨ ¨ `

¨

˚

˚

˚

˝

0
0
...
un

˛

‹

‹

‹

‚

“ u1re1s ` u2re2s ` ¨ ¨ ¨ ` unrens.
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Now for any linear function L : Rn Ñ Rn we define the n ˆ n matrix rLs P Rnˆn whose
ith column is the vector Lpeiq P Rn:

rLs :“

¨

˝

| | |

rLpe1qs rLpe2qs ¨ ¨ ¨ rLpenqs
| | |

˛

‚.

I claim that the assignment L ÞÑ rLs is a one-to-one correspondence. To prove this we
will first show that the assignment is one-to-one. So let L,M P Rn Ñ Rn be two linear
functions with the same matrix: rLs “ rM s. By definition this means that Lpeiq “Mpeiq
for all i, because the two matrices have the same column vectors. For all vectors u P Rn
it follows from the linearity of L and M that

Lpuq “ Lpu1e1 ` u2e2 ` ¨ ¨ ¨ ` unenq

“ u1Lpe1q ` u2Lpe2q ` ¨ ¨ ¨ ` unLpenq

“ u1Mpe1q ` u2Mpe2q ` ¨ ¨ ¨ ` unMpenq

“Mpu1e1 ` u2e2 ` ¨ ¨ ¨ ` unenq

“Mpuq,

hence L “ M as functions. Finally, we will show that the assignment is onto. So let Φ
be any nˆn matrix. We need to show that there exists some (necessarily unique) linear
function LΦ : Rn Ñ Rn with the property Φ “ rLΦs. If Φi is the ith column vector of
the matrix Φ then I claim that the following definition works:

LΦpuq :“ u1Φ1 ` u2Φ2 ` ¨ ¨ ¨ ` unΦn.

Indeed, it is easy to check that this function is linear. And the matrices rLΦs and Φ have
the same column vectors because

Lpeiq “ 0Φ1 ` ¨ ¨ ¨ ` 0Φi´1 ` 1Φi ` 0Φi`1 ` ¨ ¨ ¨ ` 0Φn “ Φi.

In summary, the following pair of assignments are inverses:

tlinear functions Rn Ñ Rnu ÐÑ tnˆ n matricesu
L ÞÑ rLs
LΦ Ðß Φ.

More generally, this entire line of reasoning gives a bijection between linear functions
from Rn Ñ Rm and mˆ n matrices, i.e., matrices with m rows and n columns.

That was quite abstract, so let’s examine a few examples.

5Geometrically, a linear function must send the origin to itself and send parallelograms to parallelograms.
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• The Identity Matrix. The identity function I : Rn Ñ Rn defined by Ipuq “ u is
obviously linear. The corresponding matrix is called the identity matrix:

rIs “

¨

˝

| | |

rIpe1qs rIpe2qs ¨ ¨ ¨ rIpenqs
| | |

˛

‚

“

¨

˝

| | |

re1s re2s ¨ ¨ ¨ rens
| | |

˛

‚

“

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

.

• Scalar Matrices. For any scalar r P R the function Sr : Rn Ñ Rn defined by Srpuq “ ru
is linear. The corresponding matrix is

rSrs “

¨

˝

| | |

rSrpe1qs rSrpe2qs ¨ ¨ ¨ rSrpenqs
| | |

˛

‚

“

¨

˝

| | |

rre1s rre2s ¨ ¨ ¨ rrens
| | |

˛

‚

“

¨

˚

˚

˚

˝

r 0 ¨ ¨ ¨ 0
0 r ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ r

˛

‹

‹

‹

‚

.

Note that this includes the identity matrix as a specific example when r “ 1.

• Rotation Matrices. Let Rθ : R2 Ñ R2 denote the function that rotates every vector by
angle θ, counterclockwise around the origin. It is easy to see that this function preserves
vector addition and scalar multiplication, hence it is linear.

What is the corresponding 2 ˆ 2 matrix? The following diagram illustrates how the
function Rθ acts on the standard basis vectors e1 “ p1, 0q and e2 “ p0, 1q:

17



It follows that the matrix of the rotation function Rθ is

rRθs “

¨

˝

| |

rRθpe1qs rRθpe2qs

| |

˛

‚“

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

Note that “rotation by zero” is the identity function, hence rR0s is the identity matrix.

Whenever there is a one-to-one correspondence between two different kinds of structures, for
example between linear functions and matrices, it is important to ask how natural operations
behave under this correspondence. I assume that you are familiar with the definition of matrix
multiplication, but you may not be aware of the reason behind it.

Matrix Multiplication “ Composition of Linear Functions

Recall from previous theorem that any two nˆn matrices can be represented as rLs and
rM s, where L,M : Rn Ñ Rn are linear functions. But linear functions can be composed,
and it is easy to check that the composite function L ˝M : Rn Ñ Rn is also linear, hence
it corresponds to another n ˆ n matrix rL ˝M s. By definition we say that this is the
matrix product of rLs and rM s and we write

rLsrM s :“ rL ˝M s.

More generally, if L : Rm Ñ R` and M : Rn Ñ Rm are linear functions then the matrices
rLs and rM s are defined, with shapes `ˆm and mˆn, respectively. Since M maps into
Rm and L maps from Rm the composite function L ˝M : Rn Ñ R` exists, and we can
define the matrix rLsrM s : rL ˝M s, which has shape ` ˆ n. Let us investigate how to

18



compute the matrix entries of rLsrM s from the matrix entries of rLs and rM s.

This is an extremely fruitful concept and there are many ways to describe it. I will use
a standard notation from linear algebra. Let A “ paijq and B “ pbijq be matrices where
aij , bij are the entries of A,B in the ith row and jth column. Suppose that A has shape
`ˆm and B has shape mˆ n. Then the matrix AB is defined with shape `ˆ n and its
i, j entry is given as follows:

pi, j entry of ABq “
m
ÿ

k“1

aikbkj .

In various circumstances it is also useful to express this definition in terms of multiplica-
tions with row and column vectors:

pi, j entry of ABq “ pith row of Aqpjth column of Bq

pith row of ABq “ pith row of AqB

pjth column of ABq “ Apjth column of Bq

AB “
m
ÿ

k“1

pkth column of Aqpkth row of Bq.

This notation takes some getting used to but you should make the effort because it is
very important in all areas of mathematics.

The proof is not very interesting, but here is it.

Proof. Write rLs “ A “ paijq and rM s “ B “ pbijq, where L : Rm Ñ R` and M : Rn Ñ Rm
are linear, so that A has shape ` ˆ m and B has shape m ˆ n. By definition we have
AB “ rL ˝M s, so that6

pjth column of ABq “ pjth column of rL ˝M sq

“ rpL ˝Mqpejqs

“ rLpMpejqqs

“ rLpjth column of Mqs

“

»

—

–

L

¨

˚

˝

b1j
...
bmj

˛

‹

‚

fi

ffi

fl

“ rLpb1je1 ` b2je2 ` ¨ ¨ ¨ ` bmjemqs

“ b1jrLpe1qs ` b2jrLpe2qs ` ¨ ¨ ¨ ` bmjrLpemqs

6Forgive me for using the notation ei to denote the basis vectors in both Rm and Rn even though these
vectors have different numbers of entries.
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“

m
ÿ

k“1

bkjpkth column of rLsq.

“

m
ÿ

k“1

bkj

¨

˚

˝

a1k
...
a`k

˛

‹

‚

“

¨

˚

˝

řm
k“1 a1kbkj

...
řm
k“1 a`kbkj

˛

‹

‚

.

Since the i, j entry of AB is just the ith entry of the jth column we obtain the desired formula.
˝

As an interesting example, let me present the “correct” proof of the angle sum trigonometric
identities.

Correct Proof of the Angle Sum Trigonometric Identities

Let Rθ : R2 Ñ R2 denote the (linear) function that rotates each vector counterclockwise
around the origin by angle θ. It is geometrically obvious that for all angles α, β we have

Rα ˝Rβ “ Rα`β
protate by β then rotate by αq “ protate once by α` βq.

On the other hand, we showed that the rotation function Rθ corresponds to the matrix

rRθs “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

By combining these observations with the definition of matrix multiplication we obtain

ˆ

cospα` βq ´ sinpα` βq
sinpα` βq cospα` βq

˙

“ rRα`βs

“ rRα ˝Rβs

“ rRαsrRβs

“

ˆ

cosα ´ sinα
sinα cosα

˙ˆ

cosβ ´ sinβ
sinβ cosβ

˙

“

ˆ

cosα cosβ ´ sinα sinβ ´ cosα sinβ ´ sinα cosβ
sinα cosβ ` cosα sinβ ´ sinα sinβ ` cosα cosβ

˙

.
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And comparing matrix entries gives

"

cospα` βq “ cosα cosβ ´ sinα sinβ,
sinpα` βq “ sinα cosβ ` cosα sinβ.

There is no need to ever memorize these formulas. You only need to memorize the form
of rotation matrix rRθs and use the obvious fact that Rα`β “ Rα ˝Rβ.

Finally, we obtain the main theorem of this section.

Complex Numbers as Linear Functions

For each complex number α P C we consider the function Lα : CÑ C defined by:

Lαpβq :“ αβ.

This function is called “multiply by α”. If we view C “ R2 as a vector space then the
function Lα is R-linear since for all b, c P R and β, γ P C we have

Lαpbβ ` cγq “ αpbβ ` cγq “ bpαβq ` cpαγq “ bLαpβq ` cLαpγq.

Therefore it corresponds to a 2 ˆ 2 matrix with real entries. To find this matrix, let
α “ a`bi and consider the standard basis vectors 1`0i and 0`1i. Since Lαp1`0iq “ a`bi
and Lαp0` 1iq “ ´b` ai it follows that

rLαs “

ˆ

a ´b
b a

˙

.

But more is true. We observe that multiplication of complex numbers corresponds to
composition of linear functions. In other words, for any α, β P C we have Lαβ “ Lα ˝Lβ:

Lαβpγq “ pαβqpγq “ αpβγq “ αLβpγq “ LαpLβpγqq “ pLα ˝ Lβqpγq.

Then by definition of matrix multiplication we have rLαβs “ rLα ˝Lβs “ rLαsrLβs and it
follows that multiplication of complex numbers can be viewed as matrix multiplication:

pa` biqpc` diq “ pac´ bdq ` pad` bcqi
ˆ

a ´b
b a

˙ˆ

c ´d
d c

˙

“

ˆ

ac´ bd ´pad` bcq
ad` bc ac´ bd

˙

.
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Finally, we observe that real numbers correspond to scalar matrices and complex numbers
of length 1 correspond to rotation matrices:

rLr`0is “

ˆ

r 0
0 r

˙

and rLcos θ`i sin θs “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

It follows that complex numbers can be viewed as the set of (linear) functions R2 Ñ R2

that can be obtained by scaling and rotation.

This modern point of view was put forward by Hamilton in order to give a “real meaning” to
the “imaginary numbers”. Under this scheme we see that

?
´1 “ protate by 90˝q.

That’s not imaginary at all.7

1.6 Euler’s Formula and Roots of Unity

At the beginning of this chapter I mentioned the fact that the “square root function” x ÞÑ
?
x

is not really a function. If x is real and positive then we could take
?
x to be the unique real

positive square root of x. But if x is a negative real number or a complex number then the
symbol

?
x represents two different complex numbers, and there is no good reason to prefer

one over the other. Because of this non-uniqueness we must be careful when interpreting
formulas such as ?

ab “
?
a
?
b.

For example, if a “ b “ ´1 then this formula seems to imply that

i2 “
?
´1
?
´1 “

a

p´1qp´1q “
?

1 “ 1,

which is false. This caused significant confusion in the early days of complex numbers.

More generally, if α P C is a nonzero complex number then the expression n
?
α or α1{n rep-

resents n distinct complex numbers. This was slowly clarified during the 1700s and it finally
became transparent in the 1800s with the geometric interpretation of complex numbers. The
first step was made by de Moivre in 1707.

7We have shown that C is a ring, a field, a real vector space, and a collection of 2 ˆ 2 matrices with real
entries. In very modern terms we could summarize this by saying that C is a two-dimensional commutative
real division algebra with a two-dimensional faithful representation (and I could probably add more adjectives).
Never mind. The point is that the complex numbers have a lot of interesting structure, which motivates all of
the structures that we will discuss in this course.
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De Moivre’s Formula (1707)

For any angle θ and for any integer n ě 0 we have

pcos θ ` i sin θqn “ cospnθq ` i sinpnθq.

This is not difficult to prove once it is observed.8 The hard part is to observe it in the first
place. In fact, de Moivre stated the theorem in a much more complicated way because he did
not use complex numbers. We’ll return to this below.

The modern proof is essentially just that “n successive rotations by angle θ” is the same as
“one single rotation by angle nθ”. This point of view was preceded by an interpretation using
the language of Calculus.

Euler’s Formula (1748)

For any complex number α P C Euler considered the following power series:

exppαq :“ 1` α`
α2

2
`
α3

6
` ¨ ¨ ¨ “

8
ÿ

k“0

αn

n!
.

It turns out that this power series always converges. Furthermore, for any complex
numbers α, β P C one can show that

exppαq exppβq “ exppα` βq.

The number e :“ expp1q « 2.71828 is today called Euler’s constant. For any integer
n ě 1 we observe that

exppnq “ expp1` 1` ¨ ¨ ¨ ` 1q “ expp1qn “ en.

For this reason it is standard to use the notation

“eα” :“ exppαq,

even though it is far from clear how to take “e to the power of π”, for example. Using
this language, Euler made the discovery that for any real number θ we have

eiθ “ cos θ ` i sin θ.

8For example, it can be proved by induction using the angle sum trigonometric formulas.
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which immediately gives a proof of de Moivre’s formula:

pcos θ ` iθqn “ peiθqn “ einθ “ cospnθq ` i sinpnθq.

Proof: I will assume, as Euler did, that the power series always converges. Rigorous treatment
of convergence only emerged in the 1800s. To prove the identity exppα` βq “ exppαq exppβq
we first recall the binomial theorem:

pα` βqm “
ÿ

k``“m

m!

k!`!
αkβ`.

If we multiply the power series for exppαq and exppβq then the binomial theorem gives the
desired simplification:

exppαq exppβq “

˜

ÿ

kě0

αk

k!

¸˜

ÿ

`ě0

β`

`!

¸

“
ÿ

mě0

˜

ÿ

k``“m

αk

k!

β`

`!

¸

“
ÿ

mě0

1

m!

˜

ÿ

k``“m

m!

k!`!
αkβ`

¸

“
ÿ

mě0

1

m!
pα` βqm

“ exppα` βq.

Finally, to prove Euler’s formula we use a direct computation:

exppiθq “ 1` iθ `
piθq2

2!
`
piθq3

3!
`
piθq4

4!
`
piθq5

5!
` ¨ ¨ ¨

“ 1` iθ `
´θ2

2!
`
´iθ3

3!
`
θ4

4!
`
iθ5

5!
` ¨ ¨ ¨

“

ˆ

1´
θ2

2!
`
θ4

4!
´ ¨ ¨ ¨

˙

` i

ˆ

θ ´
θ3

3!
`
θ5

5!
´ ¨ ¨ ¨

˙

.

Euler immediately recognized these as the power series expansions of cos θ and sin θ, which
had been discovered by Newton. ˝

Apart from being interesting and useful, Euler’s formula allows us to simplify notation by
writing eiθ instead of cos θ ` i sin θ. We will do this from now on.
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Roots of Unity

Fix an integer n ě 1 and consider the complex number ω “ e2πi{n. I claim that the
equation xn “ 1 has the complete solution

x “ 1, ω, ω2, . . . , ωn´1.

To see this we first observe that

pωqn “ pe2πi{nqn “ e2πi “ cosp2πq ` i sinp2πq “ 1.

Thus for any integer k we have

pωkqn “ pωnqk “ 1k “ 1.

To see that this is the complete solution we must show that the n numbers ωk with
k “ 0, 1, . . . , n ´ 1 are distinct. This follows from the fact that they represent distinct
points of the complex plane.9 Indeed, since the number eiθ corresponds to the point
pcos θ, sin θq in the Cartesian plane, we observe that eiα “ eiβ if and only if α ´ β is an
integer multiple of 2π. It follows from this that for all integers k, ` P Z we have ωk “ ω`

if and only if k ´ ` is a multiple of n.10

More generally, we can describe the nth roots of an arbitrary nonzero complex number
α P C as follows. We first write α “ reiθ in polar form, so that r ą 0. Let r1 ą 0 denote
the unique positive nth root of r and let α1 :“ r1eiθ{n. We observe that

pα1qn “ pr1eiθ{nqn “ pr1qnpeiθ{nqn “ reiθ “ α,

and we say that α1 is the principal nth root of α. Then I claim that the equation xn “ α
has the complete solution

x “ α1, α1ω, α1ω2, . . . , α1ωn´1.

Indeed, each of these is a solution because

pα1ωkqn “ pα1qnpωkqn “ α ¨ 1 “ α,

and they are distinct because α1ωk “ α1ω` if and only if ωk “ ω`.

Geometrically, the nths roots of α form a regular n-gon in the complex plane, centered
at the origin.

9We also need to know that an equation of degree n can have no more than n roots. You will prove this
on the homework and we will discuss it more in the next section.

10This idea will reappear below when we discuss “modular arithmetic”.
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Examples:

• n “ 2: Let ω “ e2πi{2 “ eπi “ ´1. Then the 2nd roots of 1 are

ω0 “ 1 and ω1 “ ´1.

If α1 is any square root of the nonzero complex number α, then the complete set of
square roots is

α1ω0 “ α1 and α1ω1 “ ´α1.

That was pretty boring.

• n “ 3: Let ω “ e2πi{3 “ cosp2π{3q ` i sinp2π{3q “ ´1{2` i
?

3{2 “ p´1` i
?

3q{2. Then
the 3rd roots of 1 are

ω0 “ 1,

ω1 “ p´1` i
?

3q{2,

ω2 “ e4πi{3 “ cosp4π{3q ` i sinp4π{3q “ ´1{2´ i
?

3{2 “ p´1´ i
?

3q{2.

Here is a picture:

• n “ 4: Let ω “ e2πi{4 “ eπi{2 “ cospπ{2q ` i sinpπ{2q “ i. The 4th roots of unity are

ω0 “ e0 “ 1,

ω1 “ eπi{2 “ i,

ω2 “ eπi “ ´1,

ω3 “ e3πi{2 “ ´i.

Here is a picture:
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More generally, let’s compute the 4th roots of α “ ´4. First we express α “ 4eπi in
polar form, so the principal 4th root is

α1 “
4
?

4 ¨ eπi{4 “
?

2rcospπ{4q ` i sinpπ{4qs “
?

2p1{
?

2` i
?

2q “ 1` i.

Then the complete set of 4th roots of ´4 is

α1ω0 “ 1α1 “ 1` i,

α1ω1 “ iα1 “ ´1` i,

α1ω2 “ ´1α1 “ ´1´ i,

α1ω3 “ ´iα1 “ 1´ i.

These form a square in the complex plane:

As an application, we can use these roots to factor the polynomial x4 ` 4:

x4 ` 4 “ px´ p1` iqqpx´ p´1` iqqpx´ p´1´ iqqpx´ p1´ iqq.
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In 1702, Gottfried Leibniz claimed that the polynomial x4`4 cannot be factored over the
real numbers. However, we can show that he was wrong by grouping the four complex
roots into “conjugate pairs”:

x4 ` 4 “ rpx´ p1` iqqpx´ p1´ iqqsrpx´ p´1` iqqpx´ p´1´ iqqs

“ px2 ´ 2x` 2qpx2 ` 2x` 2q.

• n “ 5: Let ω “ e2πi{5 “ cosp2π{5q ` i sinp2πi{5q. The 5th roots of unity are

ω0 “ 1,

ω1 “ e2πi{5 “ cosp2π{5q ` i sinp2π{5q,

ω2 “ e4πi{5 “ cosp4π{5q ` i sinp4π{5q,

ω3 “ e6πi{5 “ cosp6π{5q ` i sinp6π{5q,

ω4 “ e8πi{5 “ cosp8π{5q ` i sinp8π{5q,

which correspond to the vertices of a regular pentagon in the Cartesian plane:

On the homework you will show that these numbers can also be expressed in terms of
integers and square roots. For example, you will show that

cos

ˆ

2π

5

˙

“
´1`

?
5

4
.

Is it always true that the roots of unity can be expressed in terms of integers and square roots?
As a preview of things to come, let me mention the main theorem in this subject.
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Preview of the Gauss-Wantzel Theorem

Consider an integer n ě 1 and define the phi-function:11

φpnq :“ #tk P Z : 1 ď k ď n´ 1 and gcdpk, nq “ 1u.

This number is always even. Suppose that φpnq{2 “ m1m2 ¨ ¨ ¨mk for some integers
m1, . . . ,mk ě 2. Then I claim that the number cosp2π{nq can be expressed in terms
of integers and mith roots for the various i. If φpnq is a power of 2 then there exists a
formula for cosp2π{nq involving only integers and square roots.

For example, since 5 is prime, all of the numbers 1, 2, 3, 4 are coprime to 5 and hence
φp5q “ 4 “ 22. Since φp5q is a power of 2, the theorem guarantees that cosp2π{5q can be
expressed in terms of integers and square roots, as you will show on the homework.

The origin of the theorem is Gauss’ discovery (at the age of 19) that the number
cosp2π{17q can be expressed in terms of integers and square roots:

cos

ˆ

2π

17

˙

“
´1`

?
17`

a

34´ 2
?

17`

b

17` 3
?

17´
a

34´ 2
?

17´ 2
a

34` 2
?

17

16

According to the theorem, we know that such a formula is possible because φp17q “ 16 “
24 is a power of 2. Gauss’ discovery was surprising because it implies that the regular
17-gon can be constructed with straightedge and compass, a construction that was not
known to the ancient Greeks.

In general, we will see that φpnq is a power of 2 if and only if n can be expressed as a
power of 2 times a product of distinct Fermat prime numbers of the form p “ 2m ` 1.
For example, p “ 17 “ 24 ` 1 is a Fermat prime. Fermat had conjectured that every
number of the form 2m ` 1 is prime, but this turned out to be quite wrong. Today the
only known Fermat primes are

3, 5, 17, 257, and 65537,

and it is an open question whether there exist any others.

2 Introduction to Polynomials

2.1 Rings of Polynomials

We have talked about polynomials in an intuitive way, but we have not been careful with our
definitions. Here is the modern, abstract, definition of polynomials.

11The notation gcdpk, nq represents the greatest common divisor of k and n. We will study this in detail in
the next section.
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Definition of Polynomials

Let F be a field and let “x” be an abstract symbol. By a polynomial in x over F we mean
a formal expression

fpxq “
ÿ

kě0

akx
k “ a0 ` a1x` a2x

2 ` ¨ ¨ ¨ ,

where the coefficients a0, a1, a2, . . . are elements of F and only finitely many of these
coefficients are nonzero. If an is the highest nonzero coefficient then we will say that fpxq
has degree n and we will write

degpfq “ degpfpxqq “ degpanx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x` a0q “ n.

For example:

degpx2q “ 2,

degp7x3 ` 1q “ 3,

degp5q “ 0.

The polynomials of degree 0 are just the nonzero constants. (For the degree of the zero
constant, see below.) Let us denote the set of polynomials by

Frxs “ tpolynomials in x over Fu.

We can view this set as a ring by pretending that x is a number and performing arithmetic
as usual. To be precise, we define addition and multiplication of polynomials as follows:

˜

ÿ

kě0

akx
k

¸

`

˜

ÿ

kě0

bkx
k

¸

:“
ÿ

kě0

pak ` bkqx
k

˜

ÿ

kě0

akx
k

¸˜

ÿ

`ě0

bkx
k

¸

:“
ÿ

mě0

˜

ÿ

k``“m

akb`

¸

xm.

The additive and multiplicative identity elements are the zero and one polynomials:

0pxq :“ 0` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ ,

1pxq :“ 1` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ .

However, we usually don’t usually make distinction between the numbers 0, 1 and the
polynomials 0pxq, 1pxq. In fact, we can think of F as a subring of Frxs by identifying each
element a P F with the corresponding constant polynomial:

a “ a` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ .
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An important and basic fact about polynomials is the additivity of degree:

degpfgq “ degpfq ` degpgq.

To prove this formula, suppose that degpfq “ m and degpgq “ n. By definition this
means that

fpxq “ amx
m ` am´1x

m´1 ` ¨ ¨ ¨ a1x` a0,

gpxq “ bnx
n ` bn´1x

n´1 ` ¨ ¨ ¨ b1x` b0,

where am ‰ 0 and bn ‰ 0. But then we have ambn ‰ 0 and

fpxqgpxq “ ambnx
m`n ` lower terms,

so that degpfgq “ m` n “ degpfq ` degpgq. Strictly speaking, this formula only applies
to nonzero polynomials. In order to make the formula true in general it is convenient to
define the degree of the zero polynomial as follows:

degp0q :“ “´8”.

We don’t think of this as a number, but just a symbol with the properties ´8 ă a and
´8` a “ ´8 for all a P F.

Some Remarks:

• The ring Frxs is not a field. To see this it is enough to show that some nonzero element
has no multiplicative inverse. We will show that x P Frxs has no multiplicative inverse.
Let us suppose for contradiction that there exists a polynomial fpxq P Frxs satisfying
xfpxq “ 1. Then taking degrees gives

xfpxq “ 1

degpxq ` degpfq “ degp1q

1` degpfq “ 0

degpfq “ ´1,

which is a contradiction because there is no such thing as a polynomial of degree ´1. In
other words, we have shown that the expression 1{x is not a polynomial. We will call it
a rational expression. Later we will consider the field of rational expressions Fpxq, which
are basically fractions of polynomials.

• The set of polynomials Frxs can also be thought of as a vector space over F with scalar
multiplication

a

˜

ÿ

kě0

bkx
k

¸

“
ÿ

kě0

pabkqx
k.
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By convention we say that two polynomials are equal if and only if they have the same
coefficients. This implies that the vector space Frxs is infinite dimensional with basis

1, x, x2, x3, . . . .

Of course, we are accustomed to thinking of polynomials as functions, not just formal
expressions. We will discuss the relationship between these points of view in the next
section.

2.2 Descartes’ Theorem

There is a deep analogy between the rings Z and Frxs, which is based on the following theo-
rem.12

Division With Remainder

(1) For all integers a, b P Z with b ‰ 0 there exist unique integers q, r P Z (called the
quotient and remainder) satisfying

"

a “ bq ` r,
0 ď r ă |b|.

(2) Let F be a field. Then for all polynomials fpxq, gpxq P Frxs with gpxq ‰ 0pxq there
exist unique polynomials qpxq, rpxq P Frxs (called the quotient and remainder) satisfying

"

fpxq “ gpxqqpxq ` rpxq,
degprq ă degpgq.

Note: The condition degprq ă degpgq includes the possibility that the remainder is zero,
i.e., that degprq “ ´8.

The idea of the proof in both cases is to define an algorithm and to prove that this algorithm
gives the desired result. We will prove existence here and you will prove uniqueness on the
homework.

Proof for Integers: Let a, b P Z with b ‰ 0 and consider the set

S “ ta´ qb : q P Zu “ t. . . , a´ 2b, a´ b, a, a` b, a` 2b, . . .u Ď Z.
12Later we will make this analogy more precise when we discuss the concept of a Euclidean domain.
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Let r be the smallest non-negative element of this set. By definition we know that a “ qb` r
for some integer q P Z and we also know that 0 ď r. It remains only to show that r ă |b|. So
let us assume for contradiction that r ě |b|. Since b ‰ 0 this implies that

0 ď r ´ |b| ă r.

On the other hand, we observe that r ´ |b| “ pa´ qbq ´ |b| “ a´ pq ˘ 1qb P S. Thus we have
found a non-negative element of S that is strictly smaller than r. Contradiction.

Proof for Polynomials Over a Field: Let F be a field and consider two polynomials
fpxq, gpxq P Frxs with gpxq ‰ 0pxq. Furthermore, consider the set

S “ tfpxq ´ qpxqgpxq : qpxq P Frxsu Ď Frxs.

Let rpxq be some element of S with minimal degree (allowing for the possibility that rpxq “
0pxq and hence degprq “ ´8). By definition we know that fpxq “ qpxqgpxq ` rpxq for
some qpxq P Frxs and it remains only to show that degprq ă degpgq. So let us assume for
contradiction that degprq ě degpgq. To be specific, since gpxq ‰ 0pxq we may write

gpxq “ amx
n ` lower terms and rpxq “ bnx

n ` lower terms,

where am ‰ 0 and m ď n. Then since n´m ě 0 we may construct the following polynomial:13

hpxq :“ rpxq ´
bn
am

xn´mgpxq

“ pbnx
n ` lower termsq ´

bn
am

xn´m pamx
m ` lower termsq

“ pbn ´ bnqx
n ` lower terms.

Note that the coefficient of xn in hpxq is zero, and hence degphq ă n “ degprq. On the other
hand, we observe that hpxq is an element of S:

hpxq “ rpxq ´
bn
am

xn´mgpxq

“ pfpxq ´ qpxqgpxqq ´
bn
am

xn´mgpxq

“ fpxq ´

ˆ

qpxq `
bn
am

xn´m
˙

gpxq P S.

Thus hpxq is an element of S with strictly smaller degree than rpxq. Contradiction.

I assume you are familiar with long division of integers. Long division of polynomials is
actually easier because it doesn’t involve any “carrying”. For example, suppose that fpxq “
2x4 ´ 6x3 ` x ´ 1 and gpxq “ 2x2 ` 1. The algorithm tells us first to multiply gpxq by a

13Here we use that fact that F is a field to divide by am.
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suitable “monomial” so that it has the same “leading term” as fpxq and then subtract this
from fpxq to “eliminate” this leading term. To be specific, we multiply gpxq by the monomial
x2 to obtain 2x4 ` x2 whose leading term matches fpxq. Then we repeat the process until it
is impossible to continue:14

x2 ´ 3x´ 1
2

2x2 ` 1
˘

2x4 ´ 6x3 ` x ´ 1
´ 2x4 ´ x2

´ 6x3 ´ x2 ` x
6x3 ` 3x

´ x2 ` 4x ´ 1
x2 ` 1

2

4x´ 1
2

In the end we obtain a quotient qpxq “ x2´ 3x´ 1{2 and a remainder rpxq “ 4x´ 1{2, which
satisfy the desired properties:

"

p2x4 ´ 6x3 ` x´ 1q “ p2x2 ` 1qpx2 ´ 3x´ 1{2q ` p4x´ 1{2q,

degp4x´ 1{2q ă degp2x2 ` 1q.

Polynomial division with remainder was first used for theoretical purposes by René Descartes
(1631) in his Geometry. The following theorem is the foundational property of polynomials,
of similar importance to the Pythagorean theorem in geometry.

Descartes’ Factor Theorem (1631)

Consider a field F, a polynomial fpxq P Frxs and a constant a P F. Dividing fpxq by
x´ a gives

fpxq “ px´ aqqpxq ` rpxq

for some polynomials qpxq, rpxq P Frxs with degprq ă degpx ´ aq “ 1. The condition on
the degree implies that rpxq “ c for some constant c P F, either zero or nonzero. To
determine this constant we substitute x “ a:

fpaq “ pa´ aqqpaq ` c

fpaq “ 0qpaq ` c

fpaq “ c.

It follows from this that

fpaq “ 0 ðñ fpxq “ px´ aqqpxq for some polynomial qpxq.

14There are different ways to typeset this. I used a package to do it automatically, which I don’t like very
much, but is much easier than doing it manually.
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In other words, the constant a P F is a root of fpxq if and only if the polynomial x ´ a
is a divisor of fpxq. We will use this to prove by induction that

a polynomial fpxq P Frxs of degree n ě 0 can have at most n roots in F.

Indeed, a polynomial of degree 0 is a nonzero constant, which has no roots. So let
degpfq “ n ě 1. If fpxq has no roots then we are happy because 0 ď n. Otherwise, fpxq
must have some root fpaq “ 0 with a P F. From the above remarks this implies that
fpxq “ px´ aqqpxq for some polynomial qpxq P Frxs, which must have degree n´ 1:

degpfq “ degppx´ aqqq

n “ degpx´ aq ` degpqq

n “ 1` degpqq.

But if b ‰ a is any other root of fpxq then we must have

fpxq “ px´ aqqpxq

fpbq “ pb´ aqqpbq

0 “ pb´ aqqpbq

0 “ qpbq,

which implies that b is also a root of qpxq. Finally, since qpxq has degree n ´ 1 we may
assume by induction that qpxq has at most n´ 1 roots in F, which implies that fpxq has
at most 1` pn´ 1q “ n roots in F.

This theorem has the following useful consequence that we record for future reference.

Only the Zero Polynomial Can Have Infinitely Many Roots

If fpxq “ 0pxq is the zero polynomial then every element of the field F is a root of fpxq. If
the field has infinitely many elements then the zero polynomial has infinitely many roots.
On the other hand, any nonzero polynomial has a finite degree, so Descartes’ Theorem
implies that it has finitely many roots.

2.3 Polynomials: Functions or Formal Expressions?

In this class we have defined polynomials in terms of their coefficients and we have said that
two polynomials are equal when they have the same coefficients:

˜

ÿ

k

akx
k

¸

“

˜

ÿ

k

bkx
k

¸

ðñ ak “ bk for all k.
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On the other hand, given any formal polynomial expression fpxq “
ř

k akx
k we can define a

function by “substitution” or “evaluation”:

f : F Ñ F
α ÞÑ

ř

k akα
k.

The question I want to raise now is whether two polynomials with the same evaluations must
have the same coefficients. In other words:

˜

ÿ

k

akα
k

¸

“

˜

ÿ

k

bkα
k

¸

for all α P F ?
ðñ ak “ bk for all k.

To show you that this is not a silly question I will you show you an example of two polynomials
with different coefficients that nevertheless define the same function. In order to do this I must
also show you an example of a field with only finitely many elements.

The Field with Three Elements

Consider the set F3 “ t0, 1, 2u of three elements with the following algebraic operations:

` 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

¨ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

These operations are called “arithmetic mod 3” and we will discuss the details later. For
now I only want to observe that the structure pF3,`, ¨, 0, 1q satisfies the axioms of a field,
therefore we may consider the ring of polynomials F3rxs with coefficients in F3.

Now let us consider the following two polynomials:

fpxq “ x` 0,

gpxq “ x3 ` 0x2 ` 0x` 0.

Clearly these polynomials do not have the same coefficients, but the following table shows
that they do have the same values:

α fpαq gpαq

0 0 03 “ 0

1 1 13 “ 1

2 2 23 “ 2

That’s not good. Luckily this problem does not occur when our field F has infinitely many
elements.

36



Polynomials Over an Infinite Field

Let F be an infinite field and let fpxq, gpxq P Frxs be formal polynomial expressions:

fpxq “
ÿ

k

akx
k and gpxq “

ÿ

k

bkx
k.

If f and g define the same function FÑ F then I claim that fpxq and gpxq have the same
coefficients. That is, if fpαq “ gpαq for all α P F then I claim that ak “ bk for all k.

To prove this we define the polynomial expression

hpxq :“ fpxq ´ gpxq “
ÿ

k

pak ´ bkqx
k.

If we can show that hpxq is the zero polynomial (i.e., the polynomial with all zero co-
efficients) then we will conclude ak ´ bk “ 0 and hence ak “ bk for all k. But we have
assumed that fpαq “ gpαq for all α P F and hence

hpαq “ fpαq ´ gpαq “ 0 for all α P F.

In other words, every element of F is a root of hpxq. If the field F has infinitely many
elements then the remark in the previous section shows that hpxq is the zero polynomial,
as desired.

So, at least in the case of polynomials over Q, R and C, there is no distinction between formal
polynomial expressions and polynomial functions.

2.4 Concept of a Splitting Field

We now proceed to the subtleties of Descartes’ Theorem. If fpxq P Frxs and degpfq “ n ě 0
then we have proved that fpxq has at most n distinct roots in the field F. However, it is a
possibility that there exist less than n distinct roots, and there are two ways this can happen:

• The roots might exist in a larger field. For example, the polynomial x2 ` 1 P Rrxs has
no roots in R but it has two roots ˘i in C. And the polynomial x2 ´ 2 P Qrxs has no
roots in Q, but it has two roots ˘

?
2 in R.

• There might exist repeated roots. For example, the polynomial x3 ´ x2 ´ x ` 1 “
px´ 1q2px` 1q of degree three has only two distinct roots: `1 and ´1. But the root `1
occurs with multiplicity 2. So it is still the case that x3 ´ x2 ´ x ` 1 has three roots,
“counted with multiplicity”.
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Concept of a Splitting Field

Consider a polynomial fpxq P Frxs of degree n ě 0 with coefficients in a field F and
let E Ě F be a larger field. We say that fpxq splits over E if there exists elements
r1, . . . , rn P E, not necessarily distinct, such that

fpxq “ px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq.

In other words, fpxq has n roots in E, counted with multiplicity. Later we will show that
such a field always exists, and in fact the minimal such field is unique up to isomorphism.
The minimal field over which fpxq splits is called the splitting field of fpxq P Frxs.

Let me also mention that the factorization of fpxq into polynomials of degree 1, when it
exists, is necessarily unique.15 Indeed, suppose that we have

px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq “ px´ s1qpx´ s2q ¨ ¨ ¨ px´ snq

for some elements r1, . . . , rn, s1, . . . , sn of a field E. Evaluating each side at x “ s1 gives

ps1 ´ r1qps1 ´ r2q ¨ ¨ ¨ ps1 ´ rnq “ ps1 ´ s1qps1 ´ s2q ¨ ¨ ¨ ps1 ´ snq

“ 0ps1 ´ s2q ¨ ¨ ¨ ps1 ´ snq

“ 0,

which implies that s1 ´ ri “ 0 and hence s1 “ ri for some index i. After re-indexing the
elements s1, . . . , sn if necessary we may assume that r1 “ s1 and then we may cancel the
common factor x´ r1 “ x´ s1 from each side:16

���
�

px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq “���
��

px´ s1qpx´ s2q ¨ ¨ ¨ px´ snq

px´ r2q ¨ ¨ ¨ px´ rnq “ px´ s2q ¨ ¨ ¨ px´ snq.

By repeating the argument (i.e., by using induction) we may re-index the remaining
elements s2, . . . , sn so that r1 “ s1, r2 “ s2, . . . and rn “ sn, as desired.

Let me emphasize that the concept of the splitting field is relative to field of coefficients.
Examples:

• The polynomial x2 ` 1 P Rrxs has splitting field C Ě R. Indeed, this polynomial splits
over C because x2 ` 1 “ px´ iqpx` iq with ˘i P C. To see that C is the minimal such
field, suppose that there exists another field C Ě E Ě R such that x2 ` 1 splits over E.

15In the next section we will prove more generally that any polynomial over any field has a unique factorization
into irreducible polynomials, not necessarily of degree 1.

16You will investigate “cancellation” on the homework.
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By definition this means that

x2 ` 1 “ px´ r1qpx´ r2q for some r1, r2 P E.

Then substituting x “ i gives

0 “ pi´ r1qpi´ r2q,

which implies that i “ r1 or i “ r2. Either way, we must have i P E. Finally, I claim
that every complex number is in E, so that E “ C. Indeed, for any a, b P R we have
a, b P E because R Ď E. Then since a, b, i P E we have a` bi P E because E is a ring. In
summary:

The polynomial x2 ` 1 has splitting field C over R.

• On the other hand, if we regard x2 ` 1 as an element of Qrxs then I claim that the
splitting field is

Qpiq :“ ta` bi : a, b P Qu Ě Q,
which is strictly smaller than C because, e.g.,

?
2 is in C but not in Qpiq. Indeed, it is

easy to check that Qpiq is a subring of C. It is also a field since for any rational numbers
a, b P Q we have

1

a` bi
“

ˆ

a

a2 ` b2

˙

`

ˆ

´b

a2 ` b2

˙

i,

where the coefficients a{pa2 ` b2q and ´b{pa2 ` b2q are also rational numbers. And the
polynomial x2 ` 1 splits over Q because ˘i P Q. Finally, we need to show that Qpiq
is the smallest extension of Q over which x2 ` 1 splits. The proof is the same as
above. Suppose that Qpiq Ě E Ě Q for some some field E over which x2 ` 1 splits. Say
x2 ` 1 “ px´ r1qpx´ r2q for some r1, r2 P E. Then substituting x “ i shows that i “ r1

or i “ r2. In either case this implies that i P E. Then for any a, b P Q we have a` bi P E
and hence E “ Qpiq. In summary:

The polynomial x2 ` 1 has splitting field Qpiq over Q.

On the homework you will find the splitting field of x2 ´ 2 over Q.

3 Unique Prime Factorization

3.1 Definition of Euclidean Domains

Before proceeding with topic of polynomial equations, we pause to develop some general
theory. Much of the theory of (commutative) rings is based on a deep analogy between the
ring of integers and rings of polynomials over fields:

Z « Frxs
In order to describe this analogy we must first develop the language of “divisibility”.
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Divisibility in a Ring

Let pR,`, ¨, 0, 1q be a ring. Then for all a, b P R we define the notation

a|b ðñ there exists k P R such that ak “ b.

It is important to note that the symbol “a|b” represents a whole sentence. It means that
“a divides b” or “b is divisible by a”. We have the following basic properties:

• 1|a for all a P R,

• a|0 for all a P R,

• a|b and b|c imply a|c.

Indeed, we have 1|a because 1a “ a and we have a|0 because a0 “ 0. Now suppose that
a|b and b|c. By definition this means that ak “ b and b` “ c for some k, ` P R. But then
we also have

apk`q “ pakq` “ b` “ c,

which implies that a|c.

The properties of divisibility in a general ring can be quite wild. In order to model the
properties of Z and Frxs we make a further restriction.

Definition of Integral Domains

We say that a ring pR,`, ¨, 0, 1q is an integral domain (or just a domain) if for all a, b P R,

ab “ 0 ùñ a “ 0 or b “ 0.

For example, the rings Z and Frxs are integral domains. For a non-example, consider the
ring Z{4Z “ t0, 1, 2, 3u of “arithmetic mod 4” with the following addition and multipli-
cation tables:17

` 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

¨ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

This ring is not an integral domain because 2 ¨ 2 “ 0 but 2 ‰ 0.

Every field is an integral domain since if ab “ 0 and b ‰ 0 then b´1 exists and we can
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multiply both sides by b´1 to obtain

ab “ 0

abb´1 “ 0b´1

a “ 0.

Similarly, if ab “ 0 and a ‰ 0 then we must have b “ 0. Not every integral domain is
a field; for example Z and Frxs are not fields. However, every integral domain satisfies
multiplicative cancellation:

ac “ bc and c ‰ 0 ùñ a “ b.

To see this, we write

ac “ bc

ac´ bc “ 0

pa´ bqc “ 0.

If c ‰ 0 then since R is an integral domain we have a´ b “ 0 and hence a “ b.

The theory of divisibility in integral domains is closer to our intuition coming from Z and Frxs.
For example, suppose that some nonzero elements a, b P R satisfy a|b and b|a. By definition
this means that ak “ b and b` “ a for some k, ` P R and hence

b` “ a

ak` “ a

ak`´ a “ 0

apk`´ 1q “ 0.

Since a ‰ 0 this implies that k` ´ 1 “ 0 and hence k` “ 1. This is more interesting than it
looks because there may not be many elements in R that have a multiplicative inverse.

Definition of Units

Let R be a ring. We say that u P R is a unit of R if there exists a (necessarily unique)
multiplicative inverse u´1 P R. We denote the set of units by

Rˆ “ tu P R : Dv P R, uv “ 1u.

17It is not necessarily clear that these operations satisfy the ring axioms, but they do. We will discuss this
in detail later.
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For example, I claim that

Zˆ “ t˘1u and Frxsˆ “ tnonzero constantsu.

To prove this for integers, we first observe that ˘1 P Z are units because 1 ¨ 1 “ 1 and
p´1qp´1q “ 1. To see that every unit is one of these, suppose that some nonzero integers
a, b P Z satisfy ab “ 1. Since a, b are nonzero we have |a|, |b| ě 1. But if |a| ě 2 then we obtain
a contradiction:

1 “ |ab| “ |a||b| ě |a| ě 2.

Hence |a| “ 1, and a symmetric argument shows that |b| “ 1.

To prove the result for polynomials, we first observe that each nonzero constant a P Frxs is a
unit whose inverse is the nonzero constant 1{a. To see that every unit has this form, suppose
that some nonzero fpxq, gpxq P Frxs satisfy fpxqgpxq “ 1, so that

degpfq ` degpgq “ degpfgq “ degp1q “ 0.

Since degpfq,degpgq ě 0 this implies that degpfq “ degpgq “ 0 and hence fpxq, gpxq are
nonzero constants, as desired.

Units are important for the theory of divisibility.

Definition of Association

For a, b P R in a ring we define the following notation:

a „ b ðñ there exists a unit u P Rˆ such that au “ b.

Again, the symbol “a „ b” represents a whole sentence. It says that “a is associate to
b”. You will check on the homework that this is an equivalence relation on the set R.

If R is an integral domain, then I claim that18

a „ b ðñ a|b and b|a.

Indeed, suppose that a „ b so that au “ b for some unit u P Rˆ. The equation au “ b
implies that a|b and the equation bu´1 “ a implies that b|a. Conversely, suppose that
a|b and b|a. By definition this means that ak “ b and b` “ a for some k, ` P R. Since
a ‰ 0 and since R is an integral domain, we have

b` “ a

ak` “ a

ak`´ a “ 0
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apk`´ 1q “ 0

k`´ 1 “ 0

k` “ 1.

This implies that k, ` P Rˆ and hence a „ b.

For example, if a, b P Z then since Zˆ “ t˘1u we have a „ b if and only if a “ ˘b. Hence

a|b and b|a in Z ðñ a “ ˘b.

And for nonzero polynomials fpxq, gpxq P Frxs we have

fpxq|gpxq and gpxq|fpxq in Frxs ðñ fpxq “ λgpxq for some nonzero λ P F.

There is one final property that the rings Z and Frxs have in common. Each of them has a
notion of “division with remainder”. The following definition is a little bit non-standard but
it suffices for our purposes.19

Definition of Euclidean Domains

Let pR,`, ¨, 0, 1q be a ring. We say that R is a Euclidean domain if there exists a “size
function” N : Rzt0u Ñ N satisfying the following two properties:

• For all nonzero a, b P R with a|b we have Npaq ď Npbq.

• For all a, b P R with b ‰ 0, there exist some q, r P R (called quotient and remainder)
satisfying the following two properties:

"

a “ bq ` r,
r “ 0 or Nprq ă Npbq.

For example, we have already seen that the ring of integers Z with the size function Npaq “ |a|
is a Euclidean domain. Indeed, to see that this N satisfies the desired property, consider some
nonzero a, b P Z with a|b. Since b ‰ 0 this means that ak “ b for some nonzero k. Since k
is nonzero we have |k| ě 1 and then we multiply both sides of this inequality by the positive
integer |a| to obtain

1 ď |k|

18Let us assume that a, b are both nonzero.
19Actually the concept of Euclidean domain is a bit awkward. The more elegant concept is a principal ideal

domain, but we are not yet ready for that level of abstraction.
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|a| ď |a||k|

|a| ď |ak|

|a| ď |b|.

We have also seen that the ring of polynomials Frxs with size function Npfq “ degpfq is a
Euclidean domain. Indeed, to see that this N satisfies the desired property, consider some
nonzero fpxq, gpxq P Frxs with fpxq|gpxq. Since gpxq ‰ 0 this means that fpxqhpxq “ gpxq for
some nonzero hpxq. Then since f, g, h are all nonzero we have

degpfq ď degpfq ` degphq “ degpfhq “ degpgq.

Let me observe, however, that the abstract definition above is more compatible with Frxs than
it is with Z. Indeed, the usual statement of the division theorem for Z says that for all a, b P Z
with b ‰ 0 there exist q, r P Z with

"

a “ bq ` r,
0 ď r ď |b|.

This is not quite the same as saying that r “ 0 or |r| ă |b| because it also includes the
requirement that r ě 0. But it makes no sense to say that r ě 0 in a general Euclidean
domain because the elements of a ring need not be ordered. For example, the elements of Frxs
are not ordered; it makes no sense to say that 6x` 5 ě 5x` 6, or the other way around.

For this reason, quotients and remainders in a general Euclidean domain need not be unique.
Luckily, we don’t need them to be. Our purpose for defining Euclidean domains is to prove
that every Euclidean domain has “unique prime factorization”. For example, the integer 60
can be factored into prime integers in essentially only one way:

60 “ 2 ¨ 2 ¨ 3 ¨ 5

“ 3 ¨ 2 ¨ 5 ¨ 2 ¨ 1 ¨ 1

“ p´3q ¨ p´5q ¨ 2 ¨ 2

“ etc.

We can rearrange the factors and we can insert copies of 1 and ´1 as we please, but this does
not change the fact that there are “two copies of 2, one copy of 3 and one copy of 5”. We
will see that polynomials over a field also have unique prime factorization. For example, the
polynomial x2 ´ 4 P Qrxs can be factored as

x2 ´ 4 “ px´ 2qpx` 2q “ p´x` 2qp´x´ 2q “ p3x` 6q

ˆ

1

3
x´

2

3

˙

“ etc.

This time the prime factors are unique up to multiplication by nonzero constants, which are
the units in the ring. Finally, let me note that the notion of “prime polynomial”20 is relative

20The term “irreducible polynomial” is more common. This might come from the study of the ring Zrxs,
where we must distinguish between prime polynomials and prime coefficients.
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to the field of coefficients. For example, the polynomial x2 ´ 2 is prime as an element of Qrxs
but it is not prime as an element of Rrxs because x2 ´ 2 “ px´

?
2qpx`

?
2q.

We will make all of this precise below.

3.2 The Euclidean Algorithm

In the pursuit of unique prime factorization we must first discuss greatest common divisors.

Definition of Greatest Common Divisors

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any two nonzero
elements a, b P R we consider their set of common divisors

Divpa, bq “ td P R : d|a and d|bu.

We note that every common divisor d satisfies Npdq ď mintNpaq, Npbqu because d|a
implies that dk “ a for some k and henceNpdq ď Npdkq “ Npaq. Similarly, Npdq ď Npbq.

Since the sizes of common divisors of a, b are bounded above by mintNpaq, Npbqu it follows
from the well-ordering property of the integers that there exist elements in Divpa, bq of
maximum size. Any such element will be called a greatest common divisor of a, b.

For example: Consider the set of common divisors of the integers 12 and 30:

Divp12, 30q “ t1, 2, 3, 6,´1,´2,´3,´6u.

Thus, in this case, we have two greatest common divisors: 6 and ´6.

More generally, we will prove below that any two greatest common divisors are associates.
In the case of our two favorite Euclidean domains Z and Frxs this will allow us to make
a further choice and to speak of the greatest common divisor.

Since the units of Z are ˘1, there will be exactly two greatest common divisors, and we
will choose the positive one. Thus, for any nonzero integers a, b P Z we define

gcdpa, bq “ the unique positive common divisor of maximum absolute value.

Since the units of Frxs are the nonzero constants, we can always scale our greatest
common divisor so that the leading coefficient equals 1. [Jargon: A polynomial with
leading coefficient 1 is called monic.] Thus, for any nonzero fpxq, gpxq P Frxs we define

gcdpf, gq “ the unique monic common divisor of maximum degree.

How can we prove that any two greatest common divisors are associate? We will do this by
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giving an algorithm to compute all of the elements of the set Divpa, bq. The proof that the
algorithm works will involve the following lemmas.

Lemmas for the Euclidean Algorithm

(1) Let R be any ring and let a, b, c, x P R be elements satisfying a “ bx ` c. Then we
have the following equality of sets:

Divpa, bq “ Divpb, cq.

(2) Let a P R be a nonzero element of a Euclidean domain. Since every element of R is
a divisor, the common divisors of a and 0 are just the divisors of a:

Divpa, 0q “ Divpaq “ td P R : d|au.

I claim that the maximum-sized divisors of a are exactly the associates of a.

Here is the algorithm.

The Euclidean Algorithm

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any nonzero
a, b P R, I claim that there exists a nonzero element d P R such that the common divisors
of a and b are the same as the divisors of d:

Divpa, bq “ Divpdq.

Since these two sets are equal, their maximum-sized elements are the same. It then
follows from Lemma (2) that any two greatest common divisors of a and b are associate
to d, hence associate to each other.

To prove that such an element d P R exists we will actually give an efficient algorithm to
compute it. To begin, we set r0 “ b and then divide a by r0 to obtain

a “ r0q1 ` r1, with r1 “ 0 or Npr1q ă Npr0q.

If r1 “ 0 then the algorithm stops. Otherwise, we divide r0 by r1 to obtain

r0 “ r1q2 ` r2, with r2 “ 0 or Npr2q ă Npr1q.
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If r2 “ 0 then the algorithm stops. Otherwise, we continue in the same fashion, to
produce a sequence of nonzero remainders satisfying

Npr0q ą Npr1q ą Npr2q ą ¨ ¨ ¨ .

This process cannot continue forever because there cannot be an infinite decreasing se-
quence of non-negative integers. Hence there exists some index n ě 0 such that rn ‰ 0
and rn`1 “ 0. I claim that this rn is the desired element d. Indeed, by repeated applica-
tion of Lemma (1) we have

Divpa, bq “ Divpa, r0q “ Divpr0, r1q “ Divpr1, r2q “ ¨ ¨ ¨ “ Divprn, 0q “ Divprnq.

To summarize: If R is a Euclidean domain then we have shown that the greatest common
divisor of two elements a, b P R is well-defined up to multiplication by units. Furthermore,
we have given an algorithm to compute this greatest common divisor. If Npaq ě Npbq then
Lamé’s Theorem (which we will not prove) says that the algorithm takes no more than 5d` 2
steps, where d is the number of decimal digits in Npbq. That’s pretty fast.

3.3 The Extended Euclidean Algorithm

Let R be a Euclidean domain. In the last section we defined the greatest common divisor
of two elements a, b P R (which we proved is unique up to multiplication by units) as the
common divisor of maximum size. But you may see other definitions in the literature. Here
we list three equivalent definitions.

I REGRET DOING IT THIS WAY. I SHOULD FIRST PROVE THAT A EUCLIDEAN
DOMAIN IS A PID AND THEN DEFINE THE GCD FROM THERE.

Show that aR ` bR “ dR for some d, which is unique up to multiplication by units. Show
that d is a common divisor. Write d “ ax` by and a “ dq ` r with r “ 0 or Nprq ă Npdq. If
r ‰ 0 then r “ a´ dq P aR` bR “ dR so Npdq ď Nprq. Contradiction. Hence d is a common
divisor of a, b. Furthermore, if e|a and e|b then e|d and hence Npeq ď Npdq. It follows that d
is a greatest common divisor.

Conversely, if e is a greatest common divisor of a, b then e|d and hence Npeq ď Npdq and
since d is a common divisor we have Npdq ď Npeq, hence Npdq “ Npeq. Finally, since e|d and
Npeq “ Npdq we have d „ e.

Three Equivalent Definitions of GCD

Let R be a Euclidean domain with size function N : Rzt0u Ñ N and consider two nonzero
elements a, b P R. I claim that the following three definitions of greatest common divisor
are equivalent:
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(1) A maximum-sized common divisor. To be precise, consider the set Divpa, bq of
common divisors. Then d is a greatest common divisor if d P Divpa, bq and if for
any e P Divpa, bq we have Npeq ď Npdq.

(2) A maximally-divisible common divisor. To be precise, we say that d is a greatest
common divisor if d P Divpa, bq and if for any e P Divpa, bq we have e|d.

(3) A minimum-sized nonzero R-linear combination. To be precise, for any a P R we
define the set of multiples aR “ tax : x P Ru and for any two elements a, b P R we
define the set of linear combinations:

aR` bR “ tax` by : x, y P Ru.

Note that 0 P aR ` bR . We say that d ‰ 0 is a greatest common divisor if
d P aR` bR and if for all e P aR` bR we have Npdq ď Npeq. This last definition is
the least intuitive but it generalizes more naturally to rings that are not Euclidean.

The proof that these three definitions are equivalent will involve a modification of the Euclidean
algorithm. In the original statement of the Euclidean algorithm we completely ignored the
sequence of quotients q1, q2, . . .. This time we will keep track of the information that is
contained in the quotients.

Before presenting the general theorem I will give an example from the ring of integers. First
we compute the greatest common divisor of 3094 and 2513 using the standard Euclidean
algorithm, as described in the previous section:

3094 “ 2513 ¨ 1 ` 581
2513 “ 581 ¨ 4 ` 189
581 “ 189 ¨ 3 ` 14
189 “ 14 ¨ 13 ` 7
14 “ 7 ¨ 2 ` 0 STOP

Hence from the lemma in the previous section we have:

Divp3094, 2513q “ Divp2513, 581q

“ Divp581, 189q

“ Divp189, 14q

“ Divp14, 7q

“ Divp7, 0q

“ Divp7q.

Since the set of common divisors of 3094 and 2513 is equal to the set of divisors of 7, we
conclude that the greatest common divisors are ˘7 and we choose the positive one:

gcdp3094, 2513q “ 7.
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But note that we have ignored the sequence of quotients: 1, 4, 3, 13, 2. What information
do these numbers contain? I claim that we can use them to find a solution x, y P Z to the
following equation:21

3094x` 2513y “ 7.

In order to do this we first consider the more general equation ax` by “ z. This equation has
two obvious solutions px, y, zq “ p1, 0, 3094q and px, y, zq “ p0, 1, 2513q. It also has the useful
property that any linear combination of solutions is still a solution. To be precise, consider
the following set of triples of integers:

V “ tpx, y, zq P Z3 : 3094x` 2513y “ zu Ď Z3.

If x “ px, y, zq and x1 “ px1, y1, z1q are any two elements of V then for any integers r, s P Z I
claim that the linear combination

rx` sx1 “ rpx, y, zq ` spx1, y1, z1q “ prx` sx1, ry ` sy1, rz ` sz1q

is also in the set V .22 Indeed, by assumption we have ax` by “ z and ax1 ` by1 “ z1, hence

aprx` sx1q ` bpry ` sy1q “ rpax` byq ` spax1 ` by1q “ rz ` sz1.

The goal is to begin with the basic triples x1 “ p1, 0, 3094q and x2 “ p0, 1, 2513q and then to
perform Z-linear combinations until we obtain a triple of the form px, y, 7q for some integers
x, y P Z. The Euclidean algorithm guarantees that this is always possible, and the sequence
of quotients 1, 4, 3, 13, 2 tells us exactly which linear combinations to perform. We record the
computation in tabular form:

x y z x

1 0 3094 x1

0 1 2513 x2

1 ´1 581 x3 “ x1 ´ 1x2

´4 5 189 x4 “ x2 ´ 4x3

13 ´16 14 x5 “ x3 ´ 3x4

´173 213 7 x6 “ x4 ´ 13x5

359 ´442 0 x7 “ x5 ´ 2x6

Note that the values of z are precisely the sequence of remainders from the Euclidean algo-
rithm, thus we stop when we reach a remainder of 0. The final nonzero remainder is the
greatest common divisor and reading off the corresponding values of x and y tells us that

3094p´173q ` 2513p213q “ 7,

which solves the desired equation. Here is the general theorem. This result is also sometimes
called Bézout’s Identity.

21It will become clear later why we want to solve this equation.
22Jargon: The set Z3 is not quite a vector space because Z is not a field. Instead we call it a Z-module. The

fact that V Ď Z3 is closed under Z-linear combinations makes it a Z-submodule.
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The Extended Euclidean Algorithm

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any nonzero
a, b P R we showed in the previous section that there exists a greatest common divisor
gcdpa, bq P R, which is unique up to multiplication by units. I claim now that there exist
(non-unique) elements x, y P R satisfying23

ax` by “ gcdpa, bq.

To prove the existence of such x, y we will actually give an algorithm to compute them.
First, consider the set of triples px, y, zq P R3 satisfying ax` by “ z:

V “ tpx, y, zq P R3 : ax` by “ zu Ď R3.

This set is closed under R-linear combinations,24 since for any vectors x “ px, y, zq and
x1 “ px1, y1, z1q in V and for any elements r, r1 P R, the vector rx` r1x1 “ prx` r1x1, ry`
r1y1, rz ` r1z1q is also in V :

aprx` r1x1q ` bpry ` r1y1q “ rpax` byq ` r1pax1 ` by1q “ rz ` rz1.

Our goal is to start with the basic vectors x1 “ p1, 0, aq and x2 “ p0, 1, bq in V and to
form R-linear combinations until we obtain a vector of the form px, y, gcdpa, bqq P V ,
from which it will follow that ax ` by “ gcdpa, bq. To do this, we consider the steps in
the usual (non-vector) Euclidean Algorithm:

a “ bq1 ` r1,

b “ r1q2 ` r2,

r1 “ r2q3 ` r3,

...

ri´2 “ ri´1qi ` ri,

...

rn´2 “ rn´1qn ` rn,

rn´1 “ rnqn`1 ` 0,

where rn “ gcdpa, bq. If we recursively define the vector xi`2 “ xi ´ qixi`1 then it will
follow that xn`2 “ px, y, rnq for some x, y P R. Indeed, if we assume for induction that
xi “ px

1, y1, ri´2q and xi`1 “ px
2, y2, ri´1q for some x1, y1, x2, y2 P R then it follows that

xi`2 “ xi ´ qixi`1 “ px
1 ´ qix

2, y1 ´ qiy
2, ri´2 ´ qiri´1q “ px, y, riq

for some x, y P R, as desired. Anyway, that’s how a computer does it. A human would
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find it more convenient to organize all of the computations in a table:

x y z

1 0 a
0 1 b
1 ´q1 r1

´q2 1` q1q2 r2

1` q2q3 ´q1 ´ q3 ´ q1q2q3 r3

...
...

...
something something gcdpa, bq

In summary, for any nonzero elements a, b of a Euclidean domain and for any of their greatest
common divisors d, there exist some elements x, y satisfying

ax` by “ d.

This innocuous looking result unlocks the theory of prime factorization, as we will discuss in
the next section. For now, we can use it to prove the equivalence of the three definitions of
GCD discussed at the beginning of this section.

Proof that (1)ô(2). Let d be a “maximally-divisible” common divisor of a and b. That
is, suppose that d|a and d|b, and suppose that for all e satisfying e|a and e|b we must have
e|d. In this case we want to show that d is a “maximum-sized” common divisor. This follows
immediately since for any other common divisor e we must have e|d, which implies that
Npeq ď Npdq. Conversely, let d be a “maximum-sized” common divisor of a and b. In order
to show that d is “maximally-divisible” let e be any other common divisor. Our goal is to
show that e|d. To do this we must use the result of the Extended Euclidean Algorithm just
discussed. It tells us that there exist x, y P R satisfying

ax` by “ d.

Then since e|a and e|b we have ek “ a and e` “ b for some k, ` P R, which implies that

d “ ax` by “ ekx` e`y “ epkx` `yq,

and hence e|d. ˝

The third equivalent definition has significant theoretical importance so we will isolate it as a
theorem.

23It doesn’t matter which GCD we choose since if d is some GCD satisfying d “ ax` by then any other GCD
has the form du for some unit u P Rˆ, hence du “ apxuq ` bpyuq for some xu, yu P R.

24If R were a field then R3 would be a vector space and we would call V Ď R3 a vector subspace. If R is not
a field then we use the more general terms R-module and R-submodule.
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Bézout’s Identity

Let a, b P R be any two nonzero elements of a Euclidean domain and let d P R be their
greatest common divisor. Then I claim that

aR` bR “ dR.

To explain this notation, dR “ tdr : r P Ru is the set of multiples of d and aR ` bR “
tar ` bs : r, s P Ru is the set of “R-linear combinations” of a and b.

To prove this we must show both inclusions. To see that aR ` bR Ď dR, consider any
element ar ` bs P aR ` bR. Since d is a common divisor of a and b we have dk “ a and
d` “ b for some k, ` P R and it follows that

ar ` bs “ dkr ` d`s “ dpkr ` `sq,

so that ar` bs is an element of dR. Conversely, to see that dR Ď aR` bR, consider any
element dr P dR. From the Extended Euclidean Algorithm there exist x, y P R satisfying
ax` by “ d. It follows that

dr “ pax` byqr “ apxrq ` bpyrq,

so that dr is an element of aR` bR.

Proof that (1) and (2) are equivalent to (3). Let d be any GCD of a, b in the sense of
definition (1) or (2). Then from the basic Euclidean Algorithm we know that the set of all
GCDs of a and b are just the associates of d, and from Bézout’s Identity just proved we have

aR` bR “ dR.

It remains to show that the minimum-sized nonzero elements of dR are precisely the associates
of d.25 First of all, we note that d itself is a minimum-sized element of dR since d “ d1 P dR
and since any element dr satisfies Npdq ď Npdrq. This also shows that Npdq is the minimum
size of an element of dR. Next we observe that any associate e „ d is a minimum-sized element
of dR. Indeed, suppose that e „ d so that d “ eu and e “ du´1 for some unit u P Rˆ. This
implies that d|e (in particular, e P dR) and e|d. Then from properties of the size function we
have Npdq ď Npeq and Npeq ď Npdq, hence Npeq “ Npdq. It only remains to show that any
minimum-sized element of dR is associate to d. For this, let m “ dk P dR be any multiple of
d satisfying Npmq “ Npdq. If we can prove that m|d then it will follow from the usual proof26

25In other words, we need to show that the minimum-sized multiples of d are the associates of d. Compare this
to our lemma for the Euclidean Algorithm which says that the maximum-sized divisors of d are the associates
of d, which you will prove on the homework. Pay attention because the proofs are almost identical.

26If d|m and m|d then we have dk “ m and m` “ d for some k, `, which implies mp1´ k`q “ 0. Since m ‰ 0
this implies that 1´ k` “ 0 so that k, ` are units.
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that m „ d. So let us divide d by m to obtain q, r P R satisfying

"

d “ mq ` r,
r “ 0 or Nprq ă Npmq.

If r ‰ 0 then we must have Nprq ă Npmq. On the other hand, we know that r “ d ´mq “
d ´ dkq “ dp1 ´ kqq so that d|r and hence Nprq ě Npdq “ Npmq. This contradiction shows
that r “ 0 and hence m|d. ˝

We end this section by considering the special case when gcdpa, bq “ 1.

Definition of Coprime

Let R be a Euclidean domain. We say that nonzero elements a, b P R are coprime (or
relatively prime) when 1 is a greatest common divisor, hence the units Rˆ are the set of
common divisors. In this case it is convenient to write

gcdpa, bq “ 1,

even though the GCD is not generally unique. If a, b are coprime then it follows from
the Extended Euclidean Algorithm that we have

ax` by “ 1

for some x, y P R. Conversely, if such x, y exist then I claim that a, b are coprime. Indeed,
suppose that ax ` by “ 1 and let d be any common divisor of a and b, so that dk “ a
and d` “ b for some k, ` P R. It follows that

1 “ ax` by “ dkx` d`y “ dpkx` `yq,

and hence d|1. But the divisors of 1 are precisely the units.

3.4 Unique Prime Factorization

The previous section was fairly technical. The key result was the existence for any nonzero
a, b P R in a Euclidean domain of elements x, y P R satisfying

ax` by “ gcdpa, bq.

In this section we will exploit this result to prove the important Fundamental Theorem of
Arithmetic, which says that elements of a Euclidean domain have “unique prime factorization”.
Before stating the result we must define the word “prime”.

53



Definition of Prime

Recall that a positive integer p ě 2 is called prime when its only positive divisors are
1 and itself. In a general Euclidean domain R we say that a nonzero, nonunit element
p P R is prime when its only divisors are units and the associates of p. In other words:

d|p ùñ d „ 1 or d „ p.

Let me also record a useful property of this definition. If a nonunit, nonzero element
a P R is not prime then by definition it can be expressed as

a “ bc where b, c are not units and not associate to a.

Applying the size function gives Npbq ď Npaq and Npcq ď Npaq. But you will show on
the homework that the maximum-sized divisors of a are the associates of a, hence in this
situation we must have Npbq ă Npaq and Npcq ă Npaq.

The reason for saying that units are not prime is purely conventional.27 We do this so that
factorization into primes will be unique. Indeed, the following factorizations of 60 should be
considered the same:

60 “ 2 ¨ 2 ¨ 3 ¨ 5 “ 2 ¨ 2 ¨ 3 ¨ 5 ¨ 1 “ 2 ¨ 2 ¨ 3 ¨ 5 ¨ 1 ¨ 1 “ 2 ¨ 2 ¨ 3 ¨ 5 ¨ 1 ¨ 1 ¨ 1 ¨ ¨ ¨ .

We should also consider prime factorizations to be the same if they differ by rearranging the
terms or inserting an even number of negative signs:

60 “ 2 ¨ 2 ¨ 3 ¨ 5

“ 3 ¨ 2 ¨ 5 ¨ 2

“ p´3qp´2q ¨ 5 ¨ 2

“ p´1q ¨ 5 ¨ 2 ¨ p´3q ¨ 2

“ etc.

The following theorem is sometimes called the Fundamental Theorem of Arithmetic.

Unique Prime Factorization

Let a P R be a nonzero, nonunit element of a Euclidean domain. Then:

(1) We can express a as a product of prime elements.

(2) The prime factors are unique up to permutations and multiplication by units.

27The reason for saying that 0 is not prime is more subtle and we won’t discuss this.
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In other words, in a Euclidean domain there is a concept of prime multiplicity. Given a
prime element p P R there is a well-defined function νp : Rzt0u Ñ N such that νppaq is
the multiplicity of the prime p in the factorization of a. For example, we have

ν2p60q “ 2,

ν3p60q “ 1,

ν5p60q “ 1,

ν7p60q “ 0.

By convention we will also define νppuq “ 0 for all primes p and units u.

Proof of (1). We will use induction on the size of a. If a is prime then we are done. Otherwise
from the remarks above we can write a “ bc with Npbq ă Npaq and Npcq ă Npaq. Since b
and c are strictly smaller than a we can assume that each is a product of primes. Hence a is
also a product of primes. ˝

For the proof of uniqueness we need the following famous lemma.

Euclid’s Lemma

Let p P R be a prime element of a Euclidean domain. Then for all a, b P R we have

p|ab ùñ p|a or p|b.

The proof is classic and it makes a good exam problem. If p|pabq and p - a then we
will show that p|b. To do this we first observe that gcdpa, pq “ 1. Indeed, let d be any
common divisor of a and p. Since d|p and p is prime we must have d „ 1 or d „ p. But if
d „ p then since d|a we would have p|a. Contradiction. It follows that d „ 1, hence the
only common divisors of a and p are the units. In other words, we have gcdpa, pq “ 1,
hence the Extended Euclidean Algorithm tells us that there exist x, y P R satisfying

ax` py “ 1.

Now the trick is to multiply both sides by b and use the fact that p|pabq to write ab “ pk
for some k P R:

ax` py “ 1

abx` pby “ b

pkx` pby “ b
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ppkx` byq “ b.

We conclude that p|b as desired.

The hypothesis that p be prime is necessary. For example, we have 4|p6 ¨ 10q but 4 - 6 and
4 - 10. Now here is the proof of uniqueness.

Proof of Uniqueness. Suppose that we have

p1p2 ¨ ¨ ¨ pk “ uq1q2 ¨ ¨ ¨ q`

for some prime elements p1, . . . , pk, q1, . . . , q` P R and unit u P Rˆ. In this case I claim that
k “ ` and that we can rearrange the factors so that p1 „ q1, p2 „ q2, . . . , pk „ qk. To see this
we observe that p1 divides the left hand side, so it also divides the right hand side:

p1|pq1q2 ¨ ¨ ¨ q`q.

By applying induction to Euclid’s Lemma we must have p1|qi for some i. After rearranging
the factors if necessary we may assume that p1|q1. Since q1 is prime this implies that p1 „ 1
or p1 „ q1. But p1 „ 1 is impossible because p1, being prime, is not a unit. Hence we must
have p1 „ q1 so that p1 “ u1q1 for some unit u1 P Rˆ. Finally, we cancel p1 from both sides:

p1p2 ¨ ¨ ¨ pk “ uq1q2 ¨ ¨ ¨ q`

p1p2 ¨ ¨ ¨ pk “ uu1p1q2 ¨ ¨ ¨ q`

p2 ¨ ¨ ¨ pk “ uu1q2 ¨ ¨ ¨ q`.

And the result follows by induction. ˝

All of these ideas were implicit in Euclid’s Elements, Book X. The explicit proof was first
written down by Gauss in the case of integers. Simon Stevin was the first to observe that the
same arguments apply to factorization of polynomials.

3.5 Irreducible Polynomials

Prime factorization in the ring Z is a familiar concept. However, since Frxs is also a Euclidean
domain, the previous theorem also tells us that polynomials have unique prime factorization.
You should be aware, however, that prime elements of the ring Frxs are more commonly called
irreducible polynomials.

Definition of Irreducible Polynomials

Let fpxq be a nonzero, nonconstant polynomial with coefficients in a field F. We say that
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fpxq is irreducible over F if for all polynomials gpxq, hpxq with coefficients in F we have

fpxq “ gpxqhpxq ùñ gpxq or hpxq is constant.

Note that we say “irreducible over F” instead of just “irreducible”. For example, the polyno-
mial x2 ` 1 is reducible (i.e., not irreducible) over C because

x2 ` 1 “ px´ iqpx` iq.

However, I claim that x2`1 is irreducible over R. To see this, let us suppose for contradiction
that x2 ` 1 “ gpxqhpxq for some nonconstant polynomials gpxq, hpxq with real coefficients.
Taking degrees gives

2 “ degpx2 ` 1q “ degpgq ` degphq,

which since gpxq, hpxq are nonconstant implies that degpgq “ degphq “ 1. In particular, this
tells us that gpxq “ ax` b for some real a, b P R with a ‰ 0, which implies that ´b{a P R is a
real root of x2 ` 1 because

p´b{aq2 ` 1 “ pap´b{aq ` bqhp´b{aq “ 0 ¨ hp´b{aq “ 0.

But we know that the polynomial x2 ` 1 has no real roots because any real number α P R
satisfies α2 ě 0 and hence α2 ` 1 ě 1.

These observations are quite useful so we record them as a theorem.

Irreducible Polynomials of Small Degree

Let fpxq be a polynomial with coefficients in a field F.

(1) If degpfq “ 1 then fpxq is irreducible over any field containing F.

(2) If degpfq “ 2 or 3 then I claim that

fpxq is reducible over F ðñ fpxq has a root in F.

To prove (1), suppose for contradiction that degpfq “ 1 and that fpxq “ gpxqhpxq for
some nonconstant gpxq, hpxq with roots in a field containing F. Then taking degrees gives
a contradiction:

1 “ degpfq “ degpgq ` degphq ě 1` 1 “ 2.

To prove one direction of (2), let us suppose that fpaq for some a P F. Then from
Descartes’ Theorem we have fpxq “ px´aqgpxq for some gpxq P Frxs of degree degpfq´1.
Since degpfq ě 2 this polynomial gpxq is nonconstant and we conclude that fpxq is re-
ducible over F, as desired. For the other direction of (2), let us suppose that fpxq is
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reducible over F, so that fpxq “ gpxqhpxq for some nonconstant gpxq, hpxq with coeffi-
cients in F. Taking degrees gives

degpgq ` degphq “ degpfq “ 2 or 3.

Since degpgq, degphq ě 1 this implies that we must have degpgq “ 1 or degphq “ 1.
Without loss of generality, suppose that degpgq “ 1, so that gpxq “ ax ` b for some
a, b P F with a ‰ 0. Then it follows that ´b{a P F is a root of fpxq:

fp´b{aq “ pap´b{aq ` bqhp´b{aq “ 0 ¨ hp´b{aq “ 0.

For example, we have already discussed the prime factorization of xn ´ 1 over C:28

xn ´ 1 “ px´ 1qpx´ ωqpx´ ω2q ¨ ¨ ¨ px´ ωn´1q,

And over R:

xn ´ 1 “

#

px´ 1q
śpn´1q{2
k“1 px2 ´ 2 cosp2πk{nqx` 1q if n is odd,

px´ 1qpx` 1q
śpn´2q{2
k“1 px2 ´ 2 cosp2πk{nqx` 1q if n is even.

Indeed, for any integer k P Z such that ωk is not real, its complex conjugate ω´k is also not
real. It follows that the quadratic polynomial

px´ ωkqpx´ ω´kq “ x2 ´ 2 cosp2πk{nq ` 1

has no real roots, hence is irreducible over R.

But this criterion does not work for polynomials of degree ě 4. For example, we have seen
that the polynomial x4 ` 4 has no real roots. Nevertheless, it is reducible over R:

x4 ` 4 “ px2 ` 2x` 2qpx2 ´ 2x` 2q.

In general it is quite difficult to prove that a given polynomial is irreducible. To give a taste
of things to come, I will just show you the prime factorizations of xn ´ 1 over Q for the first
several values of n:

x2 ´ 1 “ px´ 1qpx` 1q

x3 ´ 1 “ px´ 1qpx2 ` x` 1q

x4 ´ 1 “ px´ 1qpx` 1qpx2 ` 1q

x5 ´ 1 “ px´ 1qpx4 ` x3 ` x2 ` x` 1q

x6 ´ 1 “ px´ 1qpx` 1qpx2 ` x` 1qpx2 ´ x` 1q

x7 ´ 1 “ px´ 1qpx6 ` x5 ` x4 ` x3 ` x2 ` 1q

x8 ´ 1 “ px´ 1qpx` 1qpx2 ` 1qpx4 ` 1q

x9 ´ 1 “ px´ 1qpx2 ` x` 1qpx6 ` x3 ` 1q.

Do you notice any patterns here?

28Here we take ω “ e2πi{n.
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4 Some Number Theory

4.1 Modular Arithmetic

Before returning to the theory of polynomials in the next chapter, we pause to examine some
consequences of unique prime factorization in the ring of integers. Some of this material was
developed in the homework.

Definition of Equivalence Relations

Let S be a set. A relation on S is just a subset of the cartesian product set:

R Ď S ˆ S “ tpx, yq : a, b P Su.

However, instead of writing px, yq P R we will write xRy, “x is related to y” by R. We
will say that R is an equivalence relation when it satisfies the following three properties:

• @x P S, xRx (reflexive)

• @x, y P S, xRy implies yRx (symmetric)

• @x, y, z P S, xRy and yRz imply xRy (transitive)

In this case will use a symbol such as „, », «, – or ” to emphasize that R behaves like
an equals sign.

We have already seen one equivalence relation in this course. For elements a, b P R in a ring
R we have defined the relation of association:

a „ b ðñ Du P Rˆ, au “ b.

Let us verify that this is, indeed, an equivalence:

• Reflexive. Since 1 is a unit we have a1 “ a and hence a „ a.

• Symmetric. Suppose that a „ b so that au “ b for some unit u P Rˆ. By definition
this means that u has a multiplicative inverse u´1, so that bu´1 “ a. Since the element
u´1 is also a unit this implies that b „ a.

• Transitive. Suppose that a „ b and b „ c so that au “ b and bv “ c for some
units u, v P Rˆ. By definition this means that u and v have multiplicative inverses u´1

and v´1. But then the product uv is also a unit with puvq´1 “ u´1v´1. Then since
apuvq “ pauqv “ bv “ c we conclude that a „ c as desired.

The next concept was introduced by Gauss in his Disquisitiones Arithmeticae (1801). We still
use the same notation as he did.
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Definition of Congruence Modulo and Integer

Fix an integer n ě 1. Then for all integers a, b P Z we define the following notation:

a ” b mod n ðñ n|pa´ bq.

In this case we say that a is congruent to b modulo n. Let us verify that this is an
equivalence relation on the set Z:

• Reflexive. Since n0 “ a´ a we have n|pa´ aq and hence a ” a mod n.

• Symmetric. Let a ” b mod n so that n|pa ´ bq and hence a ´ b “ nk for some
k P Z. Then we have b´ a “ np´kq so that n|pb´ aq and hence b ” a mod n.

• Transitive. Let a ” b mod n and b ” c mod n so that a´ b “ nk and b´ c “ n`
for some integers k, ` P Z. Then we have

a´ c “ pa´ bq ` pb´ aq “ nk ` n` “ npk ` `q,

so that n|pa´ cq and hence a ” c mod n.

The main reason for defining this relation is that it behaves well with respect to addition and
multiplication of integers. To be precise, let us suppose that a ” a1 mod n and b ” b1 mod n,
so that a´ a1 “ nk and b´ b1 “ n` for some integers k, ` P Z. Then we have

rpa` bq ´ pa1 ` b1qs “ pa´ a1q ` pb´ b1q “ nk ` n` “ npk ` `q,

which implies that a` b ” a1 ` b1 mod n, and we have

ab´ a1b1 “ ab´ ab1 ` ab1 ´ a1b1 “ apb´ b1q ` pa´ a1qb1 “ an`` nkb1 “ npa`` kb1q,

which implies that ab ” a1b1 mod n. This just means that we can perform arithmetic using
the symbol ” instead of “ and we won’t get into trouble. For example, since 3 ” 13 and
4 ” ´6 mod 10, we should also have 3 ¨ 4 ” 13 ¨ p´6q mod 10. And, indeed,

13 ¨ p´6q ” ´78 ” 2 ” 12 ” 3 ¨ 4 mod 10.

We can use these operations to define a new family of finite rings.

The Ring Z{nZ (i.e., Modular Arithmetic)

Fix an integer n ě 1. I claim that every integer a P Z is congruent mod n to a unique
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integer r in the set t0, 1, . . . , n´1u. Indeed, dividing a by n gives some q, r P Z satisfying

"

a “ nq ` r,
0 ď r ă n,

and hence a ” nq ` r ” n0` r ” r mod n. To see that this integer r is unique, suppose
that we have a ” r ” r1 mod n for some integers r, r1 in the set t0, 1, . . . , n ´ 1u. Our
goal is to show that r “ r1. First we observe that r ´ r1 ” a ´ a ” 0 mod n, so that
n|pr´ r1q. Now let us assume for contradiction that r ‰ r1. Without loss of generality we
can assume that r1 ă r and hence r ´ r1 ą 0. But then the condition n|pr ´ r1q implies
n ď r ´ r1 and we obtain the desired contradiction:

r ă n ď r ´ r1 ď r.

In summary, we can define a ring structure on the finite set

Z{nZ “ t0, 1, 2, . . . , n´ 1u.

The ring operations are addition and multiplication mod n and the special elements are
0 and 1. It is boring to check that the eight ring axioms are satisfied so we won’t bother.

Remark: The theorem that every a P Z is congruent mod n to a unique integer r in the set
t0, 1, . . . , n´ 1u is equivalent to the existence and uniqueness of remainders in the ring Z. We
previously proved the existence but we did not prove the uniqueness until now. Thus we could
view Z{nZ “ t0, 1, . . . , n ´ 1u as the set of possible remainders mod n. For this reason, the
ring structure of Z{nZ is sometimes called the arithmetic of remainders. More commonly it
is called modular arithmetic.

4.2 Some Finite Fields

In the previous section we defined a family of finite rings Z{nZ, one for each positive integer
n ě 1. For example, here are the addition and multiplication tables for the ring Z{6Z:

` 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

¨ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

The following identities are quite interesting:

2 ¨ 3 ” 3 ¨ 2 ” 4 ¨ 3 ” 3 ¨ 4 ” 0 mod 6.
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They tell us that the ring Z{6Z is not an integral domain, thus the theory developed in the
previous chapter does not apply to it. The problem here is that the number 6 can be factored
as 2 ¨ 3. The situation is better for prime moduli.

The Ring Z{pZ is a Field

Let p ě 2 be a prime integer and consider the ring Z{pZ of size p. Recall Euclid’s Lemma,
which says that

p|ab ùñ p|a or p|b.

Since the statement p|c is equivalent to c ” 0 mod p, this becomes

ab ” 0 mod p ùñ a ” 0 mod p or b ” 0 mod p.

In other words, the ring Z{pZ is an integral domain. You showed on a previous homework
that every finite integral domain is a field. Let me reproduce the proof here. For any
nonzero a P Z{pZ we consider the multiplication function µa : Z{pZ Ñ Z{pZ defined by
µapbq “ ab. Since Z{pZ is an integral domain this function is injective:29

µapbq ” µapcq

ab ” ac

apb´ cq ” 0

pb´ cq ” 0

b ” c.

But any injective function from a finite set to itself must also be surjective. Hence the
element 1 P Z{pZ is expressible as µapbq for some b P Z{pZ. In other words, each nonzero
element a P Z{pZ has a multiplicative inverse

µapbq ” 1

ab ” 1

a´1 ” b.

The proof above tells us that inverses exist in the ring Z{pZ but it does not tell us how to find
them. Since there are only finitely many possibilities we could always just check them all. For
example, to find the inverse of 3 mod 7 we could just multiply 3 by every element of Z{7Z:

3 ¨ 1 ” 3

3 ¨ 2 ” 6

29All congruences are mod p.
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3 ¨ 3 ” 9 ” 2

3 ¨ 4 ” 12 ” 5

3 ¨ 5 ” 15 ” 1

3 ¨ 6 ” 18 ” 4.

We see that 3 ¨ 5 ” 1 mod 7 and hence 3´1 ” 5 mod 7. In the worst case scenario this method
will use p´ 1 computations to find the inverse of a nonzero element of Z{pZ.

Luckily we can do much better.

Computing Inverses in Z{pZ

Let p ě 2 be prime and consider a nonzero element a P Z{pZ. In other words, consider
an integer a P Z such that p - a. Since p is prime this implies that gcdpp, aq “ 1, hence
we can use the Extended Euclidean Algorithm to find some integers x, y P Z such that

px` ay “ 1.

Then reducing both sides of this equation mod p gives

1 ” px` ay ” 0x` ay ” ay

and it follows that a´1 ” y mod p. For example, we compute 346´1 mod 1009.30 We
consider the set of triples px, y, zq satisfying 1009x ` 346y “ z. Then starting with the
easy triples p1, 0, 1009q and p0, 1, 346q we perform linear combinations until we obtain a
triple of the form px, y, 1q:31

x y z

1 0 1009
0 1 346
1 ´2 317
´1 3 29
11 ´32 27
´12 35 2
167 ´487 1

We conclude that 1009p167q ` 346p´487q “ 1. Reducing this equation mod 1009 gives

1 ” 1009p167q ` 346p´487q ” 0p167q ` 346p´487q ” 346p´487q,

and hence
346´1 ” ´487 ” 522 mod 1009.

Just to be sure, let’s check:

346 ¨ 522 ” 180612 ” 1009 ¨ 179` 1 ” 0 ¨ 179` 1 ” 1 mod 1009.
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Note that this method only used 5 steps. In general, the Extended Euclidean Algorithm
uses less than log2paq steps to compute the inverse of a mod p.

The results of computations in Z{pZ have “pseudorandom” behavior. Even though the algo-
rithm is perfectly deterministic, the results seem to bounce around randomly. For example, if
we change a just a little bit then its inverse may change by a lot:

346´1 ” 522

347´1 ” 410

348´1 ” 519

349´1 ” 717

350´1 ” 320

There is no discernible pattern. This is one reason by modular arithmetic is used in cryp-
tography. The next section will discuss a theorem that is at the heart of the most popular
public-key cryptosystem.

4.3 The Euler-Fermat Theorem

Just as inverses behave pseudorandomly in the field Z{pZ, powers also behave pseudorandomly.
For example, here are the first several powers of the element 346 P Z{1009Z:

3461 ” 346

3462 ” 972

3463 ” 352

3464 ” 360

3465 ” 93

3466 ” 806

3467 ” 595

This sequence seems to have no pattern. But we know that this cannot go on forever because
the set Z{1009Z is finite. I claim that the sequence of powers will eventually hit 1 and then it
cycle through the same sequence endlessly.

To prove this, we first establish an exponential notation for elements of Z{pZ. For any positive
integer n ě 1 and for any nonzero element a P Z{pZ we know that an is also nonzero mod p
because Z{pZ is a domain. Furthermore, the inverse of an is just pa´1qn because

an ¨ pa´1qn ” aa ¨ ¨ ¨ a
loomoon

n times

¨ a´1a´1 ¨ ¨ ¨ a´1
looooooomooooooon

n times

” 1 mod p.

30My computer told me that 1009 is prime.
31Strictly speaking, we do not need to include the x column.
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This suggests that we should define the notation an for any integer value of n, including
zero and negative integers:

an “

$

’

&

’

%

an n ě 1,

1 n “ 0,

pa´1q´n n ď ´1.

Finally, we observe that this notation satisfies the general rule

am`n ” am ¨ an mod p for any integers m,n P Z.

The following theorem illustrates the utility of this notation.

The Multiplicative Order of an Element

Let p be prime. For any nonzero a P Z{pZ we consider the sequence of powers mod p:

a, a2, a3, a4, . . . P Z{pZ.

Since Z{pZ is finite, some element of this sequence must be repeated. Let’s say ak ” a`

mod p for some integers 1 ď ` ă k. Then multiplying both sides by a´` gives

ak ” a`

ak ¨ a´` ” a` ¨ a´`

ak´` ” 1.

We have shown that ak´` ” 1 mod p for some positive integer k ´ ` ě 1. The smallest
such integer is called the order of a mod p:

ordppaq “ mintr ě 1 : ar ” 1 mod pu.

Thus the sequence of powers a, a2, a3, . . . mod p will reach 1 after ordppaq steps, after
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which the sequence will repeat. For example, consider the powers of 3 mod 11:

k 3k mod 11

1 3
2 9
3 5
4 4
5 1
6 3
7 9
8 5
9 4
10 1
...

...

We see from this table that ord11p3q “ 5, and the sequence repeats after every 5 steps.

We have proved the existence of the numbers ordppaq P N for all nonzero elements a P Z{pZ.
It is difficult to predict the exact value of ordppaq for a given value of a. However, in this
section we will prove the important theorem that the order always divides p´ 1:

ordppaq|pp´ 1q for all nonzero elements a P Z{pZ.

This theorem was stated by Pierre de Fermat in a letter to Frénicle de Bessy in 1640. After
giving some examples, Fermat said: “I would send you the demonstration, if I did not fear it
being too long.”32 This was a common way of communicating scientific discoveries at the time,
since there were no scientific journals. The first published proofs of Fermat’s theorem were
given by Euler in the 1700s. We will present Euler’s second proof from 1761 since it involves
a concept that will be important in this course: the concept of a group. We will present the
modern definition, even though this concept was not formalized until the late 1800s.

Informally, a group is a set with an invertible, associative, binary operation. The main exam-
ples are addition `, multiplication ¨ and functional composition ˝. Each of these examples also
has a special “identity element”, which is 0 for addition, 1 for multiplication, and the identity
function id for functional composition. Because functional composition is not commutative,
we do not assume that a group operation is commutative.

The Concept of a Group

A group consists of a set G together with a binary operation ˚ : G ˆ G Ñ G, which we
write as a ˚ b, and a special element ε P G satisfying the following three axioms:

32Oystein Ore, Number theory and its history, page 272.
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(G1) @a, b, c P G, a ˚ pb ˚ cq “ pa ˚ bq ˚ c (associative)

(G2) @a P G, a ˚ ε “ ε ˚ a “ a (identity)

(G3) @a P G, Db P G, a ˚ b “ ε and b ˚ a “ ε (inverses)

We say that the group pG, ˚, εq is abelian if it satisfies the additional axiom33

(G4) @a, b P G, a ˚ b “ b ˚ a (commutative)

Axiom (G3) says that any element of a group has a two-sided inverse. In fact, this inverse
must be unique. To see this, suppose that we have a ˚ b “ b ˚ a “ ε and a ˚ c “ c ˚ a “ ε.
It follows that

b “ b ˚ ε (G2)

“ b ˚ pa ˚ cq

“ pb ˚ aq ˚ c (G1)

“ ε ˚ c

“ c. (G2)

Since the inverse of a is unique, we give the name a´1. This notation makes sense when
˚ is multiplication or functional composition, but is less appropriate when ˚ is addition.
In that case we might sometimes write ´a for the inverse.

We have already seen some examples of groups. If pR,`, ¨, 0, 1q is a ring then the structure
pR,`, 0q is an abelian group. The structure pR, ¨, 1q is not a group34 because it contains the
element 0 P R which has no multiplicative inverse, and it may contain other non-invertible
elements. However, the set of units pRˆ, ¨, 1q is an abelian group, called the group of units of
the ring. The ring R is a field if and only if Rˆ “ Rzt0u.

So far we have not studied any examples of non-abelian groups. These kind of groups come
from functional composition. Here are two of the prototypical examples:

• Given a field F and a positive integer n ě 1 we define

GLnpFq “ the set of invertible nˆ n matrices with entries from F.

This is a group, called a general linear group, with group operation given by matrix
multiplication and identity element given by the nˆ n identity matrix.

33This is a peculiar notation. It would be more sensible to call this a commutative group. This “abelian”
notation was introduced by Leopold Kronecker to commemorate from a theorem of Niels Henrik Abel, which
says that a polynomial equation with a commutative “Galois group” is solvable by radicals. We will discuss
this next semester.

34I don’t want to overwhelm you with terminology, but a structure pG, ˚, εq satisfying axioms (G1) and (G2)
is called a monoid.
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• Invertible functions from a finite set to itself are called permutations. The permutations
of a set form a group under composition, with the identity permutations as the identity
element. The group of permutations of t1, 2, . . . , nu is called the symmetric group Sn.

Our discussion of multiplicative order generalizes to any group.

Order of a Group Element

Let pG, ˚, εq be a group. Then for any element a P G and for any integer n P Z we define
the exponential notation

an “

$

’

&

’

%

a ˚ a ˚ ¨ ¨ ¨ ˚ a (n times) if n ě 1

ε if n “ 0

a´1 ˚ a´1 ˚ ¨ ¨ ¨ ˚ a´1 (´n times) if n ď ´1

One can check that this notation satisfies am`n “ am ˚ an for all integers m,n P Z. We
define the order of a P G as the minimum positive exponent r such that ar “ ε, or as 8
if no such exponent exists:

ordGpaq “ mintr ě 1 : ar “ εu P Zě1 Y t8u.

If G is a finite then then I claim that ordGpaq is finite. Indeed, in this case the sequence
of powers a, a2, . . . P G must contain repetition, so that ak “ a` for some k ą ` ě 1.
Then we have

ak “ a`

ak ˚ a´` “ a` ˚ a´`

ak´` “ a0

ak´` “ ε

for some positive integer k ´ ` ě 1.

The Euler-Fermat theorem shows us that the order of an element in a finite group is related to
the size of the group. We will prove this in modern group-theoretic language but the ideas are
due to Euler (1761). We will discuss afterwards how this abstract version implies the classical
theorems of Euler and Fermat.
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The Euler-Fermat Theorem

Let pG, ˚, εq be a finite abelian group. Then for all a P G we have35

a#G “ ε.

To save space we will write a ˚ b “ ab and ε “ 1, but the proof is completely general.
Consider the function µa : G Ñ G defined by µapbq “ ab. This function is injective
because every element of a group is invertible:

µapbq “ µapcq

ab “ ac

a´1ab “ a´1ac

b “ c.

If G is finite then the function µa is also surjective. To be precise, suppose that m “

#G and label the group elements as G “ tb1, b2, . . . , bmu. Then we also have G “

tab1, ab2, . . . , abmu with the group elements possibly listed in a different order. Indeed,
every element bj has the form abi for some i because µa is surjective, and abi “ abj
implies bi “ bj because µa is injective. Now we “multiply” all of the group elements
together in two different ways:

b1b2 ¨ ¨ ¨ bm “ pab1qpab2q ¨ ¨ ¨ pabmq

(((
(((b1b2 ¨ ¨ ¨ bm “ am((((

((
b1b2 ¨ ¨ ¨ bm

1 “ am.

Euler’s original application was to the group of units of the finite ring Z{nZ. I claim that

pZ{nZqˆ “ ta P Z{nZ : gcdpa, nq “ 1u.

Indeed, if gcdpa, nq “ 1 then from Bézout’s Identity we have ax ` ny “ 1 for some x, y P Z.
It follows that

ax` ny “ 1

ax´ 1 “ np´yq

n | pax´ 1q

ax ” 1 mod n,

and hence a P Z{nZ is a unit. Conversely, suppose that a P Z{nZ is a unit, so that ab ” 1
mod n for some b P Z. By definition this means that ab ´ 1 “ nk for some k P Z. If d P Z

35In fact, this theorem also holds for finite non-abelian groups, but the proof is harder.
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is any common divisor of a and n then the equation 1 “ ab ´ nk implies that d|1 and hence
d “ ˘1. In other words, gcdpa, nq “ 1.

Euler’s Totient Theorem

For any integer n ě 1 we define Euler’s totient function36

φpnq “ #pZ{nZqˆ “ #ta P Z : 1 ď a ă n and gcdpa, nq “ 1u.

Since φpnq is the size of the abelian group pZ{nZqˆ, the previous theorem tells us that

aφpnq ” 1 mod n for all a P pZ{nZqˆ.

In other words,

aφpnq ” 1 mod n for all a P Z such that gcdpa, nq “ 1.

If p is prime then Z{pZ is a field. In other words, every nonzero element of Z{pZ is a unit:

pZ{pZqˆ “ pZ{pZqzt0u
#pZ{pZqˆ “ #pZ{pZq ´ 1

φppq “ p´ 1.

Thus we recover the original theorem of Fermat, which was Euler’s goal.

Fermat’s Little Theorem

Let p be prime so that gcdpa, pq “ 1 if and only if p - a. Then since φppq “ p´ 1, Euler’s
totient theorem tells us that

ap´1 ” 1 mod p for all a P Z such that p - a.

We can clean this up a bit by multiplying both sides by a to obtain

ap ” a mod p,

which is true for any integer a P Z whatsoever.

36This notation was introduced by James Joseph Sylvester in 1879. Sylvester is famous for introducing
ridiculous mathematicial terminology, a small percentage of which has become standard. For example, Sylvester
introduced the term matrix for a rectangular array of numbers, his reasoning being that such an array is a
“womb” that gives birth to determinants. True story.
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This result is called Fermat’s Little Theorem in order to distinguish it from Fermat’s Last
Theorem.37 Fermat, being an amateur mathematician working in a time before scientific
journals, left behind few proofs. Euler later supplied proofs for most of Fermat’s claimed
results and disproved at least one.38 But Euler was unable to prove or disprove the following.

Fermat’s Last Theorem

For all positive integers a, b, c, n with n ě 3 we have

an ` bn ‰ cn.

This problem became famous and inspired many fundamental concepts in number theory. It
was finally proved in 1993 by Andrew Wiles and appeared on the front page of the New York
Times. A gap in the proof led to some panic but Wiles was able to patch the gap with his
student Richard Taylor, and a correct proof appeared in 1994. The ideas of this proof are far
beyond the scope of our course.

4.4 The Chinese Remainder Theorem

Recall Euler’s totient function:

φpnq “ #pZ{nZqˆ “ #ta P Z : 1 ď a ă n and gcdpa, nq “ 1u.

We proved last time that

aφpnq ” 1 mod n for all integers a P Z satisfying gcdpa, nq “ 1.

If p is prime then since φppq “ p´ 1 we obtain Fermat’s little theorem:

ap´1 ” 1 mod p for all integers a P Z satisfying p - a.

But what if n is not prime? In this section we will prove the following formula:

φpnq “ n ¨
ź

p|n

ˆ

1´
1

p

˙

,

where the product is taken over all prime divisors p|n. This result seems intuitively plausible.
Indeed, we observe that gcdpa, nq ‰ 1 if and only if a and n share a prime factor. Thus we

37I do not know the origin of these names.
38Fermat had claimed that the number 22n

`1 is prime for all integers n ě 0. Euler shows that 225
`1 is not

prime, and no other Fermat prime has ever been found. So this is a case where Fermat was completely wrong.
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wish to remove all multiples of the prime factors of n. We can remove the multiples of p
by multiplying n with p1 ´ 1{pq. Then, presumably, we can remove the multiples of another
prime factor q by multiplying the result with p1´1{qq. But this is not so simple because some
multiples of q are also multiples of p.

The underlying issue is today expressed in terms of a general property of rings called the
“Chinese Remainder Theorem”.39 The first example of the theorem appeared in the fourth
century text Sun Zu Suan Jing (Master Sun’s Mathematical Manual):

There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?

In modern language, we are looking for integer solutions c P Z to the following system of
congruences:

$

&

%

c ” 2 mod 3,
c ” 3 mod 5,
c ” 2 mod 7.

Instead of just solving this one problem we will develop the general theory. The idea is to
compare the set Z{mnZ with the cartesian product set Z{mZ ˆ Z{nZ. To be specific, we
consider the function sending the congruence class a mod mn to the pair of congruence classes
pa mod m, a mod nq. Here is an example with m “ 2 and n “ 3:

a mod 6 pa mod 2, a mod 3q

0 p0, 0q
1 p1, 1q
2 p0, 2q
3 p1, 0q
4 p0, 1q
5 p1, 2q

Note that each ordered pair on the right appears exactly once, which happens because 2 and
3 are coprime. Indeed, we see that the first coordinate cycles through t0, 1u while the second
coordinate cycles through t0, 1, 2u. Since 2 and 3 are coprime there is no repetition. We will
be more precise about this below.

In practical terms, this example tells us that each system of congruences c ” a mod 2 and
c ” b mod 3 has a unique solution mod 6. For example, the final row of the table tells us that

"

c ” 1 mod 2
c ” 2 mod 3

*

ðñ c ” 5 mod 6.

In general, we would like a recipe to send a pair of congruence classes mod m and n to a unique
congruence class mod mn. This is what the Chinese Remainder Theorem does. Actually, the
term “Chinese Remainder Theorem” refers to a collection of ideas, which I will break into a

39The theorem was named by Leonard Dickson in 1929 and this notation has become standard.
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few pieces. The proof will use two lemmas, which are only slight modification of things that
we already know.

Lemmas for the Chinese Remainder Theorem

(1) If gcdpm,nq “ 1 then m|c and n|c imply pmnq|c.

(2) If ax` by “ 1 then gcdpa, bq “ 1.

To prove (1), let gcdpm,nq “ 1 so that mx ` ny “ 1 for some x, y P Z. If mk “ c and
n` “ c for some k, ` P Z then

pmx` nyqc “ c

mxc` nyc “ c

mxn`` nymk “ c

mnpx`` ykq “ c.

To prove (2), let ax` by “ 1. If dk “ a and d` “ b then

1 “ ax` by “ dkx` d`y “ dpkx` `yq.

In other words, any common divisor of a and b must be a divisor of 1. Hence gcdpa, bq “ 1.

Remark: It is always possible to use unique prime factorization to prove things like this. But
there is a general rule when writing proofs that one should not use a deeper theorem to prove
a shallower theorem. This helps minimize the risk of circular reasoning.

Chinese Remainder Theorem, Part I

Let integers m,n ě 1 satisfy gcdpa, bq “ 1 and consider the following function:

ϕ : Z{mnZ Ñ Z{mZˆ Z{nZ
a mod mn ÞÑ pa mod m, a mod nq.

To save space we could write ϕpaq “ pa, aq, as long as we are clear that the input is a
congruence class mod mn and the output is ordered pair of congruence classes mod m
and n. I claim that ϕ is a bijection.

What needs to be proved?
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• Well-Defined?40 First we should check that the definition is not affected by chang-
ing a to another integer a1 satisfying a ” a1 mod mn. Indeed, if a ” a1 mod mn,
so that a´ a1 “ mnk for some k P Z, then we have a´ a1 “ mpnkq, which implies
that a ” a1 mod m and a´ a1 “ npmkq, which implies that a ” a1 mod n.

• Injective? Suppose that a ” b mod m and a ” b mod n, so that m|pa ´ bq and
n|pa´ bq. Then from Lemma (1) we have mn|pa´ bq, so that a ” b mod mn.

• Surjective? We have an injective function from the set Z{mnZ to the set Z{mZˆ
Z{nZ. Since these sets have the same size mn any injective function must also be
surjective.

It follows that the function ϕ : Z{mnZÑ Z{mZˆ Z{nZ has an inverse function:

ϕ´1 : Z{mZˆ Z{nZ Ñ Z{mnZ
pa mod m, b mod nq ÞÑ ? mod mn.

But it is not at all clear how to express the output as a function of the input pa, bq.

Chinese Remainder Theorem, Part 2

Let integers m,n ě 1 satisfy gcdpm,nq “ 1, so we can use the Extended Euclidean
Algorithm to find some (non-unique) integers x, y P Z satisfying

mx` ny “ 1.

I claim that the inverse of the function ϕpa mod mnq “ pa mod m, a mod nq from Z{mnZ
to Z{mZˆ Z{nZ can be computed as follows:41

ϕ´1pa mod m, b mod nq “ any ` bmx mod mn.

In concrete terms, we have the following solution to a system of two congruences:

"

c ” a mod m
c ” b mod n

*

ðñ c ” any ` bmx mod mn.

To prove this we only need to check that ϕpany` bmxq “ pa, bq. In other words, we need
to check that

any ` bmx ” a mod m,

any ` bmx ” b mod n.

40Students usually have difficulty with the concept of “well-definedness”. The idea is that a function whose
input is an equivalence class must not be affected by changing the representative from this class.

74



We only need to check one of these because they are symmetric. All congruences in the
following computation are mod m:

any ` bmx ” any ` b0x

” any

” ap1´mxq

” ap1´ 0xq

” a.

For example, when m “ 2 and n “ 3 we can take x “ ´1 and y “ 1, so that any ` bmx “
3a´ 2b, and hence42

"

c ” a mod 2
c ” b mod 3

*

ðñ c ” 3a´ 2b mod 6.

We can use the same method to solve multiple simultaneous congruences by induction. Recall
Sun Zu’s system of congruences:

$

&

%

c ” 2 mod 3,
c ” 3 mod 5,
c ” 2 mod 7.

First we take m “ 3 and n “ 5 and observe that 3p2q ` 5p´1q “ 1, so that

"

c ” 2 mod 3
c ” 3 mod 5

*

ðñ c ” 2 ¨ 5p´1q ` 3 ¨ 3p2q ” 8 mod 15.

Hence we have
$

&

%

c ” 2 mod 3
c ” 3 mod 5
c ” 2 mod 7

,

.

-

ðñ

"

c ” 8 mod 15
c ” 2 mod 7

*

.

Then we take m “ 15 and n “ 7 and observe that 15p1q ` 7p´2q “ 1, so that

"

c ” 8 mod 15
c ” 2 mod 7

*

ðñ c ” 8 ¨ 7p´2q ` 2 ¨ 15p1q ” 23 mod 105.

On the homework will you investigate a method to solve a system of multiple congruences in
one step. It is not any faster but it is slightly more beautiful.

41Over the years I have settled on this mnemonic because any is a word and bmx is a type of bicycle that
was popular in my childhood.

42We could equally well take x “ 2 and y ´ 1. The solution would look different but it would be the same.
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We end this section by using the Chinese Remainder Theorem to compute Euler’s totient
function. We have seen that the the following function is well-defined for any integers m,n ě 1:

ϕ : Z{mnZ Ñ Z{mZˆ Z{nZ
a mod mn ÞÑ pa mod m, a mod nq.

But this is not just a function between sets. We know that Z{mnZ is a ring and we can also
view Z{mZˆ Z{nZ as a ring by defining addition and multiplication componentwise:

pa mod m, b mod nq ` pa mod m, b mod nq “ pa` a1 mod m, b` b1 mod nq,

pa mod m, b mod nq ¨ pa mod m, b mod nq “ paa1 mod m, bb1 mod nq.

The “zero” and “one” elements of this ring are p0, 0q and p1, 1q. Since the function ϕ preserves
this ring structure we say that ϕ is a ring homomorphism. When gcdpm,nq “ 1 we also know
that ϕ is a bijection, in which case we say it is a ring isomorphism. The final piece of the
Chinese Remainder Theorem says that this ring isomorphism restricts to a group isomorphism
between the groups of units. I won’t bother to use this language in the official statement. We
will be much more systematic about homomorphisms next semester.

Chinese Remainder Theorem, Part 3

Let integers m,n ě 1 satisfy gcdpm,nq “ 1, so the function ϕpaq “ pa, aq defines a
bijection:

ϕ : Z{mnZ „
ÝÑ Z{mZˆ Z{nZ.

I claim that this restricts to a bijection:

ϕ : pZ{mnZqˆ „
ÝÑ pZ{mZqˆ ˆ pZ{nZqˆ.

Hence the domain and codomain have the same size, which gives us the following identity
for Euler’s totient function:

φpmnq “ #pZ{mnZqˆ “ #pZ{mZqˆ ¨#pZ{nZqˆ “ φpmqφpnq.

What needs to be checked? We only need to show that a is a unit mod mn if and only
if a is a unit mod m and n separately:

gcdpa,mnq “ 1 ðñ gcdpa,mq “ 1 and gcdpa, nq “ 1.

For one direction, suppose that gcdpa,mnq “ 1 so that ax`mny “ 1 for some x, y P Z.
Then since ax`mpnyq “ 1, Lemma (2) implies that gcdpa,mq “ 1 and since ax`npmyq “
1, Lemma (2) implies that gcdpa, nq “ 1. Conversely, suppose that gcdpa,mq “ 1 and
gcdpa, nq “ 1, hence there exist integers x, y, x1, y1 P Z satisfying ax ` my “ 1 and
ax1 ` ny1 “ 1. Multiplying these equations gives

pax`myqpax1 ` ny1q “ 1

76



apxx1 ` xny1 `myx1q `mnpyy1q “ 1,

and it follows from Lemma (2) that gcdpa,mnq “ 1.

Finally, we will prove the formula from the beginning of the section. Consider the prime
factorization of an integer n ě 1:

n “ pn1
1 pn2

2 ¨ ¨ ¨ pnkk .

Applying the previous result gives

φpnq “ φppn1
1 qφpp

n2
2 q ¨ ¨ ¨φpp

nk
k q.

But now we are stuck. It is not true that φpp2q “ φppqφppq because p is not coprime to p. We
need to find a way to compute φppmq when p is prime. I claim that

φppmq “ pm ´ pm´1 “ pm
ˆ

1´
1

p

˙

.

To see this, we first observe that

gcdpa, pmq “ 1 ðñ p - a.

Indeed, since p is prime the only divisors of pm are the powers of p. If p - a then a is also not
divisible by any power of p, hence a and pm have no common divisor. Conversely, if p|a then
p is a nontrivial common divisor of a and pm.

Recall that φppmq is the number of integers between 1 and pm that are coprime to pm. By
the previous remark these are just the integers that are not divisible by p. So our goal is to
count the integers between 1 and pm that are not divisible by p. But it is easier to count the
integers that are divisible by p. Indeed, there are pm´1 multiples of p in this range:

1p, 2p, 3p, . . . , ppm´1qp.

Then throwing away these multiples of p gives φppmq “ pm ´ pm´1 as desired.

We conclude that

φpnq “ φppn1
1 qφpp

n2
2 q ¨ ¨ ¨φpp

nk
k q

“ pn1
1

ˆ

1´
1

p1

˙

pn2
2

ˆ

1´
1

p2

˙

¨ ¨ ¨ pnkk

ˆ

1´
1

pk

˙

“ pn1
1 pn2

2 pnkk

ˆ

1´
1

p1

˙ˆ

1´
1

p2

˙ˆ

1´
1

pk

˙

“ n
k
ź

i“1

ˆ

1´
1

pi

˙

“ n
ź

p|n

ˆ

1´
1

p

˙

,

where the product is taken over the prime divisors of n.
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5 Partial Fractions

5.1 Leibniz’ Mistake

After our detour through number theory, we return to the theory of polynomials over a field.
Because Z and Frxs are both examples of Euclidean domains we will find that some of the
theorems have already been proved. In particular, in this section we will see that the method
of partial fractions from calculus is basically equivalent to the Chinese Remainder Theorem
from number theory.

The goal of this chapter is to prove the following theorem. There are many equivalent state-
ments; for now we will state the original version.

The Fundamental Theorem of Algebra (Original Version)

Every non-constant polynomial fpxq P Rrxs can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where pipxq P Rrxs and degppiq “ 1 or 2 for all i.

We will see that this result is highly non-trivial. Several generations of mathematicians (in-
cluding Euler) tried and failed to give a rigorous proof. Even the first generally accepted
proofs had logical gaps that were not completely filled until the late 1800s.

The fundamental theorem is so difficult that Gottfried Leibniz, one of the two founders of
Calculus, temporarily convinced himself that it is false. In 1702, Leibniz wrote a paper on
the integration of rational expressions fpxq{gpxq where fpxq, gpxq P Rrxs. If the denominator
gpxq could be factored into polynomials of degrees 1 and 2 then Leibniz knew that the integral
could be solved by means of the following two basic integrals:

ż

xndx “

#

xn`1{pn` 1q if n ‰ ´1

log |x| if n “ ´1
and

ż

1

x2 ` 1
dx “ arctanpxq.

For example, consider the integral

ż

x5

x4 ´ 2x3 ` 2x2 ´ 2x` 1
dx.

By inspection we see that x “ 1 is a root of the denominator, which then factors as

x4 ´ 2x3 ` 2x2 ´ 2x` 1 “ px´ 1q2px2 ` 1q.
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After knowing this, one can use the method of partial fractions to compute43

x5

x4 ´ 2x3 ` 2x2 ´ 2x` 1
“ x` 2`

2

x´ 1
`

1{2

px´ 1q2
´

1{2

x2 ` 1
,

and then the integral is straightforward:

ż

x5

x4 ´ 2x3 ` 2x2 ´ 2x` 1
dx “

x2

2
` 2x` 2 log |x´ 1| ´

1{2

x´ 1
´

1

2
arctanpxq.

However, Leibniz claimed that not all real polynomials can be so factored. As an example he
gave the polynomial x4 ` a4, where a is a real number. In his words:44

Therefore
ş

dx
x4`a4

cannot be reduced to the squaring of the circle or the hyperbola
by our analysis above, but founds a new kind of its own.

To see that this is wrong, we will compute the 4th roots of ´a4 for any positive number a ą 0.
First we write ´a4 in polar form as

´a4 “ a4eiπ.

Thus the principal 4th root is

aeiπ{4 “ a rcospπ{4q ` i sinpπ{4qs “
a
?

2
p1` iq,

and since 1, i,´1,´i are the 4th roots of unity, the remaining 4th roots of ´a4 are

aeiπ{4i “ api´ 1q{
?

2,

aeiπ{4p´1q “ ap´1´ iq{
?

2,

aeiπ{4p´iq “ ap´i` 1q{
?

2.

Then grouping these roots into conjugate pairs gives the following factorization:

x4 ` a4 “

”

px´ ap1` iq{
?

2qpx´ ap1´ iq{
?

2q
ı ”

px´ ap´1` iq{
?

2qpx´ ap´1´ iq{
?

2q
ı

“ px2 ´ a
?

2x` a2qpx2 ` a
?

2` a2q.

If Leibniz had found this factorization then he would have been able to compute the integral.
To illustrate the method we will examine the simplest case a “

?
2. I claim that there exist

real numbers A,B,C,D such that45

1

x4 ` 4
“

1

px2 ´ 2x` 2qpx2 ` 2x` 2q

“
A`Bx

x2 ´ 2x` 2
`

C `Dx

x2 ` 2x` 2
.

43We will discuss this method in detail below.
44“Squaring the circle” refers to arctan and “squaring the hyperbola” refers to log.
45This follows from a general theorem on partial fractions which we will prove below.
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To find these numbers we could add the fractions on the right hand side and then equate the
coefficients in the numerator to the numerator 1 “ 1 ` 0x ` 0x2 ` 0x3 on the left side. This
would lead to a system of four linear equations in four unknowns, which is not too difficult to
solve. However, we will use a more general method that is common to all Euclidean Domains.

First we will apply the Extended Euclidean Algorithm in the ring Rrxs to obtain some poly-
nomials αpxq, βpxq P Rrxs satisfying

px2 ` 2x` 2qαpxq ` px2 ´ 2x` 2qβpxq “ 1.

The method here is exactly the same as for integers, though the calculations are a bit more
involved. Consider the set of triples of polynomials

V “ tpαpxq, βpxq, γpxqq P Rrxs3 : fpxqαpxq ` gpxqβpxq “ γpxqu,

which is closed under Frxs-linear combinations.46 Then beginning with the basic triples
p1, 0, x2 ` 2x` 2q and p0, 1, x2 ´ 2x` 1q we perform the steps of the Euclidean Algorithm to
obtain a triple of the form pαpxq, βpxq, γpxqq, where γpxq is the greatest common divisor. In
this case we find that γpxq “ 1:

αpxq βpxq γpxq

1 0 x2 ` 2x` 2

0 1 x2 ´ 2x` 2
1 ´1 4x

´x{4` 1{2 x{4` 1{2 2
´x{8` 1{4 x{8` 1{4 1

To get from the third to the fourth row we need to compute the quotient and remainder of
x2 ´ 2x` 2 mod 4x:

1
4x´

1
2

4x
˘

x2 ´ 2x ` 2
´ x2

´ 2x
2x

2

Then the fourth row equals the second row minus px{4´ 1{2q times the third row. In the last
step we just scaled everything by 1{2 to obtain the monic GCD. In conclusion, we have have

1 “
1

8
p2´ xqpx2 ` 2x` 2q `

1

8
p2` xqpx2 ´ 2x` 2q.

Then we divide both sides by x4` 4 “ px2` 2x` 2qpx2´ 2x` 2q to obtain the desired partial
fraction expansion:

1

px2 ` 2x` 2qpx2 ´ 2x` 2q
“

p2´ xq{8 ¨ px2 ` 2x` 2q

px2 ` 2x` 2qpx2 ´ 2x` 2q
`

p2` xq{8 ¨ px2 ´ 2x` 2q

px2 ` 2x` 2qpx2 ´ 2x` 2q

46We say that V is an Frxs-module.
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1

x4 ` 4
“

p2´ xq{8

x2 ´ 2x` 2
`

p2` xq{8

x2 ` 2x` 2

At this point, Leibniz would easily have computed the integral in terms of log and arctan.
Since it is not easy for me, and since this is not a Calculus class, I will just tell you the answer
that my computer gives:

ż

dx

x4 ` 4
“

arctanpx` 1q ` arctanpx´ 1q

8
`

logpx2 ` 2x` 2q ´ logpx2 ´ 2x` 2q

16
.

5.2 Fractions

In the previous section we discussed “rational expressions” fpxq{gpxq where fpxq and gpxq are
polynomials. Since we have been careful to study polynomials from an abstract point of view,
we should do the same for rational expressions. The construction of fractions of polynomials
is completely analogous to the construction of fractions of integers. More generally, for any
integral domain R there is a well-defined “field of fractions” FracpRq. In this section we will
study the formal details of this construction. Then we will have earned the right to treat
fractions informally for the rest of the course.

For any ring R we may consider the set of “fractional expressions”:

FracpRq “ ta{b : a, b P R, b ‰ 0u.

At first we do not attach any meaning to the abstract symbol “a{b”. Of course, our goal is
to treat these symbols in the same way that we do fractions of integers. The first difficulty is
that many different-looking looking symbols correspond to the same “value”:

1

2
“
´1

´2
“

7

14
“
´13

´26
“ ¨ ¨ ¨

From past experience, we know that two fractions a{b and c{d are equal if and only if the
integers ad and bc are equal. Thus we define the following relation over a general ring R:

a

b
„
c

d
in FracpRq ðñ ad “ bc in R.

Our first goal is to verify that „ is an equivalence relation on the set FracpRq:

• Reflexive. For all a, b P R we have ab “ ba, which implies that a{b „ b{a.

• Symmetric. Suppose that a{b „ c{d for some a, b, c, d P R, which by definition means
that ad “ bc. But then we have cb “ da, which implies that c{d “ a{b. Here we assumed
that R is a commutative ring.

• Transitive. Suppose that we have a{b “ c{d and c{d “ e{f for some a, b, c, d, e, f P R.
By definition, this means that ad “ bc and cf “ de. In this case we wish to show
that af “ be, so that a{b “ e{f . For this we will use the associative and commutative
properties of R:

dpafq “ padqf “ pbcqf “ bpcfq “ bpdeq “ dpbeq.
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Now we might be stuck. However, if R is an integral domain, then since d is nonzero
(because it is the denominator of the fraction c{d) we may cancel it from both sides to
obtain af “ be as desired.

Here is a summary.

Equivalence of Fractions

If R is an integral domain then the relation

a

b
„
c

d
ðñ ad “ bc

is an equivalence on the set of fractional expressions FracpRq “ ta{b : a, b P R, b ‰ 0u.

Now recall that fractions of integers can be added and multiplied as follows:

a

b
`
c

d
“
ad` bc

bd
and

a

b
¨
c

d
“
ac

bd
.

So we will do the same for fractions over an arbitrary domain.

Addition and Multiplication of Fractions

For any domain R and for any fractions a{b, c{d P FracpRq we define

a

b
`
c

d
:“

ad` bc

bd
and

a

b
¨
c

d
:“

ac

bd
.

Note that the denominators are nonzero because b ‰ 0 and d ‰ 0 imply bd ‰ 0
in a domain. More subtly, we must check that these operations are compatible with
equivalence. In other words, if a{b „ a1{b1 and c{d „ c1{d1 then we must check that
pa{bq ` pc{dq „ pa1{b1q ` pc1{d1q and pa{bq ¨ pc{dq „ pa1{b1qpc1{d1q.

Proof. We have assumed that ab1 “ a1b and cd1 “ c1d. It follows that

pad` bcqpb1d1q “ padqpb1d1q ` pbcqpb1d1q

“ pab1qpdd1q ` pcd1qpbb1q

“ pa1bqpdd1q ` pc1dqpbb1q

“ pa1d1 ` b1c1qpbdq,
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so that pad` bcq{pbdq „ pa1d1 ` b1c1q{pb1d1q, and

pacqpb1d1q “ pab1qpcd1q “ pa1bqpc1dq “ pa1c1qpbdq,

so that pacq{pbdq „ pa1c1q{pb1d1q.

Note that this proof is similar in spirit to the proof that addition and multiplication of integers
is compatible with congruence mod n. In that case we obtained the ring Z{nZ of congruence
classes. So in this case we expect to get a “ring of fractions”. In fact, we get more.

The Field of Fractions of a Domain

For any domain R we have a field of fractions47

pFracpRq,„,`, ¨, 0{1, 1{1q.

In other words, we have a ring of fractions with the operations `, ¨ defined above, where
0{1 is the additive identity and 1{1 is the multiplicative identity. It is quite tedious to
check the eight ring axioms, so we won’t. In order to see that this is also a field, consider
any “nonzero” fraction a{b  0{1. By definition this means that a1 ‰ b0, or a ‰ 0. It
follows that the fraction b{a exists, and we check that

a

b
¨
b

a
„
ab

ba
„

1

1
.

In other words, pa{bq´1 “ b{a.

It is common to “identify” the fraction of integers a{1 with the integer a, and thus to view
the domain Z as a subring of the field Q. In order to make this formal, it is more correct to
say that the function Z Ñ Q defined by a ÞÑ a{1 is an injective ring homomorphism.48 This
observation leads to the so-called “universal property” of fractions.

Universal Property of Fractions

Let R be a domain with field of fractions FracpRq. Then the following function is an

47There is a subtle point that the elements of this field are not formal fractions, but equivalence classes of
formal fractions. Similarly, the elements of the ring Z{nZ are not integers, but congruence classes of integers
mod n. I don’t want to be more precise about this right now.

48Is it disheartening to learn that you never really understood fractions in the first place?
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injective ring homomorphism:

ϕ : R Ñ FracpRq
a ÞÑ a{1.

This gives us a ring isomorphism between R and the subring ta{1 : a P Ru Ď FracpRq. It
is common to abuse notation and to say that R is a subring of FracpRq.

More generally, let F Ě R be a field containing R as a subring. Then we obtain an
injective ring homomorphism:

µ : FracpRq Ñ F
a{b ÞÑ ab´1.

This gives a ring isomorphism between FracpRq and the subring tab´1 : a, b P R, b ‰ 0u Ď
F. Furthermore, we observe that the map µ ˝ ϕ : RÑ F is just the identity:

a ÞÑ a{1 ÞÑ a1´1 “ a.

In colloquial terms, these results just say that

FracpRq is “the smallest field that contains R”.

Unfortunately, the messing about with arrows is necessary to make this colloquial idea
precise, and therefore to prove anything about it.

This theorem is quite abstract so you can mostly forget about it for now; I just wanted to put
it in front of your eyes.

Proof. The function ϕ is injective because a{1 „ b{1 implies a “ b and it is a ring homomor-
phism because a{1` b{1 „ pa` bq{1 and pa{1qpb{1q „ pabq{1. The function µ is well-defined49

because

a{b „ a1{b1 ñ ab1 “ a1b ñ ab´1 “ a1pb1q´1 ñ µpa{bq “ µpa1{b1q.

Here we have used the facts that F is a field and b, b1 are nonzero. And µ is injective because
each of the implications above is reversible. Finally, µ is a ring homomorphism because

µpa{bq ` µpc{dq “ ab´1 ` cd´1

“ pab´1qpdd´1q ` pcd´1qpbb´1q

“ padqpb´1d´1q ` pbcqpb´1d´1q

“ pad` bcqpb´1d´1q

49For any function defined on a set of equivalence classes, one must check that the value of the function does
not depend on the class representative used to compute it.
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“ pad` bcqpbdq´1

“ µpa{b` c{dq

and
µpa{bqµpc{dq “ pab´1pcd´1q “ pacqpb´1d´1q “ pacqpbdq´1 “ µppa{bqpc{dqq.

˝

We have now earned the right to use fractional notation over an arbitrary integral domain;
for example, over the ring of polynomials Frxs.

The Field of Rational Functions

For any field F we use the following notation

Fpxq :“ FracpFrxsq

and we call this the field of rational functions over F.

Recall that for infinite fields F there is no difference between formal polynomial ex-
pressions Frxs and polynomial functions F Ñ F.50 Unfortunately, the situation is more
complicated for “rational functions”. For example, the rational function 1{px2`1q P Rpxq
defines a perfectly good function R Ñ R, but if we think of 1{px2 ` 1q as an element
of Cpxq then it does not define a function C Ñ C because it is not defined at x “ i or
x “ ´i. We won’t worry too much about this.

5.3 Partial Fractions

In this section we will prove the general theorem on partial fractions in Euclidean domains,
and relate this to the Chinese Remainder Theorem from the previous chapter. First we prove
a vector version of the Euclidean Algorithm.

Bézout’s Identity for Vectors

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any nonzero
elements a1, . . . , an P R we consider the set of common divisors:

Divpa1, . . . , anq “ td P R : d|ai for all iu.

Since d|ai and ai ‰ 0 imply Npdq ď Npaiq, the set Divpa1, . . . , anq has some element of

50Proof: If fpxq and gpxq define the same function then fpxq ´ gpxq is a polynomial with infinitely many
roots, hence it is the zero polynomial.
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maximum size. If d is such an element, I claim that there exist x1, . . . , xn P R satisfying

d “ a1x1 ` ¨ ¨ ¨ ` anxn.

Proof. To prove this, we consider the set of R-linear combinations

a1R` ¨ ¨ ¨ ` anR “ ta1x1 ` ¨ ¨ ¨ anxn : xi P R for all iu.

Since a ‰ 0 implies Npaq ą 0, this set has some nonzero element e of minimum size, and we
will write e “ a1x1 ` ¨ ¨ ¨ anxn for some xi P R. If we can show that d „ e are associates then
we will have d “ ue for some unit u P Rˆ and hence

d “ a1pux1q ` ¨ ¨ ¨ ` anpuxnq

as desired.

To prove that d „ e it is enough to show that d|e and Npdq “ Npeq, since we know from a
previous homework that the maximum sized divisors of e are just the associates of e. To show
that d|e let us write dki “ ai for some ki P R, which is possible because d is a common divisor
of a1, . . . , an. Then we have

e “ a1x1 ` ¨ ¨ ¨ ` anxn

“ d1k1x1 ` ¨ ¨ ¨ ` dnknxn

“ dpk1x1 ` ¨ ¨ ¨ ` knxnq,

which implies that d|e and hence also Npdq ď Npeq.

Next we will show that e is a common divisor of a1, . . . , an, from which it will follow that
Npeq ď Npdq because d is a maximum sized common divisor. To show that e|ai for all i, we
use the Division Theorem two find qi, ri P R satisfying

"

ai “ eqi ` ri,
r “ 0 or Npriq ă Npeq.

If ri ‰ 0 then we must have Npriq ă Npeq. But this leads to a contradiction because

ri “ ai ´ eqi

“ ai ´ pa1x1 ` ¨ ¨ ¨ anxnqqi

“ a1p´x1qiq ` ¨ ¨ ¨ ` aip1´ xiqiq ` ¨ ¨ ¨ ` anp´xnqiq

is an element of a1R ` ¨ ¨ ¨ anR and e is supposed to be an element of this set with minimum
size. Therefore we must have ri “ 0 for all i. ˝

If d is a greatest common divisor of elements a1, . . . , an in a Euclidean domain then we have
just proved that there exist elements x1, . . . , xn P R satisfying

d “ a1x1 ` ¨ ¨ ¨ ` anxn.

But we have not yet given an algorithm to find such elements.
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The Euclidean Algorithm for Vectors

Let R be a Euclidean domain. For any nonzero elements a1, . . . , an P R we will write
gcdpa1, . . . , an´1q to denote some maximum sized common divisor of a1, . . . , an´1. I claim
that we have the following equality of sets:

Divpa1, . . . , anq “ Divpgcdpa1, . . . , an´1q, anq.

If we can show this then it will follow by induction that

Divpa1, . . . , anq “ Divpdq

for some element d P R, which will imply that the maximum sized common divisors of
a1, . . . , an are just the associates of d. In other words:

The GCD of a1, . . . , an is unique up to multiplication by units.

To prove the equality of sets, we first use Bézout’s Identity to write e “ gcdpa1, . . . , an´1q “

a1x1 ` ¨ ¨ ¨ an´1xn´1 for some elements xi P R. Now let d be an element of the right set
so that dki “ ai for some elements k1, . . . , kn P R. Then we have

e “ dk1x1 ` ¨ ¨ ¨ dkn´1xn´1 “ dpk1x1 ` ¨ ¨ ¨ kn´1xn´1q,

so that d|e. Since we also have d|an it follows that d is an element of the right set.
Conversely, let d be an element of the right set so that d|e and d|an. Since e is a common
divisor of a1, . . . , an´1 we can write e`i “ ai for some `1, . . . , `n´1 P R and since d|e we
can write dk “ e for some k P R. It follows that ai “ e`i “ dk`i “ dpk`iq and hence d|ai
for all i from 1 to n ´ 1. Since we also have d|an it follows that d is an element of the
left set.

This theorem allows us to use the notation gcdpa1, . . . , anq without confusion since the GCD
is essentially unique. Then the equality of sets

Divpa1, . . . , anq “ Divpgcdpa1, . . . , an´1q, anq.

implies the equality (up to units) of greatest common divisors:

gcdpa1, . . . , anq “ gcd pgcdpa1, . . . , an´1q, anq .

As the title of the theorem implies, we can turn this identity into a recursive algorithm to find
elements x1, . . . , xn P R satisfying

gcdpa1, . . . , anq “ a1x1 ` ¨ ¨ ¨ ` anxn.
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In the base case n “ 2 we can just use the Extended Euclidean Algorithm from Chapter 3.
For n ě 3, let us assume that we have already found x11, . . . , x

1
n P R satisfying

gcdpa1, . . . , an´1q “ a1x
1
1 ` ¨ ¨ ¨ ` an´1x

1
n´1.

We can also use the Extended Euclidean Algorithm to find x, y P R such that

gcdpa1, . . . , anq “ gcdpa1, . . . , an´1qx` any.

Then putting these together gives

gcdpa1, . . . , anq “ gcdpa1, . . . , an´1qx` any

“ pa1x
1
1 ` ¨ ¨ ¨ ` an´1x

1
n´1qx` any

“ a1px
1
1xq ` ¨ ¨ ¨ an´1px

1
n´1xq ` any,

as desired.

Let’s compute an example. Consider the numbers a1 “ 35, a2 “ 63 and a3 “ 45, which satisfy

gcdp35, 63, 45q “ gcdpgcdp35, 63q, 45q “ gcdp7, 45q “ 1.

Since gcdp35, 63q “ 7 we begin by looking for x, y P Z such that 735x` 63y:

0 1 63
1 0 35
´1 1 28
2 ´1 7

We find that 7 “ 35p2q ` 63p´1q. Then since gcdp7, 45q “ 1 we look for x, y P Z such that
1 “ 7x` 45y:

0 1 45
1 0 7
´6 1 3
13 ´2 1

We find that 1 “ 7p13q ` 45p´2q. Then combining the two equations gives

1 “ 7p13q ` 45p´2q

“ r35p2q ` 63p´1qs p13q ` 45p´2q

“ 35p26q ` 63p´13q ` 45p´2q. (˚)

I have secretly chosen this example to also provide an introduction to partial fractions. Note
that the integer 315 has prime factorization

351 “ 33 ¨ 5 ¨ 7.
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The general idea of partial fractions is that a factorization of a denominator leads to a sum
of fractions. In the case where the denominator is 315 we will be able to write

1

315
“
A

32
`
B

31
`
C

5
`
D

7
` E,

for some integers A,B,C,D,E P Z satisfying 0 ď A,B ă 3, 0 ď C ă 5 and 0 ď D ă 7.51 How
can we find these integers? It turns out that the hard work has already been done. First we
divide the previous equation (˚) by 315 to obtain

1

315
“

35p26q ` 63p´13q ` 45p´2q

315

“
26

9
`
´13

5
`
´2

7

Thus we have separated the fraction into its “coprime parts”. Next we have to clean things
up. For each fraction of the form a{pk with p prime, we first divide a by p and then we
successively divide each quotient by p to obtain

a “ pq1 ` r1 0 ď r1 ă p,

q1 “ pq2 ` r2 0 ď r2 ă p,

q2 “ pq3 ` r3 0 ď r3 ă p,

...

qk´1 “ pqk ` rk 0 ď rk ă p.

Then putting everything together gives

a “ r1 ` q1p

“ r1 ` r2p` q2p
2

“ r1 ` r2p` r3p
2 ` q3p

3

...

“ r1 ` r2p` r3p
2 ` ¨ ¨ ¨ ` rkp

k´1 ` qkp
k

and hence
a

pk
“
r1

pk
`

r2

pk´1
` ¨ ¨ ¨ `

rk
p
` qk.

Applying this to the partial fractions in our example gives

26{9 “ 2{9` 2{3` 2,

´13{5 “ 2{5´ 3,

´2{7 “ 5{7´ 1,

51In fact, one can show that the integers A,B,C,D are unique, and that E “ 0. But we will not prove
this because these properties do not generalize to other Euclidean domains. See Partial fractions in Euclidean
domains by Packard and Wilson.
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and then adding these gives

1

351
“

ˆ

2

9
`

2

3
` 2

˙

`

ˆ

2

5
´ 3

˙

`

ˆ

5

7
´ 1

˙

“
2

9
`

2

3
`

2

5
`

5

7
´ 2,

which has the desired form.

The general story for Euclidean domains works exactly the same way. The most difficult part
is to show that we can always find an equation similar to (˚) above. This is established by the
following slightly tricky lemma. (We will use this same lemma in the next section to generalize
the Chinese Remainder Theorem to multiple moduli.)

Lemma for Partial Fractions and CRT

Let R be a Euclidean domain and consider some elements n1, . . . , nk P R such that
gcdpni, njq “ 1 for all i ‰ j. (We say that these elements are pairwise coprime.) Now for
each element 1 ď i ď k we consider the element

n̂i “ n1 ¨ ¨ ¨ni´1ni`1 ¨ ¨ ¨nk P R.

In this case I claim that the elements n̂1, . . . , n̂k are jointly coprime (which is a weaker
condition52 than being pairwise coprime):

gcdpn̂1, n̂2, . . . , n̂kq “ 1.

The general proof is hard to write down, so we first consider the smallest cases. When k “ 2
we have n̂1 “ n2 and n̂2 “ n1, so that gcdpn̂1, n̂2q “ gcdpn2, n1q “ gcdpn1, n2q “ 1, as desired.
When k “ 3 we have n̂1 “ n2n3, n̂2 “ n1n3 and n̂3 “ n1n2, and our goal is to show that

$

&

%

gcdpn1, n2q “ 1
gcdpn1, n3q “ 1
gcdpn2, n3q “ 1

,

.

-

ùñ gcdpn2n3, n1n3, n1n2q “ 1.

To this end, suppose for contradiction that there exists a common prime divisor p of n2n3,
n1n3 and n1n2. Now there are two cases:

• Suppose that p - n3. Since p is prime with p|n1n3 and p|n2n3 we must have p|n1 and
p|n2, which gives the contradiction gcdpn1, n2q ‰ 1.

• Suppose that p|n3. Since p is prime and p|n1n2 we must also have p|n1 or p|n2. If p|n1

then we obtain the contradiction that gcdpn1, n3q ‰ 1 and if p|n2 then we obtain the
contradiction that gcdpn2, n3q ‰ 1.

52Consider the integers 2, 3, 4. These are jointly coprime because they have no common prime divisor. But
they are not pairwise coprime because gcdp2, 4q ‰ 1.
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In any case, we obtain a contradiction, which proves that n1n2, n1n3, n1n2 have no common
prime divisor, as desired. The general case is the same but the notation becomes a mess.

Proof of the Lemma. We have already shown that the statement holds for k less than 4.
So let us assume that k ě 4 and consider some elements n1, . . . , nk and n̂1, . . . , n̂k as in the
statement of the lemma. In order to use induction, we also define elements ñ1, . . . , n̂k´1 by

ñi “ n1 . . . ni´1ni`1 ¨ ¨ ¨nk´1.

Since the elements n1, . . . , nk are pairwise coprime, so are the elements n1, . . . , nk´1. Thus by
induction we may assume that gcdpñ1, . . . , ñk´1q “ 1. In order to show that gcdpn̂1, . . . , n̂kq “
1, we assume for contradiction that there exists a prime element p such that p|n̂i for all i.
There are two cases:

• Suppose that p - nk and observe that n̂i “ ñink for all 1 ď i ď k ´ 1. Since p is prime
and p|n̂i for all 1 ď i ď k´ 1, it follows that p|ñi for all 1 ď i ď k´ 1, which contradicts
the fact that gcdpñ1, . . . , ñk´1q “ 1.

• Suppose that p|nk and observe that n̂k “ n1n2 ¨ ¨ ¨nk´1. Since p is prime and p|n̂k this
implies that p|ni for some 1 ď i ď k ´ 1, which gives the contradiction gcdpni, nkq ‰ 1.

In any case, we obtain a contradiction, which proves that n̂1, . . . , n̂k have no common prime
divisor, as desired. ˝

Theorem of Partial Fractions

Let R be a Euclidean domain with size function N : Rzt0u Ñ N and consider any nonzero,
nonunit element n P R. Suppose that n has unique prime factorization

n “ pe11 p
e2
2 ¨ ¨ ¨ p

ek
k ,

for some distinct primes p1, . . . , pk. Then we can write

1

n
“ m`

ˆ

r1,1

p1
`
r1,2

p2
1

` ¨ ¨ ¨ `
r1,e1

pe11

˙

` ¨ ¨ ¨ `

ˆ

rk,1
pk

`
rk,2
p2
k

` ¨ ¨ ¨ `
rk,ek
pekk

˙

,

for some elements m, ri,j P R where ri,j “ 0 or Npri,jq ă Nppiq.

Proof of the Theorem. Let ni “ peii for all 1 ď i ď k, so that n “ n1n2 ¨ ¨ ¨nk, and define

n̂i “ n1 ¨ ¨ ¨ni´1ni`1 ¨ ¨ ¨nk,

which is the unique element of R satisfying n̂ini “ n. Since the primes pi, pj are distinct we
have gcdpni, njq “ 1 for all i ‰ j and it follows from the lemma that

gcdpn̂1, . . . , n̂kq “ 1.
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It follows from Bézout’s Identity for Vectors that there exist some x1, . . . , xk P R satisfying

1 “ x1n̂1 ` x2n̂2 ` ¨ ¨ ¨ ` xkn̂k.

Hence we can divide both sides by n to obtain

1

n
“ x1

n̂1

n
` ¨ ¨ ¨ ` xk

n̂k
n
“
x1

n1
` ¨ ¨ ¨ `

xk
nk
.

Finally, we consider the fraction xi{ni “ xi{p
ei
i . By dividing xi by pi and then successively

dividing each quotient by pi (as in the example above), we can write

xi
peii

“ qi,ei `
ri,1
pi
`
ri,2
p2
i

` ¨ ¨ ¨ `
ri,ei
peii

.

for some elements qi,ei , ri,1, ri,2, . . . , ri,ei P R with ri,j “ 0 or Npri,jq ă Nppiq. Then adding all

of these expressions together gives the desired result, with m “
řk
i“1 qi,ei P R. ˝

We gave a motivating example in the ring Z, but the main applications of this theorem come
from rings of polynomials Frxs. Let’s consider the case when F “ R.

Let fpxq P Rrxs be a non-constant polynomial with real coefficients and suppose we can write

fpxq “ p1pxq
d1 ¨ ¨ ¨ pkpxq

dkq1pxq
e1 ¨ ¨ ¨ q`pxq

e` ,

where pipxq, qjpxq P Rrxs are irreducible over R with degppiq “ 1 and degpqjq “ 2 for all i, j.
In this case, the theorem of partial fractions tells us that

1

fpxq
“ gpxq `

k
ÿ

i“1

di
ÿ

j“1

ai,j
pipxqj

`
ÿ̀

i“1

ei
ÿ

j“1

bi,j ` ci,jx

qipxqj
,

for some polynomial gpxq P Rrxs and some real numbers ai,j , bi,j , ci,j P R. One can show that
each term in this sum can be integrated in terms of log and arctan, as Leibniz knew. In the
next chapter we will prove that every real polynomial can indeed be factored in this way.

5.4 Generalized Chinese Remainder Theorem

To end this chapter, we show that the theorem of partial fractions is intimately related to the
Chinese Remainder Theorem. Recall the system of congruences from Master Sun’s Mathe-
matical Manual:

$

&

%

c ” 2 mod 3,
c ” 3 mod 5,
c ” 2 mod 7.

We previously solved this by combining the congruences two-by-two. The technology devel-
oped in the previous section will now allow us to give a more elegant one-step solution.
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Generalized Chinese Remainder Theorem

Consider some positive integers n1, . . . , nk P Z and let n “ n1 ¨ ¨ ¨nk. Then we have a
ring homomorphism defined as follows:

ϕ : Z{nZ Ñ Z{n1Zˆ ¨ ¨ ¨ ˆ Z{nkZ
a mod n ÞÑ pa mod n1, . . . , a mod nkq.

If gcdpni, njq “ 1 for all i ‰ j then this homomorphism is invertible. Furthermore, if we
define n̂i “ n1 ¨ ¨ ¨ni´1ni`1 ¨ ¨ ¨nk as above then from the previous section we know that
there exist some (non-unique) integers x1, . . . , xk P Z such that

n̂1x1 ` n̂2x2 ` ¨ ¨ ¨ ` n̂kxk “ 1.

In this case, I claim that we can compute the inverse of ϕ as follows:

ϕ´1pa1, a2, . . . , akq “ a1n̂1x1 ` ¨ ¨ ¨ ` akn̂kxk mod n.

Please compare this to the formula ϕ´1pa, bq “ any ` bmx in the case of two moduli.

Proof. First we observe that ϕ is well-defined. Indeed, suppose that a ” b mod n, so that
n|pa´ bq. Then since ni|n we must have ni|pa´ bq and hence a ” b mod ni for all i. In other
words, we have ϕpaq “ ϕpbq.

Now suppose that gcdpni, njq “ 1 for all i ‰ j, so from the previous section we know that
n̂1x1`¨ ¨ ¨` n̂kxk “ 1 for some integers x1, . . . , xk. We can use this to prove that ϕ is injective,
as follows. First suppose that ϕpaq “ ϕpbq so that a ” b mod ni for all i. Let’s say nidi “ a´b
for some integers di. But then we have

pa´ bq “ pn̂1x1 ` n̂2x2 ` ¨ ¨ ¨ ` n̂kxkqpa´ bq

“ n̂1x1pa´ bq ` n̂2x2pa´ bq ` ¨ ¨ ¨ ` n̂kxkpa´ bq

“ n̂1x1n1d1 ` n̂2x2n2d2 ` ¨ ¨ ¨ ` n̂kxknkdk

“ pn̂1n1qx1d1 ` pn̂2n2qx2d2 ` ¨ ¨ ¨ ` pn̂knkqxkdk

“ nx1d1 ` nx2d2 ` ¨ ¨ ¨ ` nxkdk

“ npx1d1 ` x2d2 ` ¨ ¨ ¨ ` xkdkq,

so that a ” b mod n. Then since ϕ is an injective function between sets of the same size it
must be invertible.

More precisely, I claim that ϕ´1pa1, . . . , akq “ a1n̂1x1 ` ¨ ¨ ¨ ` akn̂kxk. To see this, we first
observe hat nj |n̂i and hence n̂i ” 0 mod nj for all i ‰ j. Furthermore, we have n̂ixi “
1´

ř

i‰j n̂jxj ” 1´ 0 ” 1 mod ni for all i. Finally, we conclude that

a1n̂1x1 ` ¨ ¨ ¨ ` akn̂kxk ” a10` ¨ ¨ ¨ ai´10` ai1` ai`10` ¨ ¨ ¨ ` ak0 ” ai mod ni
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for all i, as desired. ˝

To see how this works, we apply it to Master Sun’s system of congruences. Let pn1, n2, n3q “

p3, 5, 7q so that pn̂1, n̂2, n̂3q “ p35, 21, 15q. Since p3, 5, 7q are pairwise coprime it follows that
p35, 21, 15q are jointly coprime, so there exist x1, x2, x3 P Z satisfying 35x1` 21x2` 15x3 “ 1.
In order to find such x1, x2, x3 we must use a recursive method. To be precise, we will use the
Extended Euclidean Algorithm and the fact that

gcdp35, 21, 15q “ gcdpgcdp35, 21q, 15q “ gcdp7, 15q “ 1.

First we find some x1, y1 P Z such that 7x1 ` 15y1 “ 1:

0 1 15
1 0 7
´2 1 1

We see that 7p´2q ` 15p1q “ 1. Then we find some x2, y2 P Z such that 35x2 ` 21y2 “ 7:

1 0 35
0 1 21
1 ´1 14
´1 2 7

We see that 35p´1q ` 21p2q “ 7. Then we put these together to obtain

1 “ 7p´2q ` 15p1q “ r35p´1q ` 21p2qs p´2q ` 15p1q “ 35p2q ` 21p´4q ` 15p1q.

Thus we can take px1, x2, x3q “ p2,´4, 1q. Finally, since pn̂1x1, n̂2x2, n̂3x3q “ p70,´84, 15q,
we obtain an explicit description for the inverse of ϕ:

ϕ´1 : Z{3Zˆ Z{5Zˆ Z{7Z Ñ Z{105Z
pa1, a2, a3q ÞÑ 70a1 ´ 84a2 ` 15a3.

In Master Sun’s case we have pa1, a2, a3q “ p2, 3, 2q, so that

ϕ´1p2, 3, 2q “ 70p2q ´ 84p3q ` 15p2q ” 23 mod 105.

In other words, we have
$

&

%

c ” 2 mod 3
c ” 3 mod 5
c ” 2 mod 7

,

.

-

ô ϕpcq “ p2, 3, 2q ô c “ ϕ´1p2, 3, 2q ” 23 mod 105.

Of course, we solved this system before. The advantage of the new method is that we can
tweak the input pa1, a2, a3q “ p2, 3, 2q without doing the work again. For example, since
70p2q ´ 84p4q ` 15p2q ” 44 mod 105 we have

$

&

%

c ” 2 mod 3
c ” 4 mod 5
c ” 2 mod 7

,

.

-

ô c ” 44 mod 105.
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6 The Fundamental Theorem of Algebra

6.1 Equivalent Statements of the FTA

The goal of this chapter is to prove the Fundamental Theorem of Algebra (FTA). The original
statement of the theorem (mentioned in Section 5.1) claims that every non-constant polynomial
fpxq P Rrxs can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where pipxq P Rrxs and degppiq “ 1 or 2. As we have seen, if this version of the FTA is true
then any rational expression can be integrated in terms of log and arctan. The proof is quite
involved, and will require an entire chapter to understand.

In this section we seek to increase our understanding of the statement of the FTA. To this
end we will prove the equivalence of several different statements.

Equivalent Statements of the FTA

The following six statements are logically equivalent:

(1R) Every non-constant fpxq P Rrxs has a root in C.

(2R) Every non-constant fpxq P Rrxs can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where pipxq P Rrxs and degppiq “ 1 or 2.

(3R) Every prime element of Rrxs has degree 1 or 2.

(1C) Every non-constant fpxq P Crxs has a root in C.

(2C) Every non-constant fpxq P Crxs splits over C.

(3C) Every prime element of Crxs has degree 1.

It is straightforward to prove that the three statements (1C), (2C) and (3C) are equivalent.
We will refer to any of these three as the CFTA.

Proof (Equivalent Forms of CFTA).

(1C)ñ(2C): Consider some non-constant fpxq P Crxs. By assumption there exists α1 P C
such that fpα1q “ 0, hence by Descartes’ Theorem we can write

fpxq “ px´ α1qgpxq
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for some gpxq P Crxs. If gpxq is constant then we are done. Otherwise, there exists some
α2 P C such that gpα2q “ 0. Then by Descartes’ Theorem we have gpxq “ px ´ α2qhpxq and
hence

fpxq “ px´ α1qgpxq “ px´ α1qpx´ α2qhpxq.

By continuing in this way53 we conclude that fpxq splits over C.

(2C)ñ(3C): Let ppxq be a prime element of Crxs. Since units are not prime we know that
ppxq is non-constant. Hence by assumption we can write

ppxq “ cpx´ α1q ¨ ¨ ¨ px´ αnq

for some c, α1, . . . , αn P C. Since ppxq divides the product
ś

ipx ´ αiq, and since ppxq is
prime, we know from Euclid’s Lemma that ppxq|px´ αiq for some i. It follows that degppq ď
degpx´ αiq “ 1, which implies that degppq “ 1.

(3C)ñ(1C): Every non-constant fpxq P Crxs has a unique prime factorization in Crxs:

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq.

By assumption, each prime pipxq has degree 1. In particular, we have p1pxq “ ax` b for some
a, b P C with a ‰ 0, and hence ´b{a P C is a root of fpxq. ˝

The equivalence of the statements (1R), (2R) and (3R) is a bit less straightforward since it
uses some properties of complex conjugation. We will refer to any of these three statements
as the RFTA. Our proof of equivalence will use the following lemma.

Lemma for the RFTA

For any extension of fields E Ě F we have an extension of rings Erxs Ě Frxs. If there
exist fpxq, ppxq P Frxs and qpxq P Erxs such that fpxq “ ppxqqpxq then I claim that in
fact qpxq P Frxs.

Indeed, we know from the Division Theorem in Frxs that there exist q1pxq, r1pxq P Frxs
satisfying fpxq “ ppxqq1pxq ` r1pxq and degpr1q ă degppq. But now we have fpxq “
ppxqqpxq ` 0 and fpxq “ ppxqq1pxq ` r1pxq in the ring Erxs and it follows from the
uniqueness of quotients in Erxs that qpxq “ q1pxq P Frxs.

Proof (Equivalent Forms of RFTA).

(1R)ñ(2R): Consider some non-constant fpxq P Rrxs. By assumption there exists α P C such
that fpαq “ 0. If α P R then by Descartes’ Theorem we can write fpxq “ px ´ αqgpxq for

53We could also phrase this as a formal proof by induction.
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some gpxq P Rrxs. If α R C then since the coefficients of fpxq are real we also have fpα˚q “ 0
with α ‰ α˚ and it follows from Descartes’ Theorem that

fpxq “ px´ αqpx´ α˚qgpxq

for some gpxq P Crxs. But in fact I claim that gpxq P Rrxs. To see this we let ppxq “
px´αqpx´α˚q “ x2´pα`α˚qx`αα˚, which has real coefficients. Then since fpxq “ ppxqgpxq
with fpxq, ppxq P Rrxs and gpxq P Crxs we conclude from the Lemma that in fact gpxq P Rrxs.
In summary, we have shown that any non-constant fpxq P Rrxs satisfies fpxq “ ppxqgpxq for
some ppxq, gpxq P Rrxs with degppq “ 1 or 2. Now the result follows by induction.

(2R)ñ(3R): Let ppxq be a prime element of Rrxs. Since units are not prime we know that
ppxq is non-constant. Hence we can write

ppxq “ q1pxq ¨ ¨ ¨ qkpxq,

where qipxq P Rrxs and degpqiq “ 1 or 2 for all i. Since ppxq divides the product
ś

i qipxq, and
since ppxq is prime, we know from Euclid’s Lemma that ppxq|qipxq for some i. It follows that
degppq ď degpqiq, which implies that degppq “ 1 or 2.

(3R)ñ(1R): Every non-constant fpxq P Rrxs has a unique prime factorization in Rrxs:

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq.

By assumption, each prime pipxq has degree 1 or 2. If there exists a factor pipxq of degree 1,
say pipxq “ ax` b then fpxq has the root ´b{a P R, which is also an element of C. Otherwise,
every factor pipxq has degree 2. But we know from the quadratic formula that any quadratic
polynomial with real coefficients has a root in C. Hence fpxq has a root in C. ˝

It is more surprising that the real and complex forms of the FTA are also equivalent. To prove
this we need another trick.

Lemma for the Equivalence of RFTA and CFTA

The field extension C Ě R gives us a ring extension Crxs Ě Rrxs. Recall that R can
be viewed as the set of complex numbers α P C satisfying α˚ “ α. Now we we will
define a similar conjugation operation on polynomials ˚ : Crxs Ñ Crxs such that Rrxs
can be viewed as the set of self-conjugate polynomial. To be specific, for any polynomial
fpxq “

ř

k αkx
k P Crxs with complex coefficients, we define

f˚pxq :“
ÿ

k

α˚kx
k.

Then we have the following properties:

(1) For all fpxq P Crxs and β P C we have fpβq˚ “ f˚pβ˚q.

(2) For all fpxq P Crxs we have fpxq P Rrxs if and only if f˚pxq “ fpxq.
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(3) For all fpxq, gpxq P Crxs we have

pf ` gq˚pxq “ f˚pxq ` g˚pxq and pfgq˚pxq “ f˚pxqg˚pxq.

(4) For all fpxq P Crxs we have fpxq ` f˚pxq P Rrxs and fpxqf˚pxq P Rrxs.

Proof of the Lemma. (1): Since ˚ : CÑ C preserves all ring operations, we have

fpβq˚ “

˜

ÿ

k

αkβ
k

¸˚

“
ÿ

k

α˚kpβ
˚qk “ f˚pβq.

(2): Two formal polynomials are equal if and only if their coefficients are equal. The coefficient
of xk in fpxq is αk and the coefficient of xk in f˚pxq is α˚k . If f˚pxq “ fpxq then we must have
α˚k “ αk, which implies that αk P R for all k. In other words, we must have fpxq P Rrxs.

(3): Let fpxq “
ř

k αkx
k and gpxq “

ř

k βkx
k. The coefficients of f ` g are αk`βk, hence the

coefficients of pf ` gq˚ are pαk`βkq
˚ “ α˚k `β

˚
k . But these are also the coefficients of f˚` g˚,

hence pf ` gqpxq “ f˚pxq ` g˚pxq. For the second statement, recall that

fpxqgpxq “
ÿ

k

¨

˝

ÿ

i`j“k

αiβj

˛

‚xk.

So the coefficients of pfgq˚pxq are

¨

˝

ÿ

i`j“k

αiβj

˛

‚

˚

“

¨

˝

ÿ

i`j“k

α˚i β
˚
j

˛

‚.

But these are also the coefficients of f˚pxqg˚pxq, hence pfgq˚pxq “ f˚pxqg˚pxq.

(4): As we sometimes do, we will write f instead of fpxq to save space. Let fpxq P Crxs. Then
from part (3) we have

pf ` f˚q˚ “ f˚ ` f˚˚ “ f˚ ` f “ f ` f˚

and
pff˚q˚ “ f˚f˚˚ “ f˚f “ ff˚,

hence it follows from part (2) that f ` f˚ P Rrxs and ff˚ P Rrxs. ˝

Proof (Equivalence of RFTA and CFTA).

Note that (1C) trivially implies (1R) because R Ď C, hence CFTA implies RFTA. To prove
that RFTA implies CFTA, we will show that (1R) also implies (1C). So assume that (1R)
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is true and consider some non-constant polynomial fpxq P Crxs. It follows from Lemma (4)
that gpxq “ fpxqf˚pxq has real coefficients, so from (1R) there exists some α P C satisfying
gpαq “ 0. Then since

0 “ gpαq “ fpαqf˚pαq

we must have fpαq “ 0 or f˚pαq “ 0. If fpαq “ 0 then we are done since α is a complex root
of fpxq. On the other hand, if f˚pαq then Lemma (1) implies

fpα˚q “ pf˚pαqq˚ “ 0˚ “ 0

so that α˚ is a complex root of fpxq. ˝

6.2 Intermediate Value Theorem

In order to prove the FTA we need only prove one of the six equivalent statements from the
previous section. In fact, we will prove statement (1Rq:

Every non-constant fpxq P Rrxs has a root in C.

And we will do this using a strange sort of induction. For each non-constant fpxq P Rrxs we
can write degpfq “ 2km for some unique integers k,m where k ě 0 and m is odd. The idea is
to prove by induction on k that fpxq has a root in C. There are two important steps:

• The Base Case k “ 0. Prove that every polynomial in Rrxs of odd degree has a root
in C. In fact, we will show that it has a root in R.

• The Induction Step. Assuming that every real polynomial of degree 2kpoddq has a
root in C, prove that every real polynomial of degree 2k`1poddq has a root in C.

For the induction step we will use a very clever argument of Laplace. Laplace’s proof uses
some deeper facts about multivariable polynomials so we postpone it until the end of the
chapter.

In this section we discuss the base case: polynomials of odd degree. Actually, this case is
“obvious”. If fpxq P Rrxs has odd degree then one of the following two cases must hold:

• fpxq Ñ `8 as xÑ `8 and fpxq Ñ ´8 as xÑ ´8

• fpxq Ñ ´8 as xÑ `8 and fpxq Ñ `8 as xÑ ´8

In either case, the graph of fpxq must cross the x-axis at some point pc, 0q P R2, so that fpxq
has a real root fpcq “ 0. Here is a picture of the first case:
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This argument was perfectly clear to 18th century mathematicians such as Euler and Lagrange.
However, early 19th century mathematicians such as Bolzano and Cauchy became unsatisfied
with arguments based on pictures and they looked for a more rigorous proof. And since a
rigorous proof must be based on axioms, these efforts forced mathematicians to look for an
axiomatic definition of the real numbers.

For my own benefit I will give a modern proof based on the standard axiomatization of the
real numbers. My algebra students can feel free to ignore this.

Definition of Continuity

Intuition: A function f : CÑ C is called continuous at c P C if fpxq Ñ fpcq as xÑ c.

Partial Formalization: We can make fpxq as close to fpcq as we please by taking x
sufficiently close to c.

Cauchy’s Definition: For any real number ε ą 0 there exists some real number δ ą 0
such that |x´ c| ă δ implies |fpxq ´ fpcq| ă ε.
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The same definitions apply to real functions f : RÑ R but the picture is flat.

Cantor’s Axiom for Real Numbers

We say that a sequence c1, c2, . . . P C converges to a limit c P C if for any real number
ε ą 0 there exists an integer N such that |cn ´ c| ă ε for all n ě N .

We say that c1, c2, c3, . . . P R is a Cauchy sequence if for any real number ε ą 0 there
exists an integer N such that for all m,n ě N we have |cn ´ cm| ă ε.

Cantor constructed the real numbers R from the rational numbers Q by declaring that

every Cauchy sequence converges to some limit.

The Intermediate Value Theorem (IVT)

Let f : R Ñ R be a continuous function with fpaq ă 0 and fpbq ą 0 for some real
numbers a ă b. Then there exists at least one real number c P R satisfying

• a ă c ă b,

• fpcq “ 0.

Proof. Define pa0, b0q :“ pa, bq and m0 :“ pa0 ` b0q{2. If fpm0q “ 0 then we are done.
Otherwise, define

pa1, b1q :“

#

pa0,m0q if fpm0q ą 0,

pm0, b0q if fpm0q ă 0,

and m1 “: pa1 ` b1q{2. If fpm1q “ 0 then we are done. Otherwise we proceed to define

pan`1, bn`1q :“

#

pan,mnq if fpmnq ą 0,

pmn, bnq if fpmnq ă 0.
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At each step we divide the interval in half in such a way that there should still be a root inside
the new smaller interval:

If we ever get fpmnq “ 0 then we are done. So let us assume that the process never terminates.
Then by induction we must have

• a0 ď a1 ď ¨ ¨ ¨ ,

• ¨ ¨ ¨ ď b1 ď b0,

• an ă bn for all n,

• fpanq ă 0 for all n,

• fpbnq ą 0 for all n.

I claim that a0, a1, . . . is a Cauchy sequence. To see this, let ε ą 0 and let N be any integer
greater than log2ppb ´ aq{εq. Then for any m,n ě N the numbers am, an lie in the closed
interval raN , bN s, so that

|am ´ an| ď pbN ´ aN q “
1

2
pbN´1 ´ aN´1q “ ¨ ¨ ¨ “

1

2N
pb0 ´ a0q “

1

2N
pb´ aq ă ε,

as desired. It follows from Cantor’s axiom that a0, a1, . . . converges to some limit a1 P R.
Similarly, the sequence b0, b1, . . . converges to some limit b1 P R.

I claim that a1 “ b1. To see this we must show that b1 ă a1 and a1 ă b1 are impossible. If
b1 ă a1 then let ε “ pa1 ´ b1q{2 ą 0 be half the length of the interval rb1, a1s. By definition of
convergence we can find some some M,N such that m ě M implies |am ´ a1| ă ε and such
that n ě N implies |bn´ b

1| ă ε. But then for any ` ě maxtM,Nu we see that b` is in the left
half of the interval and a` is in the right half of the interval. This implies that b` ă a`, which
is a contradiction. And if a1 ă b1 then we let ε “ pb1´ a1q{3 ą 0 be one third the length of the
interval ra1, b1s. Then we can find some integer54 N so that n ě N implies that |an ´ a

1| ă ε,

54Technically, there exist K,L,M so that k ě K implies |ak´ a
1
| ă ε, ` ě L implies |b`´ b

1
| ă ε and m ěM

implies |am ´ bm| ă ε. The existence of K,L follow from the definition of a1, b1 as limits. And we can let M be
any integer larger than log2ppb´ aq{εq, as in the earlier argument. Now let N “ maxtK,L,Mu.
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|bn ´ b
1| ă ε and |an ´ bn| ă ε. But then we get a contradiction:

a1 ´ b1 “ pa1 ´ anq ` pan ´ bnq ` pbn ´ b
1q

|a1 ´ b1| ď |a1 ´ an| ` |an ´ bn| ` |bn ´ b
1|

3ε ă ε` ε` ε.

Hence we have shown that a1 “ b1. Call this common limit c P R.

It remains to show that fpcq “ 0,55 and for this we use the assumption that f is a continuous.
If fpcq ą 0 then let ε “ fpcq. By continuity of f there exists some δ (depending on ε) so that
|x´ c| ă δ implies |fpxq´fpcq| ă ε. But then since lim ai “ c there exists some N (depending
on δ, hence on ε) such that n ě N implies |an ´ c| ă δ, which implies |fpanq ´ fpcq| ă ε. In
other words, for any n ě N we have

fpcq ´ fpanq ď |fpanq ´ fpcq| ă fpcq.

This implies that fpanq ą 0, which contradicts the fact that fpanq ă 0 for all n. Similarly, the
assumption fpcq ă 0 leads to a contradiction. Hence we conclude that fpcq “ 0 as desired. ˝

Remark: Rigorous proofs in analysis are not really worth reading because they obscure all the
ideas that led to the proof. For each paragraph above I discovered the appropriate bounds by
drawing a picture of the number line. As I said, writing it down rigorously was only for my
own benefit.

We need one more fact before completing the proof that each odd-degree real polynomial has
at least one real root.

Polynomials are Continuous

Any polynomial fpxq P Crxs determines a function f : C Ñ C by evaluation. I claim
that this function is continuous at every point in C. The same proof will apply to real
polynomials fpxq P Rrxs and real functions f : RÑ R.

Often this result is proved inductively by showing that constant functions are continuous, the
function x ÞÑ x is continuous, and sums/products of continuous functions are continuous. I
prefer a more explicit method, which gives some additional useful information.

Proof. Let fpxq P Crxs be non-constant and consider any point c P C. Applying Descartes’
Factor Theorem gives

fpxq “ px´ cqqpxq ` fpcq

55I guess we also have to show that a ă c ă b. If c ă a then since lim bi “ c we would find some bn ă a,
which contradicts the fact that a ď an ă bn.
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fpxq ´ fpcq “ px´ cqqpxq.

Thus for any complex number x P C we have56

|fpxq ´ fpcq| “ |x´ c||qpxq|.

From this it is clear that |fpxq´fpcq| goes to zero as |x´c| goes to zero. To be more rigorous,
let’s consider the Taylor expansion of qpxq around x “ c:

qpxq “ anpx´ cq
n ` ¨ ¨ ¨ ` a1px´ cq ` a0.

Here ak is the kth derivative of qpxq evaluated at c and divided by k!, but it doesn’t really
matter. The series is finite because the derivatives of a polynomial eventually vanish. If
|x´ c| ă 1 then it follows from this that |x´ c|k ă 1 for all k ě 1 and hence

|qpxq| “ |anpx´ cq
n ` ¨ ¨ ¨ ` a1px´ cq ` a0|

ď |an||x´ c|
n ` ¨ ¨ ¨ ` |a1||x´ c| ` |a0|

ă |an| ` ¨ ¨ ¨ ` |a1| ` |a0|.

Finally, let ε ą 0 and δ “ mint1, ε{p|an|` ¨ ¨ ¨` |a0|qu. Then for all x P C satisfying |x´ c| ă δ
we have

|fpxq ´ fpcq| “ |x´ c||qpxq| ă
ε

|an| ` ¨ ¨ ¨ ` |a0|
p|an| ` ¨ ¨ ¨ ` |a0|q “ ε,

as desired. ˝

Finally, the main result.

Real Polynomials of Odd Degree

If fpxq P Rrxs has odd degree then there exists at least one c P R such that fpcq “ 0.

Proof. We may suppose without loss of generality that the leading coefficient is positive.
Then we can write fpxq “ anx

n` ¨ ¨ ¨ ` a1x` a0 for some a0, . . . , an P R with an ą 0. If x ě 1
then for all 1 ď k ď n´ 1 we have 1 ď xk ď xn´1, so that

´|ak|x
n ď ´|ak|x

k ď akx
k,

56I am being sloppy here by using the symbol x both for an abstract variable and for a complex number. It
doesn’t matter because C is an infinite field, so polynomial expressions and polynomial functions are the same
thing.
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and hence

fpxq “ anx
n `

n´1
ÿ

k“0

akx
k

ě anx
n ´

n´1
ÿ

k“0

|ak|x
n´1

“ anx
n´1

˜

x´
n´1
ÿ

k“0

|ak|

an

¸

.

If, in addition, we have x ą
řn´1
k“0 |ak|{an then this implies that fpxq ą 0. Thus for any b P R

greater than the maximum of 1 and
řn´1
k“0 |ak|{an we have fpbq ą 0.

So far we have not used the fact that fpxq has odd degree. Consider the polynomial gpxq :“
´fp´xq. If fpxq has odd degree then gpxq has positive leading coefficient, so by the same
argument we can find some b1 ą 0 such that

´fp´b1q “ gpb1q ą 0.

But then a :“ ´b1 ă 0 satisfies fpaq ă 0.

Finally, since polynomials are continuous, it follows from the IVT that there exists at least
one real number a ă c ă b satisfying fpcq “ 0. ˝

As a little bonus, the same proof idea gives the following result.

Lagrange’s Root Bound

Consider a complex polynomial fpxq “ anx
n ` ¨ ¨ ¨ ` a1x` a0 P Crxs with an ‰ 0. Then

every complex root fpcq “ 0 satisfies

|c| ď max

#

1,
n´1
ÿ

k“0

|ak|

|an|

+

.

6.3 Descartes and Euler on Quartic Equations

Welcome back algebra students.
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6.4 Multivariable Polynomials

We are interested in the roots of polynomials in a single variable. But the analysis of these
roots forces us to consider polynomials in many variables. It is clear how these should be
defined, but the notation is more difficult.

Multivariable Polynomials

Let F be a field and let x1, . . . , xn be some abstract symbols, which we regard as variables.
We define the ring of polynomials in x1, . . . , xn by induction:57

Frx1, . . . , xns :“ pFrx1, . . . , xn´1sq rxns

For example, a general element of the ring Frx, ys “ pFrxsq rys has the form fpx, yq “
ř

`ě0 g`pxqy
` for some polynomials g1pxq, g2pxq, . . . P Frxs. If we write g`pxq “

ř

kě0 ak`x
k

for some coefficients ak` P F then this becomes

fpx, yq “
ÿ

`ě0

˜

ÿ

kě0

ak`x
k

¸

y` “
ÿ

k,`ě0

ak`x
ky`,

where the sum is taken over all pairs of natural numbers pk, `q P N2, and we observe that
only finitely many of the coefficients ak` are nonzero. Similarly, an element of the ring
Frx1, . . . , xns can be expressed as

fpx1, . . . , xnq “
ÿ

k1,k2,...,kně0

ak1,k2,...,knx
k1
1 x

k2
2 ¨ ¨ ¨x

kn
n ,

where the sum is taken over all n-tuples of natural numbers pk1, . . . , knq P Nn and only
finitely many of the coefficients ak1,...,kn P F are nonzero.

Clearly this notation is unworkable, so we make the following abbreviations:

x “ px1, . . . , xnq,

k “ pk1, . . . , knq,

xk “ xk11 ¨ ¨ ¨x
kn
n .

By convention we write x0 “ 1 P F, where 0 “ p0, . . . , 0q P Nn. Then a general element
of Frxs “ Frx1, . . . , xns looks like

fpxq “
ÿ

kPNn
akxk,
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for some coefficients ak P F, only finitely many of which are nonzero. This notation
allows us to treat multivariable polynomials very much like polynomials in one variable.
For example, for any k, ` P Nn we observe that

xkx` “ pxk11 ¨ ¨ ¨x
kn
n qpx

`1
1 ¨ ¨ ¨x

`n
n q

“ xk1``11 ¨ ¨ ¨xkn``nn

“ xk``,

where k ` ` “ pk1 ` `1, . . . , kn ` `nq P Nn is the vector sum. Thus the ring operations
can be expressed as follows:

˜

ÿ

k

akxk

¸

`

˜

ÿ

`

b`x
k

¸

“
ÿ

k

pak ` bkqx
k,

˜

ÿ

k

akxk

¸˜

ÿ

`

b`x
`

¸

“
ÿ

m

˜

ÿ

k``“m

akb`

¸

xm.

The only difference from single variable polynomials is that the sums are taken over all
elements of Nn instead of N.

What about the “degree” of a multivariable polynomials? There are many different ways to
do this. For our purpose, we need some way to facilitate proofs by induction. So we make the
following definition.

Lexicographic Order and Degree

Given k, ` P Nn we define k “ ` when ki “ `i for all i. If k ‰ ` then there exists some
minimum i ě 1 such that ki ‰ `i. We will write k ălex ` when ki ă `i. In other words:

k ălex ` ô k is smaller than ` in the first place where they differ.

Under this definition, any finite (nonempty) subset of Nn has a lexicographically maxi-
mum element, which we can use to define the degree of a nonzero polynomial:

fpxq “
ÿ

kPNn
akxk,

degpfq :“ max
lex
tk P Nn : ak ‰ 0u.

57Here we are using the fact that Rrxs is defined even when the ring R is not a field.
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Note that the degree is a vector in Nn. Sometimes this is called a “multi-degree”. The
degree of the zero polynomial is not defined.

For example, consider the polynomial fpx, y, zq “ 3x2y ´ 5x2y2z ` 6x2yz. If we think of
px, y, zq “ px1, x2, x3q then we have

degpx2yq “ p2, 1, 0q,

degpx2y2zq “ p2, 2, 1q,

degpx2yzq “ p2, 1, 1q.

Then since p2, 2, 1q ąlex p2, 1, 1q ąlex p2, 1, 0q we have

degpfq “ degp3x2y ´ 5x2y2z ` 6x2yzq “ p2, 2, 1q.

We say that ´5x2y2z is the leading term of the polynomial fpx, y, zq, and sometimes we write

fpx, y, zq “ ´5x2y2z ` lower terms.

The lexicographic degree also has the following nice property.

Degree of a Product

Given two polynomials fpxq, gpxq P Frx1, . . . , xns with lexicographic degrees

degpfq “ k “ pk1, . . . , knq,

degpgq “ ` “ p`1, . . . , `nq,

we must have

degpfgq “ degpfq ` degpgq “ k` ` “ pk1 ` `1, . . . , kn ` `nq.

You will prove this on the homework.

For example, consider the polynomials

fpx, y, zq “ 3x2y ´ 5x2y2z ` 6x2yz,

gpx, y, zq “ xy2 ´ 2xy2z,

with degpfq “ p2, 2, 1q and degpgq “ p1, 2, 1q. The product is

fpx, y, zqgpx, y, zq “ p3x2y ´ 5x2y2z ` 6x2yzqpxy2 ´ 2xy2zq
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“ p3x2y ´ 5x2y2z ` 6x2yzqpxy2q ` p3x2y ´ 5x2y2z ` 6x2yzqp´2xy2zq

“ p3x3y3 ´ 5x3y4z `���
�

6x3y3zq ` p���
��

´6x3y3z ` 10x3y4z2 ´ 12x3y2z2q

“ 3x3y3 ´ 5x3y4z ` 10x3y4z2 ´ 12x3y2z2,

which has degree p3, 4, 2q because

p3, 4, 2q ąlex p3, 4, 1q ąlex p3, 3, 0q ąlex p3, 2, 2q.

Note that degpfq ` degpgq “ p2, 2, 1q ` p1, 2, 1q “ p3, 4, 1q “ degpfgq. We can also write

fpx, y, zq “ ´5x2y2z ` lower terms,

fpx, y, zq “ ´2xy2z ` lower terms,

fpx, y, zqgpx, y, zq “ 10x3y4z2 ` lower terms.

Note that the leading term of the product is the product of the leading terms.

Ultimately, we will use the degree for writing proofs by induction. For this purpose we need
to know that the lexicographic order on Nn has the so-called “well-ordering property”, also
called the “descending chain condition”.

Lexicographic Order is a Well-Ordering

Consider the lexicographic ordering on N2:58

p0, 0q ă p0, 1q ă p0, 2q ă ¨ ¨ ¨

ă p1, 0q ă p1, 1q ă p1, 2q ă ¨ ¨ ¨

ă p2, 0q ă p2, 1q ă p2, 2q ă ¨ ¨ ¨

ă ¨ ¨ ¨

This ordering is a bit strange because it contains infinite ascending sequences that are
bounded above. For example, the infinite ascending sequence p0, 0q ă p0, 1q ă p0, 2q ă ¨ ¨ ¨
is bounded above by p1, 0q.

However, the lexicographic order does not have any infinite descending sequences. To
be precise, there does not exist an infinite sequence k1,k2,k3, . . . P Nn satisfying

k1 ą k2 ą k3 ą ¨ ¨ ¨ .

Proof. The lexicographic order on N “ N1 coincides with the usual order. The fact that
N is well-ordered is part of the definition of natural numbers. We will prove that Nn is

58When no confusion can I arise I will write ă instead of ălex.
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well-ordered by induction on n. So assume for induction Nn´1 is well-ordered and suppose for
contradiction that we have an infinite descending sequence in Nn:

k1 ą k2 ą k3 ą ¨ ¨ ¨ . (˚)

Let’s write ki “ pki1, ki2, . . . , kinq. Then by definition of lexicographic order, we must have

k11 ě k21 ě k31 ě ¨ ¨ ¨ .

Since N itself is well-ordered there exists some M such that km1 “ kM1 for all m ě M .
The idea is to delete this common first element from each of the vectors to obtain an infinite
descending sequence in Nn´1. To be precise, let us write

k1i “ pki2, ki3, . . . , kinq.

Then from (˚) and the definition of lexicographic order we must have

k1M ą k1M`1 ą k1M`2 ą ¨ ¨ ¨ ,

which contradicts our assumption that Nn´1 is well-ordered. ˝

Before moving on, we make one final observation about multivariable polynomials, generalizing
the observations of Section 2.3.

Polynomial Expressions vs Polynomial Functions

Any polynomial expression fpx1, . . . , xnq P Frx1, . . . , xns determines a polynomial func-
tion f : Fn Ñ F by evaluation:

f : Fn Ñ F
pα1, . . . , αnq ÞÑ fpα1, . . . , αnq.

If the field F is infinite then I claim that different polynomial expressions determine
different functions. Equivalently, if two polynomial expressions fpxq “

ř

kPNd akxk and
gpxq “

ř

kPNn bkxk determine the same function then they have the same coefficients:59

fpαq “ gpαq for all α P Fn ñ ak “ bk for all k P Nd.

This fact allows us to be a bit sloppy in our reasoning with multivariable polynomials,
at least over infinite fields such as Q, R and C.

Proof. We prove this by induction on the number of variables.

59If the field F is finite then this result is false.
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6.5 Permutations

In the previous section we developed the language of multivariable polynomials. Our ultimate
goal in this chapter is to prove the FTA. But before this we need another kind of notation,
for “permutations”. These could have been defined at any point in the course, but now seems
appropriate.

Definition of Permutations

A permutation is an invertible function from a finite set to itself. Since all sets of the
same size are basically equivalent we usually consider the set t1, 2, . . . , nu. We denote
the set of such permutations by

Sn “ the set of invertible functions σ : t1, . . . , nu Ñ t1, . . . , nu.

For example, consider the permutation σ P S6 defined by the following diagram:

It is inconvenient to draw such diagrams, to we will define two more concise notations.

One-Line Notation. Here we rearrange the arrows so that the number σpiq appears
directly under the number i:

Then we encode σ by listing the numbers in the second row:

σ “ 615432.
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This notation makes it clear that #Sn “ n!, since there are n ways to choose the leftmost
number, then n´ 1 ways to choose the next number, etc.

Cycle Notation. Here we only draw the numbers once:

Note that the numbers break up into “oriented cycles”. To express these cycles concisely
we write them inside parentheses:

σ “ p162qp35qp4q.

Unfortunately this notation is not unique. For example, we can record a cycle by starting
from any number:

p162q “ p621q “ p216q and p35q “ p53q.

Also, the ordering of the cycles is irrelevant:

σ “ p162qp35qp4q “ p4qp216qp35q “ p53qp4qp621q “ etc.

Another quirk of the notation is that we typically omit the “singleton cycles”. In our
example this means omitting the p4q:

σ “ p162qp35q.

Nevertheless, this is our preferred notation for permutations since is the most compact
and meaningful. A particularly nice property is that the inverse of a permutation is
obtained by reversing the orientation of the cycles:

σ´1 “ p126qp35q.

For example, here are all of the 3! “ 6 elements of the set S3, expressed in one-line notation
and in cycle notation:

one-line 123 213 132 321 231 312

cycle id p12q p23q p13q p123q p132q

The important thing about permutations is that they form a “group”. Recall from Chapter 4
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that a group pG, ˚, εq consists of a set G with a binary operation ˚ : GˆGÑ G and a special
element ε, satisfying the following axioms:

(G1) @a, b, c P G, a ˚ pb ˚ cq “ pa ˚ bq ˚ c,

(G2) @a P G, a ˚ ε “ ε ˚ a “ a,

(G3) @a P G, Db P G, a ˚ b “ b ˚ a “ ε.

If a ˚ b “ b ˚ a for all a, b P G then we say that the group is “abelian”. Abelian groups can be
used to model the properties of addition and multiplication of numbers. Non-abelian groups
are used to model the composition of invertible functions. We will show that the structure
pSn, ˝, idq is a group, where ˝ is functional composition and id : t1, . . . , nu Ñ t1, . . . , nu is the
identity function defined by idpiq “ i for all i P t1, 2, . . . , nu.

But before doing this, let me emphasize the composition of permutations is not commutative.
For example, consider the permutations σ, τ P S3 defined by the following diagrams:

Recall that functional composition is defined as follows:

pσ ˝ τqpiq “ σpτpiqq for all σ, τ P Sn and i P t1, . . . , nu. (˚)

Thus we may compose the permutations by juxtaposing the diagrams:

and
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Sadly, we read the diagrams from left to right but we read the notation “σ ˝ τ” from right to
left, i.e., “do τ first and then do σ”. This is an unavoidable consequence of the notation (˚),
i.e., the fact that we write the name of a function to the left of its argument.

From the diagrams it is clear that σ ˝ τ and τ ˝ σ are different functions. Expressing these in
cycle notation gives

p12q ˝ p23q “ p123q and p23q ˝ p12q “ p132q.

Now we verify the group properties of permutations:

• Property (G1) is an automatic property of functional composition. Given ρ, σ, τ P Sn
and i P t1, 2, . . . , nu we have by definition that

rρ ˝ pσ ˝ τqspiq “ ρppσ ˝ τqpiqq “ ρpσpτpiqqq

and
rpρ ˝ σq ˝ τ spiq “ pρ ˝ σqpτpiqq “ ρpσpτpiqqq.

Since the functions ρ ˝ pσ ˝ τq and pρ ˝ σq ˝ τ do the same thing, they are equal.

• And property (G2) is almost the definition of the identity function. For all σ P Sn and
i P t1, . . . , nu we have

pσ ˝ idqpiq “ σpidpiqq “ σpiq

and
pid ˝ σqpiq “ idpσpiqq “ σpiq.

Since the functions σ ˝ id, id˝σ and σ all do the same thing, they are the same function.

• For property (G3) we will show that for all σ P Sn we have σ´1 P Sn. If σ : t1, . . . , nu Ñ
t1, . . . , nu is invertible, then its inverse σ´1 : t1, . . . , nu Ñ t1, . . . , nu satisfies σ˝σ´1 “ id
and σ´1 ˝ σ “ id. These same identities show that σ´1 is invertible with pσ´1q´1 “ σ.
Hence for any σ P Sn we also have σ´1 P Sn.

But we forgot something. Given two permutations σ, τ P Sn, is it not quite obvious that the
composite function σ ˝ τ : t1, . . . , nu Ñ t1, . . . , nu is a permutation. To see this we must show
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that σ ˝ τ is invertible. In fact, I claim that pσ ˝ τq´1 “ τ´1 ˝ σ´1.60 Indeed, by applying
properties (G1) and (G2) we obtain

pσ ˝ τq ˝ pτ´1 ˝ σ´1q “ σ ˝ pτ ˝ τ´1q ˝ σ´1 “ σ ˝ id ˝ σ´1 “ σ ˝ σ´1 “ id

and
pτ´1 ˝ σ´1q ˝ pσ ˝ τq “ τ´1 ˝ pσ´1 ˝ σq ˝ τ “ τ´1 ˝ id ˝ τ “ τ´1 ˝ τ “ id.

Since σ ˝ τ is an invertible function from t1, . . . , nu to itself, it is an element of Sn.

Here is a summary.

The Symmetric Group

Let Sn be the set of permutations of the set t1, . . . , nu. Then the structure pSn, ˝, idq is
a group, called the symmetric group on n symbols.

For example, here is the group table of the symmetric group S3, where σ ˝ τ is the entry in
the row corresponding to σ and the column corresponding to τ :

˝ id p12q p13q p23q p123q p132q

id id p12q p13q p23q p123q p132q
p12q p12q id p132q p123q p23q p13q
p13q p13q p123q id p132q p12q p23q
p23q p23q p132q p123q id p13q p12q
p123q p123q p13q p23q p12q p132q id
p132q p132q p23q p12q p13q id p123q

This group is not abelian since, for example, we have p12q˝p23q “ p132q and p23q˝p12q “ p123q,
but p123q ‰ p132q.

So far we have mostly discussed basic definitions. Before moving on, let’s prove a theorem.

Transpositions and the Alternating Group

Permutations of the form pijq P Sn with i ‰ j are called transpositions, or 2-cycles.
Recall that the function pijq : t1, . . . , nu Ñ t1, . . . , nu switches i Ø j and sends every
other number to itself. Since pijq “ pjiq, the number of transpositions in Sn is just the
number of pairs of indices 1 ď i ă j ď n, which is

`

n
2

˘

“ npn´ 1q{2.

I claim that every element of Sn can be expressed as a composition of transpositions.

60You may remember this formula from multiplication of matrices, which is also defined in terms of functional
composition.
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Assuming this, we let An Ď Sn denote the set of permutations that can be expressed
as a composition of an even number of transpositions. This set satisfies the following
properties:

• id P An,

• σ, τ P An ñ σ ˝ τ P An,

• σ P An ñ σ´1 P An.

In other words, An is a subgroup of Sn. We call it the alternating group on n symbols.

Proof. First we show that every permutation can be expressed as a composition of trans-
positions. The cycle notation has the property that it can be viewed as a composition of
commuting cycles. For example, we have

p137qp256qp48q “ p137q ˝ p256q ˝ p48q “ p48q ˝ p137q ˝ p256q “ p562q ˝ p84q ˝ p712q “ etc.

Because of this feature, it is common to omit the composition symbol ˝ when working with
permutations in cycle notation. Next we show that each cycle can be viewed as a composition
of (non-commuting) transpositions. For example, we have seen that p123q “ p12q ˝ p23q, we
will write as p123q “ p12qp23q. One can similarly check that

p1234q “ p12qp23qp34q,

p12335q “ p12qp23qp34qp45q,

and, indeed, for any numbers i1, i2, . . . , ik P t1, 2, . . . , nu we have

pi1i2i3 ¨ ¨ ¨ ik´1ikq “ pi1i2qpi2i3q ¨ ¨ ¨ pik´1ikq.

By combining these two observations, we see that any permutation can be expressed as a
composition of (generally non-commuting) cycles.61 For example,

p137qp256qp48q “ p13qp37qp25qp56qp48q.

Next we verify the subgroup axioms:

• By definition we say that id is a composition of no transpositions, which implies that
id P An because zero is even. If you don’t like that, observe that for any transposition
pijq we have id “ pijqpijq. Since 2 is even this implies that id P An.

61This expression is not unique. For example, we could also write

pi1i2i3 ¨ ¨ ¨ ik´1ikq “ pi1ikqpi1ik´1q ¨ ¨ ¨ pi1i2q.
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• Suppose that σ, τ P An. By definition this means we can write

σ “ s1 ˝ s2 ˝ ¨ ¨ ¨ ˝ sk,

τ “ t1 ˝ t2 ˝ ¨ ¨ ¨ ˝ t`,

for some transpositions s1, . . . , sk, t1, . . . , tk, where k and ` are even. But then σ ˝ τ is a
composition of k ` ` transpositions:

σ ˝ τ “ s1 ˝ s2 ˝ ¨ ¨ ¨ ˝ sk ˝ t1 ˝ t2 ˝ ¨ ¨ ¨ ˝ t`.

Since k ` ` is even this implies that σ ˝ τ P An.

• Let σ P An so that σ “ s1 ˝ ¨ ¨ ¨ ˝ sk for some transpositions s1, . . . , sk, where k is
even. Now observe that for any transposition we have s´1 “ s. Furthermore, for any
permutations ρ, τ we have pρ ˝ τq´1 “ τ´1 ˝ ρ´1. It follows that

σ´1 “ ps1 ˝ ¨ ¨ ¨ ˝ skq
´1 “ s´1

k ˝ ¨ ¨ ¨ ˝ s´1
1 “ sk ˝ ¨ ¨ ¨ ˝ s1,

which is a composition of an even number of transpositions. Hence σ´1 P An.

˝

It is much harder to prove that some permutation σ P Sn is not in the subgroup An. We
will have a trick for doing this after we discuss the discriminant of a polynomial. We will also
prove later that exactly half of the permutations are alternating:

#An “
1

2
#Sn “ n!{2.

For example, here are the 6!{2 “ 3 elements of A3:

A3 “ tid, p123q, p132qu.

And here is the group table:

˝ id p123q p132q

id id p123q p132q
p123q p123q p132q id
p132q p132q id p123q

By accident, it happens that this group is abelian, and in fact it is isomorphic to the additive
group pZ{3Z,`, 0q. This can be seen by observing that the group tables are “the same” up to
renaming of the elements:

` 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

We will show later that any two groups of size 3 must be isomorphic.
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6.6 Symmetric Polynomials

The concept of symmetric polynomials is intuitive but the notation is difficult. I could present
the entire discussion at an intuitive level with examples, but I choose also to develop a rigorous
notation. On a first reading you should definitely focus on the examples.

We say that a multivariable polynomial fpx1, . . . , xnq P Frx1, . . . , xns if the value of corre-
sponding function f : Fn Ñ F is left unchanged by any permutation of its inputs. Sometimes
we also call this a “symmetric function”. For example, consider the following polynomial in
two variables:

fpx, yq “ x3 ` 5x2y ` 2x` 2y ` 5xy2 ` y3.

This polynomial is symmetric because fpx, yq “ fpy, xq. However the following polynomial is
not symmetric:

gpx, yq “ x3 ` 5x2y ` 2x` 2y ` 4xy2 ` y3.

To be precise, we have gpx, yq ´ gpy, xq “ x2y ´ xy2, which is not zero. The problem here is
that the coefficients of the monomials x2y and xy2 in g are not the same.

The most basic symmetric polynomials in two variables are just the sum and product. We
call these the “elementary symmetric polynomials in x and y”:

e1px, yq “ x` y,

e2px, yq “ xy.

We will prove below that any symmetric polynomial can be expressed in terms of elementary
symmetric polynomials, and the method of proof will be a kind of “division algorithm”. Let
me show you how this works in the case of the polynomial fpx, yq above. The lexicographic
degree of fpx, yq is p3, 0q and the leading term is x3. Let’s write

fpx, yq “ x3 ` lower terms.

It is easy to find a combination of e1 and e2 with the same leading term:

e3
1 “ px` yq

3

“ x3 ` 3x2y ` 3xy2 ` y3

“ x3 ` lower terms.

Therefore the difference f ´ e3
1 has smaller degree:

f ´ e3
1 “ 2x2y ` 2x` 2y ` 2xy2 “ 2x2y ` lower terms.

Now we play the same trick again. With a bit of trial-and-error we can find a combination of
e1 and e2 with the same leading term:

2e1e2 “ 2px` yqpxyq

“ 2x2y ` 2xy2
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“ 2x2y ` lower terms.

Finally, subtracting this from the previous polynomial gives

f ´ e3
1 ´ 2e2

1e2 “ 2x` 2y “ 2px` yq “ 2e1,

and we conclude that

fpx, yq “ e1px, yq
3 ` 2e1px, yq

2e2px, yq ` 2e1px, yq,

f “ e3
1 ` 2e2

1e2 ` 2e1.

The main goal of this chapter is to generalize this algorithm to any number of variables.

But why do we care about symmetric polynomials? Suppose that a quadratic polynomial
x2 ` ax` b has coefficients a, b in some field F and has roots α, β in a larger field E Ě F. By
factoring in the ring Erxs we obtain

x2 ` ax` b “ px´ αqpx´ βq

“ x2 ´ pα` βqx` pαβq.

Then comparing coefficients gives

a “ ´pα` βq “ ´e1pα, βq

b “ αβ “ e2pα, βq.

Since the coefficients a and b are (up to sign) just the elementary symmetric combinations of
the roots α and β, it follows from above algorithm that any symmetric combination of
the roots α, β can be expressed in terms of the coefficents a, b. For example, we have

fpα, βq “ α3 ` 5α2β ` 2α` 2β ` 5αβ2 ` β3

“ e1pα, βq
3 ` 2e1pα, βq

2e2pα, βq ` 2e1pα, βq

“ p´aq3 ` 2p´aq2b` 2p´aq

“ ´a3 ` 2a2b´ 2a.

We conclude that the number fpα, βq, which by definition lives in the extension field E, is
actually in the base field F.

The general version of this theorem is particularly interesting when F “ R since it implies that
any symmetric combination of the roots of a real polynomial is real, no matter
where the roots live. This will be a key step in our proof of the FTA.

Definition of Symmetric Polynomials

A permutation σ P Sn “acts on” a polynomial fpx1, . . . , xnq P Frx1, . . . , xns by permuting
its inputs. We introduce a special notation for this:

pσ ¨ fqpx1, . . . , xnq :“ fpxσp1q, xσp2q, . . . , xσpnqq.
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That is, for each permutation σ P Sn and each polynomial f P Frx1, . . . , xns we have
another polynomial σ ¨ f P Frx1, . . . , xns whose inputs have been permuted according to
σ. This is a reasonable notation since for any permutations σ, τ P Sn and any polynomial
f P Frx1, . . . , xns one can check that

pσ ˝ τq ¨ f “ σ ¨ pτ ¨ fq.

One can also check that that the “action” of a permutation σ preserves addition and
multiplication of polynomials:

σ ¨ pf ` gq “ σ ¨ f ` σ ¨ g and σ ¨ pfgq “ pσ ¨ fqpσ ¨ gq.

We say that a polynomial fpx1, . . . , xnq is symmetric when it is invariant under any
permutation of its inputs:62

f is symmetric ðñ σ ¨ f “ f for all σ P Sn.

It follows from the properties above that the set of symmetric polynomials is closed under
addition and multiplication, hence it is a subring of Frx1, . . . , xns. We call this the ring
of symmetric polynomials and we denote it by

Frx1, . . . , xns
Sn Ď Frx1, . . . , xns.

Below we will prove the Fundamental Theorem of Symmetric Polynomials (FTSP), which
gives a sort of “basis” for the ring of symmetric polynomials. To be precise, there are some
“elementary symmetric polynomials” e1, . . . , en such that every symmetric polynomial f can
be expressed in as a polynomial expression in e1, . . . , en:

any symmetric polynomial “ some polynomial expression in e1, . . . , en

f “ gpe1, . . . , enq.

Elementary Symmetric Polynomials

Consider the ring of polynomials in n` 1 variables, which we call x1, . . . , xn`1, y:

Frx1, . . . , xn, ys “ pFrx1, . . . , xnsq rys.

We define the elementary symmetric polynomials e1, . . . , en P Frx1, . . . , xns as the coeffi-
cients of the following polynomial:

py ´ x1qpy ´ x2q ¨ ¨ ¨ py ´ xnq “ yn ´ e1y
n´1 ` e2y

n´2 ´ ¨ ¨ ¨ ` p´1qnen.

62Actually, since every permutation can be expressed as a composition of transpositions, it is sufficient to
check that f is invariant under any transposition of its inputs.
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We observe that each coefficient ekpx1, . . . , xnq is, indeed, a symmetric polynomial in
x1, . . . , xn since the expression py´x1q ¨ ¨ ¨ py´xnq is invariant under permuting x1, . . . , xn.
To be explicit, we have

e1 “ x1 ` x2 ` ¨ ¨ ¨ ` xn,

e2 “ x1x2 ` x1x3 ` ¨ ¨ ¨ ` xn´1xn “
ÿ

1ďiăjďn

xixj ,

...

ek “
ÿ

1ďi1ăi2ă¨¨¨ăikďn

xi1xi2 ¨ ¨ ¨xik ,

...

en “ x1x2 ¨ ¨ ¨xn

In essence, the elementary symmetric polynomials just express the relationship between the
roots and the coefficients of a single-variable polynomial. To see this, suppose that a polyno-
mial fpxq P Frxs has roots α1, . . . , αn in some field E Ě F, so that

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq in Erxs.

Then expanding the right hand side gives

fpxq “ xn ´ e1pα1, . . . , αnqx
n´1 ` e2pα1, . . . , αnqx

n´2 ´` ¨ ¨ ¨ ` p´1qnenpα1, . . . , αnq.

Since the coefficients of fpxq were assumed to be in F we see that the elementary symmetric
combinations of the roots ekpα1, . . . , αnq are in F. More generally, let gpx1, . . . , xnq be any
symmetric polynomial with coefficients from F. It will follow from the FTSP below that there
exists some (possibly non-symmetric) polynomial h P Frx1, . . . , xns such that

gpx1, . . . , xnq “ hpe1px1, . . . , xnq, . . . , enpx1, . . . , xnqq.

Then by substituting αi for xi we find that the element gpα1, . . . , αnq of E is actually in F:

gpα1, . . . , αnq “ hpe1pα1, . . . , αnq, . . . , enpα1, . . . , αnqq P F.

In the case F “ R this shows that any symmetric combination of the roots of a real
polynomial is real, no matter where the roots live.

To prepare for the FTSP we examine the lexicographic degrees of the elementary symmetric
polynomials. Another way to to express the kth elementary symmetric polynomial is as follows:

ekpxq “
ÿ

`PVn,k

x`,
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where Vn,k Ď Nn is the set of vectors made from k copies of 1 and n ´ k copies of 0. For
example, when n “ 4 we have

e2px1, x2, x3, x4q “ x1x2 ` x1x3 ` x1x4 ` x2x3 ` x2x4 ` x3x4,

e2pxq “ xp1,1,0,0q ` xp1,0,1,0q ` xp1,0,0,1q ` xp0,1,1,0q ` xp0,1,0,1q ` xp0,0,1,1q.

The lexicographically largest such vector is p1, 1, . . . , 1, 0, 0, . . . , 0q, so we conclude that

degpekq “ p1, 1, . . . , 1, 0, 0, . . . , 0q,

ek “ x1x2 ¨ ¨ ¨xk ` lower terms.

Fundamental Theorem of Symmetric Polynomials

For any symmetric polynomial fpx1, . . . , xnq P Frx1, . . . , xns there exists a possibly non-
symmetric polynomial gpx1, . . . , xnq P Frx1, . . . , xns such that63

fpxq “ gpe1pxq, e2pxq, . . . , enpxqq.

The proof of this is an explicit algorithm, similar to division with remainder. The algorithm
was first written down in Edward Waring’s Meditationes Arithmeticae (1770). However, it
was probably generally known, going back perhaps to Isaac Newton. In Lagrange’s Treatise
on the Theory of Equations (1770) he used the fact that any symmetric combination of the
roots of a real polynomial is real, and he said this was well-known. Maybe he just didn’t want
to deal with the horrible notation of multivariable polynomial expressions.

Proof. Let f P Frx1, . . . , xns be symmetric with lexicographic degree k “ pk1, . . . , knq and
leading coefficient c P F:

fpxq “ cxk ` lower terms.

The fact that f is symmetric implies that k1 ě k2 ě ¨ ¨ ¨ ě kn. Indeed, suppose for contradic-
tion that we have ki ă ki`1 for some i and let

k1 “ pk1, . . . , ki´1, ki`1, ki, ki`2, . . . , knq.

We observe that k1 ą k in lexicographic order, hence by definition of degree the coefficient
of xk1 in f must be zero. On the other hand, since f , being symmetric, is invariant under
switching xi and xi`1, the coefficients of xk and xk1 in f must be equal. Contradiction.

63It may be confusing that we write g as an element of Frx1, . . . , xns. This is an annoying property of our
notation for polynomials. We don’t have a good way to distinguish between formal polynomial expressions and
polynomial functions. Here we are viewing f as a formal polynomial and g as function from Frx1, . . . , xnsn to
Frx1, . . . , xns. It might be less confusing to write a formal polynomial as fp´,´, . . . ,´q with empty inputs,
but nobody does this.
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Now we want a combination of elementary symmetric polynomials with the same leading term
as f . I claim that the following polynomial does the job:

gpxq “ ce1pxq
k1´k2e2pxq

k2´k3 ¨ ¨ ¨ en´1pxq
kn´1´knenpxq

kn .

Indeed, by the general properties of degree we have

degpgq “ pk1 ´ k2q degpe1q ` pk2 ´ k3qdegpe2q ` ¨ ¨ ¨ ` pkn´1 ´ knqdegpen´1q ` kn degpenq

“ pk1 ´ k2qp1, 0, . . . , 0q

` pk2 ´ k3qp1, 1, 0, . . . , 0q

...

` pkn´1 ´ knqp1, . . . , 1, 0q

` knp1, 1, . . . , 1q

“ pk1, k2, . . . , knq “ k.

Since f and g are symmetric polynomials with the same leading term, it follows that f ´ g
is a symmetric polynomial with degree strictly smaller than k. By induction64 there exists a
polynomial h P Frx1, . . . , xns such that

fpxq ´ gpxq “ hpe1pxq, e2pxq, . . . , enpxqq.

Finally, we conclude that f “ gpxq ` hpe1pxq, . . . , enpxqq is a combination of elementary
symmetric polynomials, as desired. ˝

When it comes to algorithmic proofs it’s usually more instructive to see an example.

Example. Consider a field extension E Ě F and suppose that

x3 ` ax2 ` bx` c “ px´ αqpx´ βqpx´ γq

for some a, b, c P F and α, β, γ P E. By expanding the right hand side and equating coefficients
we see that

´a “ e1pα, β, γq,

b “ e2pα, β, γq,

´c “ e3pα, β, γq.

Our goal is to find some polynomial x3 ` a1x2 ` b1x` c1 P Frxs whose roots are α2, β2, γ2 P E:

x3 ` a1x2 ` b1x` c1 “ px´ α2qpx´ β2qpx´ γ2q.

By expanding the right hand side and equating coefficients we obtain

´a1 “ α2 ` β2 ` γ2,

64This works because the lexicographic order on Nn has no infinite descending sequences.
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b1 “ α2β2 ` α2γ2 ` β2γ2,

´c1 “ α2β2γ2.

Since each of these is symmetric in α, β, γ, we know that each of the unknown coefficients
a1, b1, c1 can be expressed in terms of the elementary symmetric combinations e1pα, β, γq,
e2pα, β, γq, e3pα, β, γq, and hence in terms of the original coefficients a, b, c. We will apply
the algorithm three times to obtain these expressions.

We begin with a1. Note that a1 and ´e2
1 have the same leading term ´α2. Expand ´e2

1 to get

´e2
1 “ ´pα` β ` γq

2 “ ´α2 ´ β2 ´ γ2 ´ 2pαβ ` αγ ` βγq.

Then subtract to get

a1 ´ p´e2
1q “ 2pαβ ` αγ ` βγq

a1 ´ p´e2
1q “ 2e2

a1 “ ´e2
1 ` 2e2

“ ´p´aq2 ` 2pbq

“ 2b´ a2.

Next we compute b1. Observe that b1 and e2
2 have the same leading term α2β2. Expand to get

e2
2 “ pαβ ` αγ ` βγq

2

“ α2β2 ` α2γ2 ` β2γ2 ` 2α2βγ ` 2αβ2γ ` 2αβγ2.

Then subtract to get

b1 ´ e2
2 “ ´2pα2βγ ` αβ2γ ` αβγ2q

b1 ´ e2
2 “ ´2pα` β ` γqpαβγq

b1 ´ e2
2 “ ´2e1e3

b1 “ e2
2 ´ 2e1e3

“ pbq2 ´ 2p´aqp´cq

“ b2 ´ 2ac.

Finally, we observe that

c1 “ ´α2β2γ2

“ ´pαβγq2

“ ´e2
3

“ ´p´cq2

“ ´c2.
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In conclusion, we have

x3 ` p2b´ a2qx2 ` pb2 ´ 2acqx´ c2 “ px´ α2qpx´ β2qpx´ γ2q.

To check that this makes sense, let’s take pa, b, cq “ 1 so that pa1, b1, c1q “ p2b ´ a2, b2 ´
2ac,´c2q “ p1,´1,´1q. The above formula tells us that the roots of x3 ` x2 ´ x´ 1 are the
squares of the roots of x3 ` x2 ` x` 1. To verify this, we observe that

x3 ` x2 ´ x´ 1 “ px` 1qpx´ 1q2

has roots ´1, 1, 1, listed with multiplicity. On the other hand, we have the factorization

x4 ´ 1 “ px´ 1qpx3 ` x2 ` x` 1q.

Since x4 ´ 1 has roots ˘1,˘i65 and x´ 1 has root `1 we see that x3 ` x2 ` x` 1 has roots
´1,`i,´i. And, indeed, squaring these gives 1,´1,´1.

We end this section with a more interesting example.

The Discriminant of a Polynomial

Suppose that a polynomial fpxq P Frxs has roots α1, . . . , αn in a field extension E Ě F:

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq.

We define the discriminant of f as the product of the squares of the differences of the
roots:

∆ “
ź

1ďiăjďn

pαi ´ αjq
2 P E.

The discriminant has two interesting properties:

• We have ∆ “ 0 if and only if fpxq has a repeated root.

• Since ∆pα1, . . . , αnq is a symmetric combination of the roots of fpxq it can be
expressed in terms of the coefficients of fpxq, hence ∆ P F.

You are certainly familiar with the discriminant of a quadratic polynomial. Suppose that

x2 ` ax` b “ px´ αqpx´ βq,

so that ´a “ α` β and b “ αβ. A quick computation shows that

∆ “ pα´ βq2

65These are just the 4th roots of unity.
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“ α2 ´ 2αβ ` β2

“ pα` βq2 ´ 4pαβq

“ p´aq2 ´ 4b

“ a2 ´ 4b.

We conclude that the polynomial x2 ` ax ` b has a repeated root if and only if a2 ´ 4b “ 0.
But you are probably not familiar with the formula for the discriminant of a cubic.

The Discriminant of a Cubic Polynomial

Consider a cubic polynomial fpxq P Frxs with roots α, β, γ in a field extension E Ě F:

fpxq “ x3 ` ax2 ` bx` c “ px´ αqpx´ βqpx´ γq.

By applying Waring’s algorithm to the discriminant one can show that

∆ “ pα´ βq2pα´ γq2pβ ´ γq2

“ ´4a3c` a2b2 ` 18abc´ 4b3 ´ 27c2.

I do not recommend memorizing this formula. However, we note that the discriminant
simplifies quite a bit in the case when a “ 0:

∆ “ ´4b3 ´ 27c2.

In this case it is more common to write fpxq “ x3 ` px` q. Then we have the following
conclusion:

x3 ` px` q has a repeated root ðñ ´4p3 ´ 27q2 “ 0.

This strange expression will show up in the next chaptera when we discuss the general
solution of cubic equations.

aNope. This got posponed until Chapter 9 and then it got cut from the course.

6.7 Laplace’s Proof of the FTA

We now have all of the ingredients necessary to discuss Laplace’s 1795 proof of the Fundamental
Theorem of Algebra. As I will mention below, Laplace’s proof has a gap which was filled by
Kronecker in 1887. Literally dozens of proofs of the FTA were presented in the late 1700s and
early 1800s, and none of them was completely rigorous. The traditional “first correct proof”
was given by Gauss in 1799, but it involved topological ideas that were not made rigorous
until the twentieth century.
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I like Laplace’s proof because it is almost completely algebraic. (The only analysis/topology
required is the Intermediate Value Theorem for polynomials.) It is also rather short and
involves the concepts of symmetric polynomials and Kronecker’s Theorem, which I was going
to discuss anyway.

Laplace’s Proof. We will prove statement (1Rq from Section 6.1:

Every non-constant fpxq P Rrxs has a root in C.

So consider some non-constant fpxq P Rrxs. The proof uses induction on the multiplicity of
the prime 2 in the degree of f . Let degpfq “ n and recall that

ν2pnq “ k ðñ n “ 2km for some odd number m.

This multiplicity is well-defined because of the uniqueness of prime factorization in Z. If
ν2pnq “ 0 then since degpfq “ 20m is odd we know from the IVT that fpxq has a real root,
hence it has a complex root.

So let us suppose that ν2pnq “ k ě 1 and assume for induction that any polynomial gpxq P Rrxs
with ν2pdegpgqq “ k´ 1 has a root in C. As was traditional in Laplace’s time, we will assume
the existence of the roots of fpxq and then we will show that at least one of these roots in
C. In modern language, we assume the existence of a field extension E Ě C and elements
α1, . . . , αn P E such that

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq.

The modern proof of this was given by Kronecker, and it can be paraphrased as follows: “If
you pretend hard enough that fpxq has roots, then it does.” We will discuss Kronecker’s 1887
proof in Chapter 8. It is not very “difficult” but it is very abstract; much too abstract for the
year 1795.

Our goal now is to show that αi P C for some i. Laplace used a very clever trick to do this.
For any real number t P R and for any pair of indices 1 ď i ă j ď n we consider the following
element of the field E:

βijt :“ αi ` αj ` tαiαj P E.

Then for any real number t P R we consider the following polynomial with coefficients in E:

gtpxq :“
ź

1ďiăjďn

px´ βijtq P Erxs.

The first surprise is that this polynomial actually has coefficients in R. To see this, think of
βijt as a polynomial expression in the roots of fpxq:

βijtpα1, . . . , αnq “ αi ` αj ` tαiαj .

Let σ P Sn act on this expression by permuting the inputs:

σ ¨ βijt :“ βijtpασp1q, ασp2q, . . . , ασpnqq.
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The transpositions act on the roots of gtpxq as follows:

pijq ¨ βijt “ βijt,

pjkq ¨ βijt “ βikt, k R ti, ju

pk`q ¨ βijt “ βijt. k, ` R ti, ju.

We see that each transposition permutes the roots of gtpxq. Since any permutation is a
product of transpositions, this implies that any σ P Sn permutes the roots of gtpxq, hence the
coefficients of gtpxq are symmetric combinations of the roots α1, . . . , αn of fpxq. Finally, by the
Fundamental Theorem of Symmetric Polynomials, each symmetric combination of the roots
of fpxq is a combination of the coefficients of F (i.e., the elementary symmetric combinations
of α1, . . . , αn) hence is in R. In other words, gtpxq P Rrxs.

The second surprise is that the polynomial gtpxq has degree 2k´1m1 for some odd number m1.
Indeed, we have assumed that degpfq “ n “ 2km with m odd. The degree of gt is the number
of pairs of indices 1 ď i ă j ď n, which is

ˆ

n

2

˙

“
npn´ 1q

2
“

2kmp2km´ 1q

2
“ 2k´1

”

mp2km´ 1q
ı

“ 2k´1psome odd numberq.

Hence by induction we know that gtpxq has at least one root in C. In other words: For each
real number t P R there exists at least one pair of indices 1 ď i ă j ď n such that βijt P C.
Now we apply the so-called Pigeonhole Principle.66 Let N “

`

n
2

˘

and choose N ` 1 real
numbers t1, . . . , tN`1 P R, which is always possible because R is infinite. Now consider the
following N ˆ pN ` 1q array of numbers from E:

β1,2,t1 β1,2,t2 ¨ ¨ ¨ β1,2,tN`1

...
...

. . .
...

βn´1,n,t1 βn´1,n,t2 ¨ ¨ ¨ βn´1,n,tN`1

The numbers in the ith column are just the roots of gtipxq, hence we have shown that each
column contains at least one number from C. Since there are more columns then rows, it
follows that at least one row contains at least two elements from C. We have proved that
there exist some indices 1 ď i ă j ď n and real numbers s, t P R with s ‰ t such that βijs and
βijt are both in C:

αi ` αj ` sαiαj P C,
αi ` αj ` tαiαj P C.

Subtracting these complex numbers shows that ps ´ tqαiαj P C and hence αiαj P C. Then
since s P R we also have sαiαj P C and hence

αi ` αj “ βijs ´ sαiαj P C.
66This is the principle that any function from a larger set to a smaller set must be non-injective. In German

this is called Dirichlet’s Schubfachprinzip (“drawer principle”).
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We have shown that fpxq has a pair of roots αi, αj P E satisfying αi ` αj P C and αjαi P C.
Moreover, I claim that αi P C or αj P C (actually we will have αi P C and αj P C, but we
don’t care). Indeed, we observe that αi and αj are the roots of a quadratic polynomial with
complex coefficients:

px´ αiqpx´ αjq “ x2 ´ pαi ` αjqx` αiαj P Crxs.

But every quadratic polynomial with complex coefficients has a complex root. (This follows
from the quadratic formula and the fact that every nonzero complex number has a complex
square root.) Suppose that our quadratic polynomial has a root γ P C. Then we have

pγ ´ αiqpγ ´ αjq “ 0,

which implies that αi “ γ P C or αj “ γ P C. ˝

And that is the shortest proof of the FTA that I know.

6.8 The Missing Piece: Kronecker’s Theorem

As I said in the previous section, the missing piece in Laplace’s proof of the FTA is the abstract
existence of roots of polynomials. In Laplace’s time this was usually assumed without proof
because they had no idea how to make it rigorous.

The first glimpse of the proof came from Cauchy, who used Gauss’ idea of “congruence mod
n” to construct the complex numbers from the real numbers. Recall from Chapter 1 that the
complex numbers are originally just abstract symbols:

C :“ ta` bi : a, b P Ru,

where i is an abstract symbol satisfying the abstract formula “i2 “ ´1”. We did a significant
amount of work to show that these abstract symbols can be treated as “numbers” with all of
the obvious properties, including the fact that C is a field, which we proved by “rationalizing
the denominator”:

1

a` bi
“

1

a` bi
¨

1

a´ bi
“

ˆ

a

a2 ` b2

˙

`

ˆ

´b

a2 ` b2

˙

i.

Cauchy showed that all of this can be explained more simply by doing “modular arithmetic”
in the ring of polynomials Rrxs. To be precise, we define an equivalence relation on Rrxs called
“congruence mod x2 ` 1” by setting

fpxq ” gpxq mod x2 ` 1 ðñ fpxq ´ gpxq “ px2 ` 1qhpxq for some hpxq P Rrxs.

The proof that this is an equivalence relation is “exactly the same” as the proof that “con-
gruence mod n” is an equivalence relation on Z. Furthermore, we can show that
"

f1pxq ” f2pxq mod x2 ` 1

g1pxq ” g2pxq mod x2 ` 1

*

ñ

"

f1pxqf2pxq ” g1pxqg2pxq mod x2 ` 1

f1pxq ` g1pxq ” f2pxq ` g2pxq mod x2 ` 1

*
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Again, the proof is “the same” as the proof for integers. Thus we obtain a ring of “congruence
classes of polynomials modulo x2 ` 1”:

`

Rrxs{px2 ` 1qRrxs,`, ¨, 0, 1
˘

.

But what do the elements of this ring look like? In Chapter 4 we used division with remainder
to prove that each element of Z{nZ has a unique representation as r mod n for some 0 ď r ď
n´ 1, so the ring Z{nZ has n elements. We have a similar property here.

Congruence Classes of Polynomials Modulo x2 ` 1

For any fpxq P Rrxs, there exist unique real numbers a, b P R satisfying

fpxq ” a` bx mod x2 ` 1.

• Existence. Divide fpxq by x2` 1 in the ring Rrxs to obtain fpxq “ px2` 1qqpxq`
rpxq for some rpxq P Rrxs satisfying degprq ă degpx2 ` 1q or rpxq “ 0. It follows
from this that rpxq “ a` bx for some a, b P R. Hence we have

fpxq ” px2 ` 1qqpxq ` rpxq ” 0qpxq ` rpxq ” rpxq ” a` bx mod x2 ` 1.

• Uniqueness. This follows from the uniqueness of remainders in Rrxs.

Let us examine how addition and multiplication work using these standard representatives. If
fpxq ” a` bx and gpxq ” c` dx mod x2 ` 1 then we have

fpxq ` gpxq ” pa` bxq ` pc` dxq ” pa` cq ` pb` dqx mod x2 ` 1

and

fpxqgpxq ” pa` bxqpc` dxq

” ac` pad` bcqx` bdx2

” ac` pad` bcqx` bcp´1q

” pad` bcq ` pac´ bdqx, mod x2 ` 1

because x2 ” ´1 mod x2 ` 1. This shows that elements of the ring Rrxs{px2 ` 1qRrxs behave
just like complex numbers, where the congruence class “x mod x2 ` 1” plays the role of i P C.

And what about the fact that C is a field? Instead of “rationalizing the denominator” we can
use the Euclidean Algorithm. Recall our proof that the ring Z{pZ is a field when p is prime.
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Proof that Z{pZ is a field. Consider any nonzero element a P Z{pZ. By definition this
means that a ı 0 mod p, and hence p - a. Since p is prime and p - a we have gcdpa, pq “ 1 and
it follows from the Extended Euclidean Algorithm that there exist some x, y P Z satisfying

ax` py “ 1

ax` 0y ” 1

ax ” 1 mod p.

In other words, the element a P Z{pZ is invertible with a´1 ” x mod p.

The same proof shows that the ring Rrxs{ppxqRrxs is a field whenever ppxq P Rrxs is a prime
polynomial.

Proof that Rrxs{ppxqRrxs is a field. Consider any nonzero element fpxq P Rrxs{ppxqRrxs.
By definition this means that fpxq ı 0 mod ppxq, and hence ppxq - fpxq. Since ppxq is prime
and ppxq - fpxq we have gcdpf, pq “ 1 and it follows from the Extended Euclidean Algorithm
that there exist some apxq, bpxq P Rrxs satisfying

fpxqapxq ` ppxqbpxq “ 1

fpxqapxq ` 0bpxq ” 1

fpxqapxq ” 1 mod ppxq.

In other words, the element fpxq P Rrxs{ppxqRrxs is invertible with fpxq´1 ” apxq mod ppxq.

Finally, we observe that the polynomial x2 ` 1 is a prime element of Rrxs.

Proof that x2`1 is prime.67 Suppose for contradiction that x2`1 is not a prime element of
Rrxs. This means we can write x2` 1 “ fpxqgpxq where fpxq, gpxq P Rrxs are both non-units,
i.e., where degpfq ě 1 and degpgq ě 1. Since degpfq ` degpgq “ degpfgq “ degpx2 ` 1q “ 2,
this implies that degpfq “ degpgq “ 1. In other words, we must have fpxq “ a ` bx and
gpxq “ c` dx for some a, b, c, d P R with b ‰ 0 and d ‰ 0. But this implies that

p´a{bq2 ` 1 “ fp´a{bqgp´a{bq

p´a{bq2 ` 1 “ 0gp´a{bq

p´a{bq2 ` 1 “ 0

p´a{bq2 “ ´1

p´a{bq2 ă 0,

for some real number ´a{b P R, which is impossible because α2 ě 0 for all α P R.

67Warning to sophisticated readers: Here I use the words “prime” and “irreducible” interchangeably, which
is okay because Rrxs is a Euclidean domain.
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Observe that this proof is significantly different from “rationalizing the denominator” because
it doesn’t give us an explicit formula for the inverse, only an algorithm. This is because in
fields Rrxs{ppxqRrxs corresponding to more complicated prime polynomials ppxq the formula
for the inverse can very intricate. See the example at the end of section 8.2.

Finally, let me give a sketch of Kronecker’s Theorem. We will fill in all the details later.

Preview of Kronecker’s Theorem

Let F be a field and consider a polynomial fpxq P Frxs of degree n. Let ppxq be any
prime factor of fpxq, with fpxq “ ppxqgpxq for some gpxq P Rrxs. Now consider the field
of congruence classes modulo ppxq:

E :“ Frxs{ppxqFrxs.

We can think of F as a subfield of E via the injective homomorphism that sends a P F
to the congruence class of the constant polynomial a modulo ppxq. We also observe that
the field E contains a root of fpxq. Indeed, we have

fpxq ” ppxqgpxq ” 0gpxq ” 0 mod ppxq,

so that the element x mod ppxq of E is a root of fpxq. (This is what I mean by “pretending
hard enough” that fpxq has a root.) Let’s denote the congruence class of x by α P E.
Then by Descartes’ Theorem we have68

fpxq “ px´ αqhpxq for some hpxq P Erxs of degree n´ 1.

By induction on degree we may assume that there exists a field E1 Ě E Ě F and elements
α1, . . . , αn´1 P E1 such that

hpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αn´1q.

Finally, we have
fpxq “ px´ αqpx´ α1q ¨ ¨ ¨ px´ αn´1q,

with elements α, α1, . . . , αn´1 in the extension field E1 Ě F.

What did you think of that?

68Now you might object that I am using the letter x for two different purposes. I apologize, but I think that
any other symbol would make the proof less understandable. Again, this is the same difficulty that we don’t
have a notation to distinguish between formal polynomials and evaluations of polynomials.
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7 Some Group Theory

7.1 Congruence Modulo a Subgroup

As we have seen in the previous chapter, the theory of polynomial equations can be quite
intricate. Laplace’s 1795 proof of the Fundamental Theorem of Algebra is quite slick but it
hides some deep ideas involving permutations and multivariable polynomials. Laplace’s proof
was built on the hard work of Euler and Lagrange, who had trouble finishing the proof due to
difficulty of the notation. In 1781, Lagrange despaired that the subject had perhaps become
too difficult to merit further investigation:

I begin to notice how my inner resistance increases little by little, and I cannot say
whether I will still be doing geometry69 ten years from now. It also seems to me
that the mine has maybe already become too deep and unless one finds new veins
it might have to be abandoned.

Physics and chemistry now offer a much more glowing richness and much easier
exploitation. Also, the general taste has turned entirely in this direction, and it is
not impossible that the place of Geometry in the Academies will someday become
what the role of the Chairs of Arabic at the universities is now.

The next generation of mathematicians were only able to make progress by abandoning the
old language in favor of a new, abstract point of view. The young mathematician Évariste
Galois around 1830 made a brilliant breakthroughs by inventing the concept of a “group”.
Unfortunately, he died at the age of 21 and it took several decades for his work to be ap-
preciated. Today the concept of an abstract group is probably the most important definition
in algebra. In this chapter we will explore the abstract theory of groups before returning in
further chapters to its applications in the theory of polynomial equations.

First let me remind you of the definition.

Concept of a Group

A group is a structure pG, ˚, εq consisting of a set G, a binary operation ˚ : GˆGÑ G,
and a special element ε, satisfying the following three axioms:

• For all a, b, c P G we have a ˚ pb ˚ cq “ pa ˚ bq ˚ c.

• For all a P G we have a ˚ ε “ ε ˚ a “ a.

• For all a P G there exists some b P G such that a ˚ b “ b ˚ a “ ε.

The element b whose existence is guaranteed by the third axiom is actually unique.
Indeed, if we have a ˚ b “ b ˚ a “ ε and a ˚ c “ c ˚ a “ ε for some b, c P G then it follows
from the first two axioms that

b “ b ˚ ε “ b ˚ pa ˚ cq “ pb ˚ aq ˚ c “ ε ˚ c “ c.

69Geometry was the general 18th century term for mathematics.
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This unique element is called the inverse of a P G and we write it as a´1.

In Chapter 4 we studied the group of units pZ{nZqˆ, whose group operation is multiplication
modulo n. This group satisfies the extra property that it is abelian, meaning that the group
operation is commutative. In this chapter we want to develop a general theory that applies
also to non-abelian groups, such as a the symmetric group pSn, ˝, idq.

The first general theorem of “group theory” involves the notion of “congruence modulo a
subgroup”. This is a vast generalization of modular arithmetic.

Concept of a Subgroup

Let pG, ˚, εq be a group and let H Ď G be a subset. We say that H is a subgroup when
it satisfies the following three properties:

(1) We have ε P H.

(2) For all a P H we have a´1 P H.

(3) For all a, b P H we have a ˚ b P H.

That is, a subgroup (1) contains the identity, (2) is closed under inversion, and (3) is
closed under the group operation. It follows from this that the structure pH, ˚, εq is itself
a group. You will prove on the homework that the three defining properties of a subgroup
can be summarized by the following single property:

a, b P H ùñ a´1 ˚ b P H.

The whole reason for defining subgroups is so we can generalize Gauss’ concept of congruence.

Congruence Modulo a Subgroup

Let pG, ˚, εq be a group and let H Ď G be a subgroup. Then for all a, b P G we define
the following relation:70

a ” b mod H ðñ a´1 ˚ b P H.

The properties (1), (2) and (3) of subgroups are defined precisely so that this relation is
an equivalence.

Reflexive. From (1) we have a´1 ˚ a “ ε P H and hence a ” a mod H for all a P G.
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Symmetric. For all a, b P G we have

a ” b mod H ùñ a´1 ˚ b P H

ùñ pa´1 ˚ bq´1 P H from (2)

ùñ b´1 ˚ pa´1q´1 P H

ùñ b´1 ˚ a P H

ùñ b ” a mod H.

Transitive. For all a, b, c P G we have

a ” b and b ” c mod H ùñ a´1 ˚ b P H and b´1 ˚ c P H

ùñ pa´1 ˚ bq ˚ pb´1 ˚ cq P H from (3)

ùñ a´1 ˚ pb ˚ b´1q ˚ c P H

ùñ a´1 ˚ ε ˚ c P H

ùñ a´1 ˚ c P H

ùñ a ” c mod H.

Let’s see how this concept connects with Gauss’ concept of modular arithmetic.

Subgroups of pZ,`, 0q

Consider the additive group of integers pZ,`, 0q and let H Ď Z be a subgroup. In this
case I claim that there exists an integer n ě 0 such that H is just the multiples of n:

H “ nZ :“ tnk : k P Zu.

Before proving this, we note that the set nZ is, indeed, a subgroup of pZ,`, 0q:

(1) We have 0 P nZ because 0 “ n0.

(2) For all nk P Z we have ´pnkq “ np´kq P nZ.

(3) For all nk, n` P nZ we have nk ` n` “ npk ` `q P nZ.

The case n “ 0 corresponds to the “trivial subgroup” 0Z “ t0u, which has just one element,
and the case n “ 1 corresponds to the “full subgroup” 1Z “ Z.

70If H is not abelian then we can also define a notion of congruence by saying that a ” b mod H if and only
if a ˚ b´1

P H. In general these two relations are not the same, as we will see in the next section.

135



Proof. Let H be a subgroup of pZ,`, 0q. If H “ t0u then we are done because H “ 0Z. So
suppose that H ‰ t0u. Since H is closed under taking negatives, it must contain a strictly
positive integer. Let n P H be the smallest positive integer in H. In this case I claim that
H “ nZ.

First we show that nZ Ď H. Indeed, by property (1) we have 0 P H and since n P H we have
by property (3) that n` n` ¨ ¨ ¨ ` n P H for any number of summands. Hence nk P H for all
non-negative k ě 0. Finally, by property (2) we have np´kq “ ´pnkq P H, so that n` P Z for
all ` “ ´k ď 0. We conclude that nk P H for all k P Z and hence nZ Ď H.

On the other hand, we will show that H Ď nZ. To do this, consider any element m P H and
divide by n to obtain

"

m “ nq ` r,
0 ď r ă n.

We observe that r “ m´nq is an element of H because m P H and nq P H (from the argument
in the previous paragraph). If r ‰ 0 then the condition 0 ă r ă n contradicts the fact that
n is the smallest positive element of H. Hence we must have r “ 0 and it follows that
m “ nq P nZ. Since every m P H is contained in nZ we conclude that H Ď nZ, as desired. ˝

So we have seen that every subgroup of pZ,`, 0q has the form nZ. Moreover, we observe that
“congruence modulo the subgroup nZ” is just the same as “congruence modulo n”:71

a ” b mod nZ ðñ ´a` b P nZ
ðñ ´a` b “ nk for some k P Z
ðñ n|pb´ aq

ðñ n|pa´ bq

ðñ a ” b mod n.

Thus the concept of congruence modulo a subgroup is a generalization of modular arithmetic.
It turns out that it is quite a vast generalization, which can be applied to the theory of
polynomial equations and also to geometry.

7.2 Cosets and Lagrange’s Theorem

In this section we will prove a theorem that is a direct generalization of Fermat’s Little
Theorem and Euler’s Totient Theorem from Chapter 4. The key is to investigate the “shape”
of congruence classes modulo a subgroup.

(Left) Cosets of a Subgroup

Let pG, ˚, εq be a group and let H Ď G be a subgroup. For any element a P G we define

71When the group operation is addition then the expression a´1
˚ b becomes ´a` b.
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the (left) coset of H generated by a:

a ˚H :“ ta ˚ h : h P Hu Ď G.

I claim that these sets are precisely the equivalence classes for congruence modulo H.
That is, for all a, b P G I claim that

a ” b mod H ðñ a ˚H “ b ˚H.

We will denote the set of all cosets of H by G{H and we read this as “G mod H”. The
reason for the notation “G{H” is explained by Lagrange’s Theorem below.

Remark: There is a corresponding notion of right cosets H ˚ a “ th ˚ a : h P Hu which are the
equivalence classes for the relation of right congruence, where a ” b if and only if a ˚ b´1 P H.
In the case of abelian groups there is no difference. In the case of non-abelian groups the
difference is quite important. See the next section.

Proof. I will repeat the proof from the homework solutions. First let us suppose that
a ˚H “ b ˚H. Since ε P H we have b “ b ˚ ε P H. Then since b ˚H “ a ˚H we have b P a ˚H,
hence b “ a ˚ h for some h P H. It follows that a´1 ˚ b “ a´1 ˚ a ˚ h “ h P H and hence a ” b
mod H.

Conversely, let us suppose that a ” b mod H, so that a´1 ˚ b “ h for some h P H. Applying
a on the left gives b “ a ˚ h and then applying h´1 on the right gives a “ b ˚ h´1. Our goal
is to prove that a ˚H “ b ˚H and for this we must prove two inclusions: a ˚H Ď b ˚H and
b ˚H Ď a ˚H. For the first inclusion, consider an arbitrary element a ˚ h1 P a ˚H. Then since
h´1, h P H we have h´1 ˚ h P H and hence

a ˚ h1 “ pb ˚ h´1q ˚ h1 “ b ˚ ph´1 ˚ h1q P b ˚H.

For the second inclusion, consider an arbitrary element b ˚ h2 P b ˚H. Then since h, h2 P H
we have h ˚ h2 P H and hence

b ˚ h2 “ pa ˚ hq ˚ h2 “ a ˚ ph ˚ h2q P a ˚H.

˝

Since the (left) cosets of H are the equivalence classes for congruence mod H, it follows that
G is a disjoint union of these cosets. Here are a few examples:

Examples of Cosets.
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• Consider the group pZ,`, 0q and the subgroup nZ Ď Z. For any integer a P Z the coset
of nZ generated by a is the set

a` nZ “ ta` b : b P nZu
“ ta` nk : k P Zu
“ ta, a˘ n, a˘ 2n, a˘ 3n, . . .u.

We have seen that each coset of nZ can be expressed as r ` nZ for some unique integer
0 ď r ă n. Thus the set of cosets is

Z{nZ “ t0` nZ, 1` nZ, 2` nZ, . . . , pn´ 1q ` nZu.

Here we have partitioned the set Z into n pieces, where Z{nZ is the set of pieces. Of
course we know that Z{nZ is much more interesting than just a set; it is a ring. In the
next section we will explain why Z{nZ is an additive group and in the next chapter we
will explain why Z{nZ is a ring.

• Consider the group pR2,`,0q of points in the Euclidean plane under vector addition.
As with any group, we always have the trivial subgroup t0u and the full subgroup R2.
Apart from these, the most interesting subgroups are lines through the origin:72

L “ ttv : t P Ru Ď R2 for some “direction vector” v P R2.

Let’s verify that L is, indeed, a subgroup. First we observe that 0 “ 0v P L. Then for
any tv P L we observe that ´tv “ p´tqv P L. Finally, we observe for any sv, tv P L
that sv ` tv “ ps` tqv P L.

And what about the cosets of the subgroup L Ď R2? I claim that the cosets are the lines
parallel to L. (Apart from L itself, these lines do not pass through the origin, hence
they are not subgroups.) To see this, we observe that

a` L “ ta` tv : t P Ru,

which is the line that is parallel to L and passes through the point a. Here is a picture:

72Actually these are the only reasonable subgroups. The other subgroups come from bizarre properties of
the real numbers, which you don’t want to hear about. Another name for “reasonable subgroups of pR2,`,0q”
are “vector subspaces”.
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• Consider the group pCˆ,ˆ, 1q of nonzero complex numbers under multiplication. I claim
that the unit circle is a subgroup, called the circle group:73

Up1q “ tα P C : |α| “ 1u.

This is a subgroup because of the fact that |αβ| “ |α||β| for all complex numbers
α, β P C. Indeed:

– Since |1| “ 1 we have 1 P Up1q.

– Given α, β P Up1q we have |αβ| “ |α||β| “ 1 ¨ 1, and hence αβ P Up1q.

– Given α P Up1q we have

1 “ |1| “ |αα´1| “ |α||α´1| “ 1 ¨ |α´1| “ |α´1|

and hence α´1 P Up1q.

Using polar form we can also express the circle group as follows:

Up1q “ teiθ : θ P Ru.

Then the group operation becomes addition of angles: eiηeiθ “ eipη`θq. The cosets of
Up1q are the circles centered at the origin. (Apart from Up1q itself, these circles do not

73There are several other notations for the circle group, such as T, S1 and SOp2q. The notation Up1q comes
from the unitary group Upnq, which is the group of n ˆ n matrices A with complex entries that satisfy the
relation AA˚ “ I, where A˚ is the conjugate-transpose matrix. The 1 ˆ 1 unitary matrices are just numbers
α P C satisfying αα˚ “ 1, hence |α| “ 1.
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pass through 1, hence are not subgroups.) To see this, we observe for any α P Cˆ that

αUp1q “ tαeiθ : θ P Ru,

which is the circle centered at 0 and passing through α, as in the following picture:

Each of these examples was abelian. We will see in the next section that the situation is
more interesting/complicated for non-abelian groups. Now we present one of the fundamental
results of group theory. The proof is quite easy since we have developed the right technology.

Lagrange’s Theorem

Let pG, ˚, εq be a group and let H Ď G be a subgroup. If G is finite then the size of H
divides the size of G:

#H
ˇ

ˇ

ˇ
#G.

More specifically, if G{H is the set of cosets of H then we have

#G “ #pG{Hq ¨#H.
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This motivates the notation “G{H” for the set of cosets, since it implies that

#pG{Hq “ #G{#H.

Remark: This theorem can be viewed as a vast generalization of the Euler-Fermat Theorem
from Chapter 4. See the section below on Cyclic Groups.

Proof. For any element a P G we have a natural function from H to a ˚H:

ϕ : H Ñ a ˚H
h ÞÑ a ˚ h.

This function is surjective by definition and it is injective because

ϕph1q “ ϕph2q ùñ a ˚ h1 “ a ˚ h2

ùñ a´1 ˚ pa ˚ h1q “ a´1 ˚ pa ˚ h2q

ùñ pa´1 ˚ aq ˚ h1 “ pa
´1 ˚ aq ˚ h2

ùñ ε ˚ h1 “ ε ˚ h2

ùñ h1 “ h2.

Hence ϕ is bijective. If G (and hence H) is finite, it follows that any two cosets of H have the
same size; namely, #H. Finally, if G{H is the set of cosets of H then since G is the disjoint
union of these cosets we conclude that

#G “ (# of cosets) ¨ (size of each coset) “ #pG{Hq ¨#H.

˝

As the name suggests, Lagrange’s Theorem has something to do with Lagrange, but he only
stated a very special case. In his study of the roots of polynomials, Lagrange considered the set
of permutations that leave a given polynomial invariant. Given fpx1, . . . , xnq P Qrx1, . . . , xns,
he considered the following set74

H :“ tσ P Sn : σ ¨ f “ fu Ď Sn.

It is easy to check that this set H Ď Sn is a subgroup, hence it follows from Lagrange’s
Theorem that the size of H divides the size of Sn:

#H
ˇ

ˇ

ˇ
n!.

The set H is also called the stabilizer of f under the action of Sn on the set of polynomials.
We discuss the general context in the next section.

74Note that this set H is equal to the full group Sn if and only if f is a symmetric polynomial.
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7.3 The Orbit-Stabilizer Theorem

The abstract concept of a group emerged at the end of the 19th century as a way to systematize
certain ideas that are common to the following three subjects:

• Number Theory. As we have seen in Chapter 4, Euler’s Totient Theorem aφpnq ” 1
mod n is an example group-theoretical thinking. The Chinese Remainder Theorem can
also be viewed as an isomorphism of groups Z{mnZ – Z{mˆ Z{n.

• Classical Algebra. By this I mean the theory of solutions of polynomial equations.
Indeed, this was the context that inspired the definition of groups. Évariste Galois
invented the group concept in order to be able to talk more precisely about permutations
of the roots of a polynomial.

• Geometry and Physics. Many new concepts of “geometry” emerged in the 19th
century, including projective and hyperbolic geometry. In his Erlangen program (1872),
Felix Klein proposed to organize all of these new geometries in terms of their groups of
transformations, which can often be viewed as groups of matrices. This group-theoretic
language became fundamental to physics in the 20th century.

Thus we have three types of groups:

• Additive groups and multiplicative groups of numbers, which are abelian.

• Groups of permutations.

• Groups of matrices.

The second and third types are based on functional composition, and are in general not
abelian. These types of groups can also be viewed as “acting on” certain structures, such
as polynomials or points in space. This concept of “action” is also an important part of the
abstract theory of groups.

Definition of Group Action

Let pG, ˚, εq be a group and let X be a set. Suppose we have a function G ˆ X Ñ X,
which we denote by pg, xq ÞÑ g ¨ x. We call this function an action of G on X when the
following two properties are satisfied:

(i) For all x P X we have ε ¨ x “ x.

(ii) For all a, b P G and x P X we have a ¨ pb ¨ xq “ pa ˚ bq ¨ x.

Having such an action allows us to think of each group element a P G as a functionX Ñ X
defined by x ÞÑ a ¨ x.75 Axiom (i) says that the identity element ε P G corresponds to
the identity function X Ñ X and axiom (ii) tells us that the group operation in G
corresponds to the composition of functions.
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Here are the two fundamental examples.

• Permuting the Inputs of a Function. Recall from the previous chapter that for
any permutation σ P Sn and any polynomial fpx1, . . . , xnq we have another polynomial
obtained by permuting the inputs of f according to σ:

pσ ¨ fqpx1, . . . , xnq “ fpxσp1q, . . . , xσpnqq.

It is easy to check that this satisfies the axioms of group action. Namely, the group Sn
acts on the ring of polynomials Frx1, . . . , xns over any field F. We can also apply this
construction to more general kinds of functions with several inputs.

• Matrices Acting on Vector Spaces. Let GLnpFq denote the group of invertible nˆn
matrices with entries from a field F, which is called a general linear group.76 Here the
group operation is matrix multiplication and the identity element is the identity matrix.
Let Fn denote the vector space of nˆ 1 column vectors. Then for each invertible matrix
A P GLnpFq we obtain a function Fn Ñ Fn, also defined by matrix multiplication:

A P GLnpFq and v P Fn ùñ Av P Fn.

As we saw in Chapter 1, matrix multiplication is defined so that the matrix AB corre-
sponds to the composition of functions A ˝B. Hence this is a group action.

The following theorem could also be called the “fundamental theorem of group actions”. It
is closely related to Lagrange’s Theorem from the previous section. The theorem looks quite
abstract at first, but it turns out to be quite useful.

The Orbit-Stabilizer Theorem

Consider an action of a group pG, ˚, εq on a set X. For each element x P X, its orbit is
the set of elements of X that can be obtained from x by the action of G:77

Orbpxq “ ta ¨ x : a P Gu Ă X.

For each element x P X, its stabilizer is the set of elements of G that act trivially on x:

Stabpxq “ ta P G : a ¨ x “ xu Ď G.

I claim that Stabpxq Ď G is a subgroup, and, furthermore, that the assignment a ¨ x ÞÑ
a ˚ Stabpxq defines a bijection from elements of the orbit to (left) cosets of the stabilizer:

ϕ : Orbpxq Ñ G{Stabpxq
a ¨ x ÞÑ a ˚ Stabpxq.

75The only subtlety is that two different group elements a, b P G might correspond to the same function
X ˆX. That is, we might have a ¨ x “ b ¨ x for all x P X.

76Equivalently, GLnpFq is the set of matrices with nonzero determinant.
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If the group G is finite, it then follows from Lagrange’s Theorem that the sizes of G,
Orbpxq and Stabpxq are related as follows:

#G “ #Orbpxq ¨# Stabpxq.

Proof. First we show that Stabpxq Ď G is a subgroup.

• From (i) we have ε ¨ x “ x and hence ε P Stabpxq.

• Suppose that a, b P Stabpxq so that a ¨ x “ x and b ¨ x “ x. Then from (ii) we have

pa ˚ bq ¨ x “ a ¨ pb ¨ xq “ a ¨ x “ x,

and hence a ˚ b P Stabpxq.

• Suppose that a P Stabpxq so that a ¨ x “ x. Then from (i) and (ii) we have

a ¨ x “ x

a´1 ¨ pa ¨ xq “ a´1 ¨ x

pa´1 ˚ aq ¨ x “ a´1 ¨ x

ε ¨ x “ a´1 ¨ x

x “ a´1 ¨ x,

and hence a´1 P Stabpxq.

Next we show that the function ϕpa ¨xq “ a˚ Stabpxq is a bijection from the set Orbpxq to the
set of cosets G{Stabpxq. It is clearly surjective because any coset has the form a ˚ Stabpxq “
ϕpa ¨ xq. The following two-way sequence of implications shows that ϕ is well-defined and
injective:

a ¨ x “ b ¨ xðñ a´1 ¨ pa ¨ xq “ a´1 ¨ pb ¨ xq

ðñ pa´1 ˚ aq ¨ x “ pa´1 ˚ bq ¨ x

ðñ ε ¨ x “ pa´1 ˚ bq ¨ x

ðñ x “ pa´1 ˚ bq ¨ x

ðñ a´1 ˚ b P Stabpxq

ðñ a ˚ Stabpxq “ b ˚ Stabpxq.

The last step follows from the theorem on cosets proved in the previous section.

77In the formalism of Hamiltonian mechanics, the evolution of a physical system can be viewed as an infinite,
continuous group acting on a phase space of possible configurations. For example, the evolution of our solar
system under gravity can be viewed this way, in which case the planetary orbits are literally orbits under this
group action.

144



Finally, we apply Lagrange’s Theorem. If G is finite then the subgroup Stabpxq is finite and
the number of cosets satisfies

#pG{Stabpxqq “ #G{# Stabpxq.

Then since ϕ is a bijection, the orbit Orbpxq has the same size as G{Stabpxq, hence

#pG{Stabpxqq “ #Orbpxq

#G{# Stabpxq “ #Orbpxq

#G “ #Orbpxq ¨# Stabpxq.

˝

Are you starting to get a feel for these abstract algebra proofs? The key is to work with
the symbols literally and not try to interpret them. David Hilbert was one of the leading
mathematicians in the late 1800s and early 1900s, and was instrumental in raising the level
of rigor in the foundations of mathematics. When it comes to rigorous proofs in geometry, he
apparently said the following:

One must be able to say at all times — instead of points, straight lines, and planes
— tables, beer mugs, and chairs.

The interpretation comes after the theorem is proved.

So let’s see some interpretations.

The Icosahedral Group

Let I be the group of rotational symmetries of a regular icosahedron:

This is one of the five Platonic solids, which are the polyhedra with maximal symmetry.78

Suppose that the icosahedron is centered at the origin in R3. By definition each element
of a P I is a rotational function a : R3 Ñ R3 that leaves the icosahedron “looking the
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same”.79 I claim that
#I “ 60.

Proof. Let V be the set of vertices of the icosahedron, so that #V “ 12. By definition,
elements of the group I send vertices to vertices, hence the group I acts on the set V . Fix
some vertex v P V and consider the orbit Orbpvq Ď V and the stabilizer Stabpvq Ď I. The
word “regular” in “regular icosahedron” means that any two vertices look the same with
respect to some symmetry. To be precise, for any two vertices u, v P V there exists some a P I
such that u “ apvq. In other words, we have80

Orbpvq “ tapvq : a P Iu “ V.

Now let’s consider the stabilizer Stabpvq “ ta P I : apvq “ vu. Since each element of I is a
rotation, Stabpvq consists of rotations that do not move the vertex v. Since 5 triangles meet
at each vertex, we observe that Stabpvq consists of the 5 rotations around v by angles 2πk{n5,
where k “ 0, 1, 2, 3, 4, hence # Stabpvq “ 5. Finally, we conclude from the Orbit-Stabilizer
Theorem that

#I “ #Orbpvq ¨# Stabpvq “ #V ¨# Stabpvq “ 12 ¨ 5 “ 60.

˝

In the next example we compute the size of the alternating group An.81

The Alternating Group, Part 2

Recall from the previous chapter that every permutation σ P Sn can be expressed (in
many ways) as a composition of transpositions pijq P Sn. We defined An Ď Sn as
the set of permutations that can be expressed as a composition of an even number of
transpositions:

An “ tσ P Sn : there exist transpositions t1, . . . , t2k with σ “ t1 ˝ ¨ ¨ ¨ ˝ t2ku

And we showed that An Ď Sn is a subgroup. Based on this definition, it is not imme-
diately clear that An ‰ Sn. That is, it is not immediately clear that there exists any
permutation that is not alternating. Now we will use the Orbit-Stabilizer Theorem to

78The other four are the regular tetrahedron, cube, octahedron and dodecahedron.
79It is actually a bit tricky to show that this is a group. The identity and inverse axioms are easy, but it is

difficult to show that a composition of two rotations of R3 is also a rotation of R3. See the homework.
80In this case we say that I acts transitively on the set V .
81This example is not unrelated to the previous. It is a surprising fact that the icosahedral group I is

isomorphic to the alternating group A5. Maybe we will prove this later.
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prove that exactly half of the permutations are not alternating:

#An “
1

2
#Sn “

n!

2
“ 2 ¨ 3 ¨ ¨ ¨ pn´ 1q ¨ n.

I will phrase the proof as a discussion. The key idea is to view An as the stabilizer of a very
specific polynomial in n variables. Recall that Sn acts on polynomials by

pσ ¨ fqpx1, . . . , xnq “ fpxσp1q, . . . , xσpnqq.

Now consider the polynomial82

δpx1, . . . , xnq “
ź

1ďiăjďn

pxi ´ xjq.

Observe what happens when a permutation σ P Sn acts on δ:

σ ¨ δ “
ź

1ďiăjďn

pxσpiq ´ xσpjqq.

If σpiq ă σpjq then the factor xσpiq ´ xσpjq also appears in δ. But if σpiq ą σpjq then the
negative factor ´pxσpiq ´ xσpjqq appears in δ. In other words, we must have σ ¨ δ “ ˘δ and
the sign is determined by the number of pairs pi, jq satisfying i ă j and σpiq ą σpjq. We give
these a special name.

Inversions of a Permutation

Consider the set of pairs T “ tpi, jq : 1 ď i ă j ď nu, of size #T “
`

n
2

˘

“ npn´1q{2. Any
permutation σ P Sn breaks this set into two pieces, called inversions and non-inversions
of σ. The set of inversions is defined as follows:

Invpσq “ tpi, jq : 1 ď i ă j ď n and σpiq ą σpjqu Ď T.

Then from the above discussion we see that the action of σ on δ is determined by the
number of inversions:

σ ¨ δ “ p´1q#Invpσqδ.

Inversions can be computed graphically using the one-line notation for σ. They corre-
spond to pairs where the larger number appears to the left. For example, the following
diagram shows the inversions of the permutation σ “ 3147562:

82Note that δ is a square root of the discriminant ∆. This fact plays an important role in solvability of
polynomial equations.
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We can read the set of inversions from the diagram:

Invpσq “ tp1, 2q, p1, 7q, p3, 7q, p4, 5q, p4, 6q, p4, 7q, p6, 7qu.

The key fact about inversions is that the adjacent transpositions have one inversion each. Let
us define the adjacent transpositions s1, s2, . . . , sn´1 P Sn by

s1 “ p12q, s2 “ p23q, . . . sn´1 “ pn, n´ 1q.

Then one can see by drawing the diagram that Invpsiq “ tpi, i` 1qu. It follows from this that

si ¨ δ “ p´1q#Invpsiqδ “ p´1q1δ “ ´δ.

In fact, I claim that for any transposition t P Sn we have t ¨ δ “ ´δ. To see this,83 we first
observe that the transposition p37q can be expressed as follows:

p37q “ p34qp45qp56qp67qp56qp45qp34q.

More generally, any transposition t “ pijq with i ă j can be expressed as a composition of an
odd number of adjacent transpositions:

t “ pijq “ si ˝ si`1 ˝ ¨ ¨ ¨ ˝ sj´2 ˝ sj´1 ˝ sj´2 ˝ ¨ ¨ ¨ ˝ si`1 ˝ si.

By grouping in pairs we see that #Invptq “ 2pj ´ i´ 1q ` 1, which is odd, and hence

t ¨ δ “ p´1qoddδ “ ´δ.

Now we are ready to prove that An “ Stabpδq. First, suppose that σ P An so there exist
transpositions t1, . . . , t2k satisfying σ “ t1 ˝ ¨ ¨ ¨ ˝ t2k, so that

σ ¨ δ “ t1 ¨ pt2 ¨ pt3 ¨ ¨ ¨ ¨ t2k ¨ δq ¨ ¨ ¨ q “ p´1q2kδ “ δ.

It follows that σ P Stabpδq. Conversely, suppose that σ P Stabpδq so that σ ¨ δ “ δ, and
assume for contradiction that σ R An. Any permutation is a composition of transpositions.

83This can also be seen by drawing the diagram in one-line notation.
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Since σ is not a composition of an even number of transpositions, there exist an odd number
of transpositions t1, . . . , t2k`1 such that

σ “ t1 ˝ ¨ ¨ ¨ ˝ t2k`1,

and hence
σ ¨ δ “ t1 ¨ pt2 ¨ pt3 ¨ ¨ ¨ ¨ t2k`1 ¨ δq ¨ ¨ ¨ q “ p´1q2k`1δ “ ´δ.

Since we also have σ ¨ δ “ δ, this implies that δ “ ´δ. But then 2δ “ 0 implies δ “ 0, which
is a contradiction.

Finally, we observe that the orbit of δ under the action of Sn is just the two element set
tδ,´δu. Indeed, if σ is a composition of k transpositions then σ ¨ δ “ p´1qkδ “ ˘δ, hence
Orbpδq Ď tδ,´δu. And we know that both possibilities occur because id ¨ δ “ δ and t ¨ δ “ ´δ
for any transposition t. It follows from the Orbit-Stabilizer Theorem that

#Orbpδq ¨# Stabpδq “ #Sn

2 ¨#An “ #Sn

#An “
1

2
#Sn.

˝

Remark: This proof is trickier than you might have expected. Secretly, we are developing
some of the properties of determinants of square matrices. Indeed, the polynomial δ can be
viewed as a determinant:

det

¨

˚

˚

˚

˚

˚

˝

1 x1 x2
1 ¨ ¨ ¨ xn´1

1

1 x2 x2
2 ¨ ¨ ¨ xn´1

2

1 x3 x2
3 ¨ ¨ ¨ xn´1

3
...

...
...

. . .
...

1 xn x2
n ¨ ¨ ¨ xn´1

n

˛

‹

‹

‹

‹

‹

‚

“
ź

1ďiăjďn

pxi ´ xjq.

This is called Vandermonde’s determinant.

7.4 Quotient Groups

For any subgroup H Ď G we have studied the set G{H of (left) cosets. The definitions were
inspired by our previous experience with modular arithmetic:

• Every subgroup of pZ,`, 0q has the form nZ for some n ě 0.

• Congruence mod nZ is the same as congruence mod n.

• The set of cosets Z{nZ has n elements:

Z{nZ “ t0` nZ, 1` nZ, . . . , pn´ 1q ` nZu.
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But Z{nZ is not only a set; it is a ring. In Chapter 4 we proved (using slightly different
language) that the following operations on cosets are well-defined:

pa` nZq ` pb` nZq :“ pa` bq ` nZ,
pa` nZqpb` nZq :“ pabq ` nZ.

Then one can check that these operations make the set Z{nZ into a ring with additive identity
0` nZ and multiplicative identity 1` nZ.

We will generalize this construction to arbitrary rings in the next chapter. For now we will
focus on groups, which have only a single operation. So let pG, ˚, εq be a group and let H Ď G
be a subgroup. Then there is a natural candidate for a group operation on the set G{H:84

pa ˚Hq ˚ pb ˚Hq :“ pa ˚ bq ˚H.

However, this operation might not be well-defined. Let’s try to imitate the proof for Z{nZ
and see where it goes wrong. Our goal is to prove that

a1 ˚H “ a2 ˚H and b1 ˚H “ b2 ˚H ùñ pa1 ˚ b1q ˚H “ pa2 ˚ b2q ˚H.

By the results in the previous section this is equivalent to the following statement:

a´1
1 ˚ a2 P H and b´1

1 ˚ b2 P H ùñ pa1 ˚ b1q
´1 ˚ pa2 ˚ b2q P H.

So let us assume that a´1
1 ˚ a2 “ h1 and b´1

1 ˚ b2 “ h2 for some elements h1, h2 P H. In this
case we want to show that pa1 ˚ b1q

´1 ˚ pa2 ˚ b2q P H. We begin by observing that

pa1 ˚ b1q
´1 ˚ pa2 ˚ b2q “ b´1

1 ˚ a´1
1 ˚ a2 ˚ b2

“ b´1
1 ˚ h1 ˚ b2,

but then we are stuck. If G is abelian then b´1
1 ˚ h1 ˚ b2 “ h1 ˚ b

´1
1 ˚ b2 “ h1 ˚ h2 P H, but in

general b´1
1 ˚ h1 ˚ b2 need not be an element of H.

The following concept will seem unmotivated at first. It was introduced by Galois (1830) in
his study of polynomials. I will describe Galois’ motivation at the end of this section. In the
next section I will describe the modern point of view, which makes the definition seem less
random.

Concept of a Normal Subgroup

Let pG, ˚, εq be a group and let H Ď G. Then I claim that the following two conditions
are equivalent:

(N1) For all g P G and h P H we have g ˚ h ˚ g´1 P H.

(N2) For all g P G the right and left cosets are equal: g ˚H “ H ˚ g.

When these conditions hold we say that H is a normal subgroup of G.

84Don’t take the notation too literally. It is not necessarily true that pa ˚Hq ˚ pb ˚Hq is the set of elements
of the form g1 ˚ g2 where g1 is in the set a ˚H and g2 is in the set b ˚H.
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Remark: Every subgroup of an abelian group is normal. This concept is only interesting
for non-abelian groups such as the symmetric group or general linear groups.

Proof. (N2)ñ(N1): Suppose that (N2) is true. In order to prove (N1), consider any g P G
and h P H. Our goal is to show that g ˚h˚g´1 P H. Since g ˚h P g ˚H and since g ˚H “ H ˚g
by (N2), we must have g ˚h P H ˚ g and hence g ˚h “ h1 ˚ g for some h1 P H. Finally, we have

g ˚ h ˚ g´1 “ h1 P H.

(N1)ñ(N2): Suppose that (N1) is true. In order to prove (N2), consider any g P G. Our goal
is to prove the following inclusions:

(i) g ˚H Ď H ˚ g

(ii) H ˚ g Ď g ˚H

To prove (i), consider any element a P g ˚ H, which must have the form a “ g ˚ h for some
h P H. Then by (N1) we have g ˚ h ˚ g´1 “ h1 for some h1 P H and it follows that

a “ g ˚ h “ h1 ˚ g P H ˚ g.

The proof of (ii) is similar. ˝

Before moving on, it is good to see at least one example of a non-normal subgroup. As
mentioned, every subgroup of an abelian group is normal so we must begin with a non-abelian
group. The smallest such group is the symmetric group of size 3! “ 6:

S3 “ tid, p12q, p23q, p13q, p123q, p132qu.

I claim that the subset H “ tid, p12qu is an example of a non-normal subgroup. Indeed, it is a
subgroup because p12q ˝ p12q “ id and p12q´1 “ p12q. To see that it is non-normal we observe
that property (N2) fails:

p23q ˝H “ tp23q ˝ id, p23q ˝ p12qu “ tp23q, p132qu,

H ˝ p23q “ tid ˝ p23q, p12q ˝ p23qu “ tp23q, p123qu.

These two cosets are not equal because the permutations p123q and p132q are not equal.

The concept of a normal subgroup allows us to construct quotient groups.
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Concept of a Quotient Group

Consider a group pG, ˚, εq and a normal subgroup H Ď G. Then the following operation
is well-defined and makes the set of cosets G{H into a group:

pa ˚Hq ˚ pb ˚Hq :“ pa ˚ bq ˚H.

Proof. Suppose that a1 ˚ H “ a2 ˚ H and b1 ˚ H “ b2 ˚ H for some a1, a2, b1, b2 P G. In
this case we want to prove that pa1 ˚ b1q ˚H “ pa2 ˚ b2q ˚H. Equivalently, we want to show
that a´1

1 ˚ a2 P H and b´1
1 ˚ b2 P H implies pa1 ˚ b1q

´1 ˚ pa2 ˚ b2q P H. So let us suppose that
a´1

1 ˚ a2 “ h1 and b´1
1 ˚ b2 “ h2 for some h1, h2 P H. Then we have

pa1 ˚ b1q
´1 ˚ pa2 ˚ b2q “ b´1

1 ˚ a´1
1 ˚ a2 ˚ b2

“ b´1
1 ˚ h1 ˚ b2,

Now we will use the fact that H is normal. In particular, we will use the fact that b2 ˚H “

H ˚ b2. Since h1 ˚ b2 is an element of H ˚ b2, it must also be an element of b2 ˚ H, so that
h1 ˚ b2 “ b2 ˚ h3 for some element h3 P H. Then we have

b´1
1 ˚ h1 ˚ b2 “ b´1

1 ˚ b2 ˚ h3 “ h2 ˚ h3 P H.

as desired. Hence the operation is well-defined.

Next we check the groups axioms:

• The coset ε ˚ H “ H plays the role of the identity element. Indeed, for any element
a P G we have

pa ˚Hq ˚ pε ˚Hq “ pa ˚ εq ˚H “ a ˚H “ pε ˚ aq ˚H “ pε ˚Hq ˚ pa ˚Hq.

• Given a coset a P H, the coset a´1 ˚H plays the role of the inverse:

pa ˚Hq ˚ pa´1 ˚Hq “ pa ˚ a´1q ˚H “ ε ˚H “ pa ˚ a´1q ˚H “ pa ˚Hq ˚ pa´1 ˚Hq.

• Finally, the associative property follows from the associative property in G:

pa ˚Hq ˚ rpb ˚Hq ˚ pc ˚Hqs “ pa ˚Hq ˚ rpb ˚ cq ˚Hs

“ pa ˚ rb ˚ csq ˚H

“ pra ˚ bs ˚ cq ˚H

“ rpa ˚ bq ˚Hs ˚ pc ˚Hq

“ rpa ˚Hq ˚ pb ˚Hqs ˚ pc ˚Hq.
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˝

That is a lot of abstraction, so there had better be some good applications. Galois originally
applied this concept to the problem of solvability of polynomials. Recall the quadratic formula:

x2 ` ax` b “ 0 ðñ x “
´a˘

?
a2 ´ 4b

2
.

In Chapter 1 we discussed a similar formula for cubic polynomails, called Cardano’s formula:85

x3 ` ax2 ` bx` c “ 0 ðñ
3

b

´q `
a

q2 ` p3 `
3

b

´q ´
a

q2 ` p3 `
a

3
,

where p and q are given in terms of a, b, c by

p “
3b´ a2

9
and q “

27c´ 9ab` 2a3

54
.

As we saw, there is some difficulty to interpret this formula, but at least it gives a precise
algebraic algorithm to find the roots of the polynomial x3 ` ax2 ` bx ` c in terms of the
coefficients, the field operations `,´,ˆ,˜, square roots

?
and cube roots 3

?
. Cardano’s

student Ferrari gave a similar formula for equations of degree 4. After this, the central problem
of algebra was to find formulas for polynomials of higher degree.

The Central Problem of Classical Algebra

Consider the general polynomial equation of degree n:

xn ` a1x
n´1 ` a2x

n´2 ` ¨ ¨ ¨ ` an´1x` an “ 0.

Find a precise formula to express the solutions of this equation in terms of the coefficients,
the field operations `,´,ˆ,˜, and the root operations

?
, 3
?
, . . . , n

?
. If this can be done

then we say that the equation is solvable by radicals.

The cubic and quartic formulas were discovered in the early 1500s and published by Cardano
in the Ars Magna (1545). After this, progress stalled on the quintic equation. After the
efforts of many generations of “geometers” (the word “algebraist” did not yet exist), Lagrange
summarized the state of the art in his Treatise on the solution of equations in all degrees
(1770). He suggested that the general quintic is likely unsolvable but he could not find a way
to prove it. In fact, he suggested that the subject of algebra had become too complicated to
be interesting.

85We have not yet explained where this formula comes from. We will do this in Chapter 9.
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Two more generations later, Niels Henrik Abel gave the first proof of impossibility, which
was extremely complicated, as expected by Lagrange. At the same time, Évariste Galois
approached the problem from a completely different point of view. His idea was to ignore
the details and to concentrate on the “symmetries” of the roots. Here is Galois’ fundamental
theorem, written in modern language.

Galois’ Solvability Theorem

The general polynomial equation of degree n is solvable by radicals if and only if there
exists a chain of subgroups in the symmetric group

Sn “ G0 Ě G1 Ě G2 Ě ¨ ¨ ¨ Ě Gr “ tidu,

satisfying the following two properties:

• For each i, Gi`1 is a normal subgroup of Gi.

• Each quotient group Gi{Gi`1 is abelian.

Abel died in 1829 at age 26 from tuberculosis and Galois died in 1831 at age 21 in a duel.
After this the chain of transmission was broken and it took several decades for others to pick
up on Galois’ fundamental ideas. The details of algebraic computations slowly faded away
and were replaced by the theory of permutations (called “substitutions”). The next major
progress came with Camille Jordan’s Treatise on permutations (1870). After this, even the
concept of permutations slowly faded away and was replaced by abstract “group theory”.

I will give an introduction to Galois theory in Chapter 9, but we do not have time in this
course to present a full proof of Galois’ theorem.

7.5 The First Isomorphism Theorem

This section is the most abstract one in the course. Here we will learn the modern language
that is used to discuss normal subgroups and quotient groups. The key is to focus on the “maps
between groups” instead of just the groups in themselves. This point of view was advocated
by Emmy Noether in the 1920s and became standard when her ideas were published in the
textbook Modern Algebra (1930) by van der Waerden.

Concept of Group Homomorphism

Consider two groups pG, ˚, εq and pG1, ‚, δq. A function ϕ : G Ñ G1 is called a group
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homomorphism when the following property is satisfied for all a, b P G:

ϕpa ˚ bq “ ϕpaq ‚ ϕpbq.

This definition satisfies the following basic properties:

(1) ϕpεq “ δ

(2) ϕpa´1q “ ϕpaq´1 for all a P G.

(3) If the inverse function ϕ´1 : G1 Ñ G exists then it is a group homomorphism.

Proof. (1): First we observe that

ε ˚ ε “ ε

ϕpε ˚ εq “ ϕpεq

ϕpεq ‚ ϕpεq “ ϕpεq

ϕpεq´1 ‚ ϕpεq ‚ ϕpεq “ ϕpεq´1 ‚ ϕpεq

ϕpεq “ δ.

(2): Then for any element a P G we observe that

a ˚ a´1 “ ε

ϕpa ˚ a´1q “ ϕpεq

ϕpaq ‚ ϕpa´1q “ δ from (1)

ϕpaq´1 ‚ ϕpaq ‚ ϕpa´1q “ ϕpaq´1 ‚ δ

ϕpa´1q “ ϕpaq´1.

(3): Finally, we observe for all a1, b1 P G1 that

ϕ
`

ϕ´1pa1q ˚ ϕ´1pb1q
˘

“ ϕ
`

ϕ´1pa1q
˘

‚ ϕ
`

ϕ´1pb1q
˘

“ a1 ‚ b1.

Then applying ϕ´1 to both sides gives the desired result:

ϕ´1pa1 ‚ b1q “ ϕ´1
`

ϕ
`

ϕ´1pa1q ˚ ϕ´1pb1q
˘˘

“ ϕ´1pa1q ˚ ϕ´1pb1q.

˝

Concept of Group Isomorphism

By an isomorphism of groups we mean a bijective group homomorphism ϕ : G Ñ G1

whose inverse function ϕ´1 : G1 Ñ G is also a group homomorphism. As we saw in the
previous proof, this second condition is redundant.
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When such an isomorphism exists86 we say that G and G1 are isomorphic87 and we write

G – G1.

We can think of an isomorphism ϕ : G Ñ G1 are a “relabeling” of the elements of a
group, leaving the relationships between these elements the same.

For example, we observed in the previous chapter that the groups pZ{3Z,`, 0q and pA3, ˝, idq
have the same group table, up to relabeling:

` 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

˝ id p123q p132q

id id p123q p132q
p123q p123q p132q id
p132q p132q id p123q

In other words, the function ϕ : Z{3Z Ñ A3 defined by ϕp0q “ id, ϕp1q “ p123q and ϕp2q “
p132q is a group isomorphism.88

In general, we need a between way to construct isomorphisms beyond just staring at the
group tables. The following theorem can be viewed as the “fundamental theorem of group
isomorphisms”.

The First Isomorphism Theorem (FIT)

Let ϕ : pG, ˚, εq Ñ pG1, ‚, δq be a group homomorphism. The kernel and image of ϕ are
the following subsets of G and G1, respectively:

kerϕ :“ ta P G : ϕpaq “ δu Ď G,

imϕ :“ ta1 P G1 : Da P G,ϕpaq “ a1u Ď G1.

I claim that imϕ Ď G1 is a subgroup and that kerϕ Ď G is a normal subgroup. Fur-
thermore, I claim that the following is a well-defined group isomorphism:

ϕ̃ : G{ kerϕ Ñ imϕ
a ˚ kerϕ ÞÑ ϕpaq.

86This isomorphism need not be unique. In general, a given pair of isomorphic groups will have many different
isomorphisms between them.

87The word “isomorphism” is also used for other algebraic structures, such as rings and vector spaces. If the
distinction needs to be made we will say that G and G1 are isomorphic as groups.

88But it is not unique because the function µp0q “ id, µp1q “ p132q and µp2q “ p123q is also a group
isomorphism.
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Our proof uses properties (1) and (2) of homomorphisms from the previous theorem.

Proof. First we show that kerϕ Ď G is a subgroup:

• Identity. By (1) we have ϕpεq “ δ and hence ε P kerϕ.

• Inversion. Suppose that a P kerϕ, so that ϕpaq “ δ. Then from (2) we have

ϕpa´1q “ ϕpaq´1 “ δ´1 “ δ,

so that a´1 P kerϕ.

• Closure under group operation. Suppose that a, b P kerϕ so that ϕpaq “ δ and
ϕpbq “ δ. Then from the definition of group homomorphism we have

ϕpa ˚ bq “ ϕpaq ‚ ϕpbq “ δ ‚ δ “ δ,

so that a ˚ b P kerϕ.

Next we show that kerϕ Ď G is normal. To do this, consider any g P G and h P kerϕ, so that
ϕphq “ δ. Then from the definition of homomorphism and property (2) we have

ϕpg ˚ h ˚ g´1q “ ϕpgq ‚ ϕphq ‚ ϕpgq´1

“ ϕpgq ‚ δ ‚ ϕpgq´1

“ ϕpgq ‚ ϕpgq´1

“ δ.

It follows that g ˚ h ˚ g´1 P kerϕ, hence kerϕ is normal by property (N1).

Next we verify that imϕ Ď G1 satisfies the subgroup axioms:

• Identity. By (1) we have δ “ ϕpεq P imϕ.

• Inversion. Let a1 P imϕ, so that a1 “ ϕpaq for some a P G. Then from (2) we have

pa1q´1 “ ϕpaq´1 “ ϕpa´1q P imϕ.

• Closure under group operation. Suppose that a1, b1 P imϕ so that a1 “ ϕpaq and
b1 “ ϕpbq for some a, b P G. Then from the definition of group homomorphism we have

a1 ‚ b1 “ ϕpaq ‚ ϕpbq “ ϕpa ˚ bq P imϕ.

Finally, we show that ϕ̃ is a well-defined group isomorphism. If the function ϕ̃ is well-defined
then then it is certainly surjective. To see that it is well-defined and injective, we observe for
all a, b P G that

a ˚ kerϕ “ b ˚ kerϕðñ a´1 ˚ b P kerϕ
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ðñ ϕpa´1 ˚ bq “ δ

ðñ ϕpaq´1 ‚ ϕpbq “ δ

ðñ ϕpaq “ ϕpbq.

˝

The following condition (N3) can be taken as the modern definition of normal subgroups. I
believe this is the correct definition because the concept of homomorphism is so natural.

Modern Definition of Normal Subgroups

Let pG, ˚, εq be a group and let H Ď G. Then I claim that the following two conditions
are equivalent:

(N1) For all g P G and h P H we have g ˚ h ˚ g´1 P H.

(N2) For all g P G the right and left cosets are equal: g ˚H “ H ˚ g.

(N3) There exists a group G1 and a group homomorphism ϕ : GÑ G1 such that

kerϕ “ H.

Proof. We have already seen that (N1) and (N2) are equivalent. We will show that (N3) is
equivalent to both of these.

First suppose that we have a group homomorphism ϕ : GÑ G1. Then we saw in the proof of
the FIT that kerϕ is a normal subgroup in the sense of (N1) and (N2). Conversely, let H Ď G
be a normal subgroup in the sense of (N1) and (N2). In this case, we showed in the previous
section that the set of cosets G{H is a group with operation

pa ˚Hq ˚ pb ˚Hq “ pa ˚ bq ˚H.

In fact, this definition says that the following quotient map is a group homomorphism:

ϕ : G Ñ G{H
a ÞÑ a ˚H.

Finally, since H is the identity element of the group G{H, we observe that the kernel is H:

a P kerϕðñ ϕpaq “ H

ðñ a ˚H “ H

ðñ a P H.
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˝

The First Isomorphism Theorem is the most abstract result that we will prove in this course.
The rest is applications and examples.

Some Examples.

‚ The Circle Group. Consider the multiplicative circle group

Up1q “ tα P C : |α| “ 1u “ teiθ : θ P Ru.

We have the following natural homomorphism from the additive group of real numbers:

ϕ : pR,`, 0q Ñ pUp1q,ˆ, 1q

t ÞÑ e2πit.

Check that this is a homomorphism:

ϕpt1 ` t2q “ e2πipt1`t2q “ e2πit1e2πit2 “ ϕpt1qϕpt2q.

It is clearly surjective and its kernel is the additive group of integers:

t P kerϕðñ ϕptq “ 1

ðñ e2πit “ 1

ðñ t P Z.

Hence we have an isomorphism:

R{Z “ R{ kerϕ – imϕ “ Up1q.

The operation on the left is “addition of real numbers, modulo whole numbers”. This is
supposed to represent the set of angles under addition.89

‚ Roots of Unity. Let ω “ e2πi{n and let Ωn denote the nth roots of unity:

Ωn “ t1, ω, ω
2, . . . , ωn´1u.

This is a group under multiplication: pΩn,ˆ, 1q. Now consider the following surjective group
homomorphism from the additive group of integers:

ϕ : pZ,`, 0q Ñ pΩn,ˆ, 1q

k ÞÑ ωk.

The kernel is the subgroup nZ Ď Z:

k P kerϕ ðñ ωk “ 1 ðñ n|k.

89We could also have defined ϕptq “ eit with kernel 2πZ “ t2πk : k P Zu Ď R, so that Up1q – R{2πZ. I chose
to put the 2π in the homomorphism rather than in the kernel.
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Hence we obtain a group isomorphism:

Z{nZ “ Z{ kerϕ – imϕ “ Ωn.

Let me emphasize the special case n “ 2. Here, the additive group consisting of t0, 1u is
isomorphic to the multiplicative group consisting of t1,´1u:

pt0, 1u,` mod 2, 0q – pt1,´1u,ˆ, 1q
0 Ø 1
1 Ø ´1.

‚ The Alternating Group. In the section on the Orbit-Stabilizer Theorem we studied the
action of the symmetric group Sn on the Vandermonde polynomial

δpx1, . . . , xnq “
ź

1ďiăjďn

pxi ´ xjq.

Let us define the sign of the permutation σ P Sn as the number sgnpσq P t˘1u such that

σ ¨ δ “ sgnpσqδ.

Since the action of Sn on polynomials is “linear” (i.e., respects addition and scalar multipli-
cation) we observe that

sgnpσ ˝ τqδ “ pσ ˝ τq ¨ δ

“ σ ¨ pτ ¨ δq

“ σ ¨ rsgnpτqδs

“ sgnpτq rσ ¨ δs scalar comes outside

“ sgnpτq rsgnpσqδs

“ rsgnpσqsgnpτqs δ,

and hence sgnpσ ˝ τq “ sgnpσqsgnpτq. In other words, the sign of a permutation is a group
homomorphism:

sgn : Sn Ñ pt˘1u,ˆ, 1q.

The kernel of this homomorphism is the same as the stabilizer of δ, hence it follows from our
result in the Orbit-Stabilizer section that

kerpsgnq “ An.

This implies that An Ď Sn is a normal subgroup, and its quotient group is given by the First
Isomorphism Theorem:

Sn{An “ Sn{ kerpsgnq – im psgnq “ t˘1u.
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‚ Euler’s Isomorphism. Recall Euler’s formula:

eiθ “ cos θ ` i sin θ.

From a more abstract point of view we can see this as a group isomorphism:

Up1q – SOp2q.

To explain the notation, we define the orthogonal groups Opnq and the unitary groups Upnq.
These consist of invertible n ˆ n matrices with real (resp. complex) entries whose inverse is
equal to its transpose (resp. conjugate transpose):

Opnq “ tA P MatnˆnpRq : ATA “ Iu,

Upnq “ tA P MatnˆnpCq : A˚A “ Iu.

These are complicated infinite groups. However, they can be described explicitly for small
values of n. Note that the group Op1q consists of invertible 1 ˆ 1 matrices with real entries
(i.e., just nonzero real numbers α) whose inverse is equal to their transpose (i.e., such that
α2 “ αα “ 1). Hence this group only has two elements:

Op1q “ tα P R : α2 “ 1u “ t˘1u.

The group Up1q consists of invertible 1 ˆ 1 matrices with complex entries (i.e., just nonzero
complex numbers) whose inverse is equal to their conjugate transpose (i.e., just their complex
conjugate). In other words, Up1q is just the circle group:90

Up1q “ tα P C : |α| “ α˚α “ 1u.

The group Op2q is more interesting. Consider any 2 ˆ 2 matrix A with real entries. We can
write this as

A “

¨

˝

| |

u v
| |

˛

‚,

for some 2ˆ 1 column vectors u,v P R2. If A P Op2q they we must have

ATA “ I

ˆ

´ uT ´

´ vT ´

˙

¨

˝

| |

u v
| |

˛

‚“

ˆ

1 0
0 1

˙

ˆ

uTu uTv

vTu vTv

˙

“

ˆ

1 0
0 1

˙

ˆ

}u}2 u ‚ v

u ‚ v }v}2

˙

“

ˆ

1 0
0 1

˙

,

which implies that u and v are perpendicular unit vectors. If we let u “ pcos θ, sin θq then
this gives two possible choices for v:

90And this is the explanation for the notation Up1q. The U stands for “unitary group”.
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In other words, every element of the group Op2q looks like one of the following matrices:

Rθ “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

or Fθ “

ˆ

cos θ sin θ
sin θ ´ cos θ

˙

If we view these as linear functions R2 Ñ R2 then the following diagram shows that Rθ is
the rotation by angle θ and Fθ is the reflection across the line having angle θ{2 from the
positive x-axis:91

Observe that rotations have determinant 1 while reflections have determinant ´1:

detRθ “ cos2 θ ` sin2 θ and detFθ “ ´ cos2 θ ´ sin2 θ “ ´1.

Furthermore, one can check the following identities:

• RαRβ “ Rα`β,

• FαFβ “ Rα´β,

91R is for Rotation and F is for reFlection (or Flip).
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• RαFβ “ FβR´α “ Fα`β.

These identities show that the set of rotation matrices is a subgroup of Op2q, while the set
of reflection matrices is not a subgroup. Indeed, the second identity above shows that the
composition of two reflections is a rotation. We use the following notation for the group of
rotations:92

SOp2q “ tRθ : θ P Ru.

Finally, the classical Euler’s formula implies that the following function is a group isomor-
phism:93

ϕ : Up1q Ñ SOp2q

eiθ ÞÑ Rθ.

‚ “Special” Matrix Groups. You have probably seen a non-rigorous treatment of matrix
determinants, including the fact that

detpABq “ detpAqdetpBq.

From a higher point of view we can see the determinant as a group homomorphism from the
general linear group GLnpCq to the group of nonzero complex numbers:94

det : GLnpCq Ñ pCˆ,ˆ, 1q.

The kernel of this homomorphism is the special linear group:

SLnpCq “ tA P GLnpCq : detpAq “ 1u.

There is also a real version SLnpRq Ď GLnpRq, corresponding to real invertible matrices with
determinant 1.

Since the determinant of a transpose satisfies detpAT q “ detpAq, we observe that the determi-
nant of an orthogonal matrix can only be 1 or ´1. Indeed, if A is a real matrix then detpAq
is real, and we must have

ATA “ I

detpAT qdetpAq “ detpIq

detpAqdetpAq “ 1

detpAq2 “ 1.

Hence we obtain a group homomorphism:

det : Opnq Ñ Op1q “ t˘1u.

92See the next bullet point for an explanation of this notation.
93This is closely related to the results of Section 1.5.
94It would take us too far afield to give a rigorous definition and proof. The determinant is powerful precisely

because it is hard to study.
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The kernel is called the special orthogonal group:

SOpnq “ tA P Opnq : detpAq “ 1u.

Finally, since the determinant of a conjugate transpose satisfies detpA˚q “ detpAq˚, we find
that the determinant of a unitary matrix has length 1:

A˚A “ I

detpA˚q detpAq “ detpIq

detpAq˚ detpAq “ 1

| detpAq| “ 1.

Hence we obtain a group homomorphism:

det : Upnq Ñ Up1q.

The kernel is called the special unitary group:

SUpnq “ tA P Upnq : detpAq “ 1u.

These groups are important in quantum physics. For example, there is a certain group homo-
morphism from SUp2q to SOp3q that is responsible for quantum spin:

spin : SUp2q Ñ SOp3q.

‚ The Alternating Group Again. There is an important relationship between groups of
permutations and groups of matrices. For any permutation σ P Sn we let rσs denote the nˆn
matrix whose i, j entry is 1 if i “ σpjq and 0 otherwise. Essentially, the matrix rσs is obtained
from the identity matrix by permuting its columns. For example, in the group S3 we have

rp12qs “

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚ and rp123qs “

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚.

One can check that this assignment sends composition of permutations to multiplication of
matrices:

rσ ˝ τ s “ rσsrτ s.

Furthermore, it sends the inverse to the transpose and the sign to the determinant:

rσ´1s “ rσsT and rsgnpσqs “ detrσs.

The first of these identities shows that permutation matrices are orthogonal. In other words,
the function σ ÞÑ rσs is an injective group homomorphism from Sn to Opnq:

r´s : Sn Ñ Opnq
σ ÞÑ rσs.
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The second identity says that this homomorphism restricts to a homomorphism from the
alternating group An into the special orthogonal group SOpnq:

r´s : An Ñ SOpnq
σ ÞÑ rσs.

In this sense, the alternating group is the “special” subgroup of permutations.

I included these examples of matrix groups for context and cultural exposure. You will not
be tested on this material because there is simply no time to treat it in detail.

7.6 Cyclic Groups

The concept of isomorphism is an equivalence relation on the “set of all groups”:95

• Reflexive. The identity function GÑ G is an isomorphism.

• Symmetric. The inverse of an isomorphism GÑ H is an isomorphism H Ñ G.

• Transitive. The composition of two homomorphisms is a homomorphism and the com-
position of two bijections is a bijection.

This leads to the following problem.

The Problem of Classification

For any n ě 1, describe all groups of size n up to isomorphism.

There is always at least one group of size n; namely, pZ{nZ,`, 0q. And if p is prime then we
will show that pZ{pZ,`, 0q is the only group of size p. However, there are many groups of
size 2k and it is impossible to describe them in any coherent way. Here is a list showing the
number of groups of small order, up to isomorphism:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# of groups of size n 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1

Actually, we have seen most of these groups already. The two groups of size 4 are Z{4Z and
Z{2Zˆ Z{2Z, where the direct product is defined as the set of ordered pairs

Z{2Zˆ Z{2Z “ tpa, bq : a P Z{2Z, b P Z{2Zu,
95There are some logical difficulties in thinking of the collection of all groups as a set. Similarly, Russell

showed that there can be no such thing as the “set of all sets”. If there were then we would could define

S “ the set of all sets that are not members of themselves.

But this definition leads to a logical contradiction because S P S if and only if S R S.
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with the componentwise group operation

pa, bq ` pa1, b1q “ pa` a1 mod 2, b` b1 mod 2q.

This group is not isomorphic to Z{4Z because, for example, every element of Z{2Z ˆ Z{2Z
when added to itself gives the identity element:96

pa, bq ` pa, bq “ p2a mod 2, 2b mod 2q “ p0, 0q.

But the elements 1 and 3 in Z{4Z do not have this property:

1` 1 ı 0 mod 4 and 3` 3 ı 0 mod 4

The problem of classification is deep and challenging. In this course we will only take the first
step: the classification of “cyclic groups”. This study begins with the concept of the order of
an element.

The Order of an Element

Consider a group pG, ˚, εq and an arbitrary element a P G. Then for any integer k we
define the exponential notation

ak :“

$

’

’

’

’

’

&

’

’

’

’

’

%

k times
hkkkkkkikkkkkkj

a ˚ a ˚ ¨ ¨ ¨ ˚ a if k ě 1,

ε if k “ 0,

a´1 ˚ a´1 ˚ ¨ ¨ ¨ ˚ a´1
loooooooooooomoooooooooooon

´k times

if k ď ´1.

By a tedious case-by-case check,97 one can show that

ak`` “ ak ˚ a`.

In other words, the function ϕ : pZ,`, 0q Ñ pG, ˚, εq defined by ϕpkq “ ak is a group
homomorphism. It follows from this that the set of all powers of a is a subgroup of G,
called the cyclic subgroup generated by a. We use the notation

xay “ tak : k P Zu “ imϕ Ď G.

The kernel of this homomorphism is a subgroup of pZ,`, 0q, hence it must have the form
nZ for some n ě 0, and it follows from the FIT that

xay “ imϕ – Z{ kerϕ “ Z{nZ.

96If m and n are coprime then we recall from the Chinese Remainder Theorem that the group Z{mZˆZ{nZ
is isomorphic to Z{mnZ.
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To be explicit, this isomorphism says that

ak “ a` ðñ k ” ` mod n.

We define the order of a as an element of G as follows:

ordGpaq “ #xay “ #pZ{nZq “

#

n if n ě 1,

8 if n “ 0.

In the case of finite order we have

xay “ tε, a, a2, . . . , an´1u

and in the case of infinite order there is no repetition among the powers of a:

xay “ t. . . , a´2, a´1, ε, a, a2, . . .u.

As a corollary we obtain a generalization of the Euler-Fermat Theorem from Chapter 4.

Generalized Euler-Fermat Theorem

Let G be a finite group. Then for any element a P G we have

a#G “ ε.

In Chapter 4 we presented a proof due to Euler that holds for abelian groups. Now we give
the proof for non-abelian groups.

Proof. Let n “ ordGpaq “ #xay. Since G is finite we must have n ă 8, and by Lagrange’s
Theorem we must have

n “ #xay |#G,

so that #G “ nk for some k P Z. It follows that

a#G “ ank “ panqk “ εk “ ε.

˝

Here are some more examples.

97There are 9 cases.
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Examples.

‚ A Matrix of Infinite Order. Let F be any field and consider the matrix

A “

ˆ

1 1
0 1

˙

P GL2pFq.

I claim that this matrix has infinite order. In fact, I claim that for any integer k P Z we have

Ak “

ˆ

1 k
0 1

˙

,

from which it follows that Ak is the identity if and only if k “ 0. To prove this, we first note
that A0 “ I by definition. Now assume for induction that the statement is true for Ak. In
this case the statement is also true for k ` 1 because

Ak`1 “ AAk “

ˆ

1 1
0 1

˙ˆ

1 k
0 1

˙

“

ˆ

1 k ` 1
0 1

˙

.

Finally, we observe that
ˆ

1 k
0 1

˙ˆ

1 ´k
0 1

˙

“

ˆ

1 0
0 1

˙

,

which implies that

A´k “ pAkq´1 “

ˆ

1 ´k
0 1

˙

.

‚ Rotation Matrices. Recall the rotation matrix

Rθ “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

P GL2pRq,

and recall the identities

(a) RαRβ “ Rα`β for all α, β P R.

(b) Rα “ Rβ if and only if α´ β “ 2πk for some k P Z.

If θ “ 2πk{n for some k, n P Z with n ě 1 then it follows from (a) and (b) that

Rnθ “ Rnθ “ R2πk “ I,

so that Rθ has order dividing n. The precise order is n{ gcdpk, nq, which we will prove below.

If θ is an irrational multiple of 2π, say θ “ 2πα, then I claim that Rθ has infinite order. To
see this, suppose for contradiction that Rnθ “ I for some n ě 1. Then from (a) we have

Rnθ “ Rnθ “ I,
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and from (b) we conclude that nθ “ 2πα is an integer multiple of 2π, say nθ “ 2πk. But then
we have

n2πα “ 2πk

α “ k{n,

which contradicts the fact that α is irrational.

‚ Primitive nth Roots of Unity. Consider the group pCˆ,ˆ, 1q and let ζ P Cˆ be an
element of finite order n so that ζ has n distinct powers:

xζy “ t1, ζ, ζ2, . . . , ζn´1u.

Since ζn “ 1 we see that ζ is an nth root of unity. Furthermore, we observe that every power
of ζ is an nth root of unity:

pζkqn “ pζnqk “ 1.

It follows that xζy is the full group of nth roots of unity:

Ωn “ xζy “ t1, ζ, ζ
2, . . . , ζn´1u.

Any element ζ P Cˆ of finite order n is called a primitive nth root of unity. For example, the
usual ω “ e2πi{n is a primitive nth root or unity. But there are others.

Below we will prove that there are exactly φpnq primitive nth roots of unity, where φpnq is
Euler’s totient function

φpnq “ tk P Z : 1 ď k ď n and gcdpk, nq “ 1u

In fact, if ζ is any primitive nth root of unity then we will prove that the full set of primitive
roots is tζk : 1 ď k ď n and gcdpk, nq “ 1u. For example, consider the primitive 12th root
ω “ e2πi{12. The numbers below 12 that are coprime to 12 are 1, 5, 7, 11. Hence there are
exactly four primitive 12th roots of unity:

ω1, ω5, ω7, ω11.

Here is a picture showing the primitive roots:
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To verify that ζ “ ω5 is a primitive root, the following diagram shows that the every 12th root
of unity is a power of ζ. Note that multiplying by ζ moves 5 steps counterclockwise around
the circle:

Moreover, this picture shows that the 1, 5, 7, 11th powers of ζ are the full set of primitive
roots, as expected. From an algebraic point of view the primitive 12th roots of unity are
indistinguishable, i.e., they satisfy all of the same algebraic identities.98

Messing around with intricate computations such as these eventually gave rise to the abstract
definition of a cyclic group.

Concept of a Cyclic Group

We say that a group pG, ˚, εq is cyclic if there exists an element a P G such that

G “ xay “ tak : k P Zu.

In this case we say that a is a generator for G. If G is cyclic then it follows from the
above discussion that

G – Z or G – Z{nZ for some n ě 1.

In particular, this implies that any two cyclic groups of the same size are isomorphic.

It turns out that any group of prime size is cyclic, which implies that there is only one group
of size p up to isomorphism.

98This comment will be made precise later. It follows from the fact that the primitive nth roots of unity are
the roots of an irreducible polynomial Φnpxq over Q, called the nth cyclotomic polynomial.
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Groups of Prime Order

Let p ě 2 be prime. Then any group of size p is isomorphic to Z{pZ.

Proof. Let G be a group of prime size p ě 2 and let a P G be a non-identity element, so
that #xay ‰ 1. By Lagrange’s Theorem we must have #xay|p. However, since p is prime and
#xay ‰ 1 this implies that #xay “ p, and hence G “ xay. Finally, the group homomorphism
ϕ : ZÑ G defined by ϕpkq “ ak is surjective with kernel pZ, hence

G “ xay “ imϕ – Z{ kerϕ “ Z{pZ.

˝

As I said at the beginning of this section, the structure of theory of groups is deep and
challenging. In this course we will only consider the structure theory of cyclic groups. If
a group G has size n then Lagrange’s Theorem says that any subgroup has size d for some
positive divisor d|n. However, for a given divisor d|n we are not guaranteed that a subgroup
of size d exists. For example, the alternating group A4 has size 12 but one can check that it
does not have a subgroup of size 6. It is also possible that for a given divisor d|n there exist
many subgroups of size d.

The following theorem says that cyclic groups satisfy a sort of converse to Lagrange’s Theorem.
We will state and prove the theorem in its abstract form, and then we will apply it to the
original example, which is the group of nth roots of unity.

The Fundamental Theorem of Cyclic Groups (FTCG)

Let G “ xay be a cyclic group of finite size n. Then for any divisor d|n there exists a
unique subgroup of size d; namely,

xan{dy Ď G.

In particular, this says that every subgroup of a cyclic group is itself cyclic.

The proof will require the following lemma.
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Lemma: The Order of a Power

Let pG, ˚, εq be a group and let a P G be an element of finite order n. Then

(i) For any k P Z we have xaky “ xagcdpk,nqy.

(ii) For any positive divisor d|n we have #xady “ n{d.

(ii) For any k P Z we have #xaky “ n{ gcdpk, nq.

Proof of the Lemma. (i): Let d “ gcdpk, nq with k “ dk1. Our goal is to show that
xaky “ xady. To prove xaky Ď xady, consider any power of ak, say pakqm “ akm. Then we have

akm “ adk
1m “ padqk

1m P xady.

To prove xady Ď xaky, consider any power of ad, say padqm “ adm. Since d “ gcdpk, nq we
know from Bézout’s Identity that d “ kx` ny for some x, y P Z. Hence we have

adm “ apkx`nyqm “ pakqxm ˚ panqym “ pakqxm ˚ pεqym “ pakqxm P xaky.

(ii): Let d|n with n “ dd1. Our goal is to prove that the first d1 powers of ad are distinct:

ε, ad, padq2, . . . , padqd
1´1.

Suppose for contradiction that we have 0 ď k ă ` ă d1 with padqk “ padq`, so that

padq` “ padqk

ad` “ adk

adp`´kq “ ε.

Since 0 ď k ă ` ă d1 we have 0 ă ` ´ k ă d1 and hence 0 ă dp` ´ kq ă dd1 “ n. But since a
has order n, the identity adpk´`q “ ε implies that dpk ´ `q is a multiple of n. Contradiction.

(iii): Since gcdpk, nq is a divisor of n, it follows from (i) and (ii) that

#xaky “ #xagcdpk,nqy “ n{ gcdpk, nq.

˝

Proof of the FTCG. Let G “ xay be cyclic of size n and consider a divisor d|n with n “ dd1.
We will prove that xad

1

y Ď G is the unique subgroup of size d, in three steps:

(a) The subgroup xad
1

y has size d.

(b) Any cyclic subgroup H Ď G of size d is equal to xad
1

y.
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(c) Any subgroup of G is cyclic.

(a): From the Lemma (ii) we have

#xad
1

y “ n{d1 “ d.

(b): Consider any cyclic subgroup H “ xby Ď G of size d. Since G “ xay we know that b “ ak

for some k P Z. From the Lemma (i) and (ii) we have

H “ xaky “ xagcdpk,nqy

and
#H “ #xagcdpk,nqy “ n{ gcdpk, nq.

Since we have assumed that #H “ d this implies that gcdpk, nq “ d1 and hence H “ xad
1

y.

(c): Consider any subgroup H Ď G. If H has size 1 then it is cyclic: H “ xεy. So assume that
#H ě 2, which means that ak P H for some 0 ă k ď n. Let m ą 0 be the smallest positive
integer such that am P H. In this case we will show that H “ xamy, and hence H is cyclic.

To prove this, we first observe that any power of am is in H because H is a subgroup. Hence
xamy Ď H. On the other hand, we will show that any element of H is a power of am. So
consider any element b P H. Since G “ xay we can write b “ ak for some k P Z. Divide k by
m to obtain

#

k “ mq ` r,

0 ď r ă m.

We observe that ar P H because a´m P H and hence

ar “ ak´mq “ akpa´mqq P H.

But if r ‰ 0 then this contradicts the definition of m. It follows that r “ 0 and hence
b “ ak “ amq “ pamqq is a power of am, as desired. ˝

Remark: The proof of part (c) recalls our proof that every subgroup of pZ,`, 0q has the
form nZ. In fact, there is a way to prove the FTCG by comparing subgroups of Z{nZ
with subgroups of Z. To be specific, one can show that any homomorphism ϕ : G Ñ G1

induces a bijection between subgroups of imϕ and subgroups of G that contain kerϕ. This is
called the correspondence theorem. Then one can prove the FTCG by considering a surjective
homomorphism ϕ : ZÑ Z{nZ with kerϕ “ nZ. This proof is more conceptual, but ultimately
it would have taken longer to write out all of the details.

Now we discuss the application of the FTCG to roots of unity. At the end of Chapter 3 we
discussed the problem of factoring the polynomial xn ´ 1 in the ring Zrxs and we observed
some strange behavior. Now we are able to discuss this factorization in full detail. First we
prove a theorem on roots of unity. This was first worked out by Gauss in the final chapter of
his Disquisitiones Arithmeticae (1798), written when he was just 21 years old.
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Primitive nth Roots of Unity

For all n ě 1 let pΩn,ˆ, 1q denote the group of nth roots of unity. Recall that Ωn “ xωy
for ω “ e2πi{n. More generally, we say that ζ P Ωn is a primitive nth root of unity if it
generates the whole group. We denote the set99 of primitive roots by

Ω1n “ tζ P Ωn : xζy “ Ωnu.

Then we have the following:

(1) The subgroups of Ωn are just Ωd for positive divisors d|n.

(2) For any fixed primitive root ζ P Ω1n I claim that we have

Ω1n “ tζ
k : 1 ď k ď n and gcdpk, nq “ 1u,

and hence the number of primitive roots is given by Euler’s totient function φpnq.

(3) The set of nth roots of unity can be expressed as the disjoint union of primitive
dth roots of unity for positive divisors d|n:

Ωn “
ž

d|n

Ω1d.

Then it follows from part (2) that

n “ #Ωn “
ÿ

d|n

#Ω1d “
ÿ

d|n

φpdq.

(4) More precisely, for any fixed primitive root ζ P Ω1n I claim that

Ω1d “ tζ
k : 1 ď k ď n and gcdpk, nq “ n{du.

Proof. (1): For each divisor d|n we recall from the FTCG that Ωn “ xωy has a unique
subgroup of size d; namely xωn{dy. I claim that

xωn{dy “ Ωd.

Indeed, we know that #xωn{dy “ d, so we will be done if we can show that xωn{dy Ď Ωd. In
other words, we want to show that every power of ωn{d is a dth root of unity. And this is
straightforward:

ˆ

´

ωn{d
¯k

˙d

“ ωnk “ pωnqk “ 1k “ 1.

99This is not a subgroup of Ωn.
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(2): Fix some primitive root ζ P Ω1n
100 so that Ωn “ t1, ζ, ζ

2, . . . , ζn´1u. I claim that ζk is a
primitive root if and only if gcdpk, nq “ 1. To see this, we recall from Lemma (iii) that

#xζky “ n{ gcdpk, nq.

It follows that
xζky “ Ωn ô #xζky “ n ô gcdpk, nq “ 1.

(3): Every nth root of unity ζ P Ωn generates a cyclic subgroup xζy Ď Ωn, which from part
(1) must be xζy “ Ωd for some divisor d|n. Thus we can express Ωn as a disjoint union:

Ωn “
ž

d|n

tζ P Ωn : xζy “ Ωdu “
ž

d|n

Ω1d.

(4): Finally, let ζ P Ω1n so that xζy “ Ωn. Then for any 1 ď k ď n we have

ζk P Ω1d ðñ xζky “ Ωd

ðñ #xζky “ d

ðñ n{ gcdpk, nq “ d

ðñ gcdpk, nq “ n{d.

˝

We can see the identity Ωn “
š

d|n Ω1d more clearly by reducing each of the fractions tk{n :
1 ď k ď nu to lowest terms. If the reduced form of the fraction k{n has denominator d then
ωk is a primitive dth root of unity. For example, we have

ˆ

1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6

˙

reduce
ÝÝÝÝÑ

ˆ

1

6
,
1

3
,
1

2
,
2

3
,
5

6
,
1

1

˙

If ω “ e2πi{6 (or any primitive 6th root of unity) then the primitive dth roots are

Ω11 “ tω
6u,

Ω12 “ tω
3u,

Ω13 “ tω
2, ω4u,

Ω16 “ tω
1, ω5u.

Somewhat miraculously, this decomposition of the 6th roots of unity tells us how to factor the
polynomial x6 ´ 1 over the integers:

x6 ´ 1 “ px´ ω1qpx´ ω2qpx´ ω3qpx´ ω4qpx´ ω5qpx´ ω6q

“
“

px´ ω6q
‰ “

px´ ω3q
‰ “

px´ ω2qpx´ ω4q
‰ “

px´ ω1qpx´ ω5q
‰

“ rx´ 1s rx` 1s
“

x2 ` x` 1
‰ “

x2 ´ x` 1
‰

.

Here is the general theorem.

100For example, we could take ζ “ ω “ e2πi{n.
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Cyclotomic Polynomials

For all n ě 1, we define the nth cyclotomic polynomial Φnpxq, whose roots are the
primitive nth roots of unity:

Φnpxq “
ź

ζPΩ1n

px´ ζq P Crxs.

From the definition we see that the coefficients of Φnpxq are in C, but I claim that in fact
the coefficients are in Z. Furthermore, I claim that the prime factorization of xn ´ 1 in
the ring Zrxs is given by the product of cyclotomic polynomials over the divisors of n:

xn ´ 1 “
ź

d|n

Φdpxq,

Note that the polynomial Φnpxq has degree φpnq. Thus taking degrees on both sides gives

n “
ÿ

d|n

φpdq.

Partial Proof. From the identity Ωn “
š

d|n Ω1d we have

ź

d|n

Φdpxq “
ź

d|n

ź

ζPΩ1d

px´ ζq “
ź

ζPΩn

px´ ζq “ xn ´ 1.

Now we will use this to prove by induction that Φnpxq P Zrxs for all n ě 1. The base case is
true because Φ1pxq “ x ´ 1 has integer coefficients. Now suppose for induction that n ě 2
and that Φkpxq has integer coefficients for all 1 ď k ă n. From the previous identity we have

xn ´ 1 “ Φnpxqfpxq,

where fpxq is the product of Φdpxq over all divisors d|n except d “ n. By induction, this fpxq
is a product of polynomials with integer coefficients, hence fpxq itself has integer coefficients.

Next we observe that fpxq has leading coefficient 1 since it is a product of polynomials Φdpxq,
each with leading coefficient 1. This means that we can perform long division101 in the ring
Zrxs to obtain polynomials qpxq, rpxq P Zrxs satisfying

#

xn ´ 1 “ qpxqfpxq ` rpxq,

rpxq “ 0 or degprq ă degpfq.

101In Chapter 2 we only discussed long division over a field. It turns out that long division can be performed
over any ring, as long as the leading coefficient of the divisor is a unit. Since 1 is a unit and Z, we can divide
by any polynomial with leading coefficient 1.
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On the other hand, we have the identity xn ´ 1 “ Φnpxqfpxq ` 0 in the ring Crxs. It follows
from uniqueness of quotients in Crxs that

Φnpxq “ qpxq P Zrxs.

˝

The only thing remaining is to prove that each cyclotomic polynomial is irreducible over the
ring Z.102 This is quite tricky. Gauss gave a complicated proof that Φppxq is irreducible for
prime p, and this proof was later simplified by Gotthold Eisenstein.103 As far as I am aware,
Gauss did not prove that Φnpxq is irreducible for all n. The first proofs were given 50 years
later by Kronecker and Dedekind, and they are too complicated for us.

The polynomials Φnpxq have surprisingly random behavior. There is no closed formula for
their coefficients, but they can be computed recursively using the identity xn´1 “

ś

d|n Φnpxq.
Here are the first twelve:

n Φnpxq

1 x´ 1
2 x` 1

3 x2 ` x` 1

4 x2 ` 1

5 x5 ` x4 ` x3 ` x2 ` x` 1

6 x2 ´ x` 1

7 x6 ` x5 ` x4 ` x3 ` x2 ` x` 1

8 x4 ` 1

9 x6 ` x3 ` 1

10 x4 ´ x3 ` x2 ´ x` 1

11 x10 ` x9 ` x8 ` x7 ` x6 ` x5 ` x4 ` x3 ` x2 ` x` 1

12 x4 ´ x2 ` 1

You might see some patterns here. For example, for any prime p we observe that

Φppxq “ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x` 1.

This is easy to prove. Since the only divisors of p are 1 and p we must have

Φ1pxqΦppxq “ xp ´ 1

px´ 1qΦppxq “ xp ´ 1

Φppxq “ px
p ´ 1q{px´ 1q

Φppxq “ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x` 1.

102This is equivalent to being irreducible over the field Q. The equivalence is called Gauss’ Lemma. It is not
that tricky to prove but we have run out of time.
103It uses the so-called Eisenstein criterion for irreducibility.
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Another pattern you might observe is that the nonzero coefficients are all either 1 or ´1,
and you might conjecture that this is always the case. But actually this is false. The first
cyclotomic polynomial with a coefficient larger than 1 is

Φ105pxq “ x48`x47`x46´x43´x42´2x41´x40´x39`x36`x35`x34`x33`x32`x31´x28

´x26´x24´x22´x20`x17`x16`x15`x14`x13`x12´x9´x8´2x7´x6´x5`x2`x`1.

And it is known that arbitrarily large coefficients can occur.

We end this chapter by completing our discussion of the 12th roots of unity.

Example: 12th Roots of Unity. Let ω “ e2πi{12 so that

Ω12 “ tω
1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12u.

The subgroups of Ω12 are

Ω1 “ xω
12y “ t1u,

Ω2 “ xω
6y “ tω6, ω12u “ t´1, 1u,

Ω3 “ xω
4y “ tω4, ω8, ω12u “

!

p´1` i
?

3q{2, p´1´ i
?

3q{2, 1
)

,

Ω4 “ xω
3y “ tω3, ω6, ω9, ω12u “ ti,´1,´i, 1u,

Ω6 “ xω
2y

“ tω2, ω4, ω6, ω8, ω10, ω12u

“ tp1` i
?

3q{2, p´1` i
?

3q{2,´1, p´1´ i
?

3q{2, p1´ i
?

3q{2, 1u,

and Ω12 “ xω
1y itself. The sets of primitive roots are

Ω11 “ tω
12u,

Ω12 “ tω
6u,

Ω13 “ tω
4, ω8u,

Ω14 “ tω
3, ω9u,

Ω16 “ tω
2, ω10u,

Ω112 “ tω, ω
5, ω7, ω11u,

which correspond to the cyclotomic polynomials

Φ1pxq “ px´ ω
12q “ x´ 1,

Φ2pxq “ px´ ω
6q “ x` 1,

Φ3pxq “ px´ ω
4qpx´ ω8q “ x2 ` x` 1,

Φ4pxq “ px´ ω
3qpx´ ω9q “ x2 ` 1,
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Φ6pxq “ px´ ω
2qpx´ ω10q “ x2 ´ x` 1,

Φ12pxq “ px´ ωqpx´ ω
5qpx´ ω7qpx´ ω11q “ x4 ´ x2 ` 1.

Finally, we obtain the irreducible factorization of the polynomial x12 ´ 1 over the integers:

x12 ´ 1 “ px´ ω1qpx´ ω2q ¨ ¨ ¨ px´ ω12q

“
“

px´ ω12q
‰ “

px´ ω6q
‰

¨ ¨ ¨
“

px´ ωqpx´ ω5qpx´ ω7qpx´ ω11q
‰

“ Φ1pxqΦ2pxqΦ3pxqΦ4pxqΦ6pxqΦ12pxq

“ px´ 1qpx` 1qpx2 ` x` 1qpx2 ` 1qpx2 ´ x` 1qpx4 ´ x2 ` 1q.

8 Field Extensions

8.1 Some Ring Theory

Ring theory is dangerous. Like group theory, the abstract theory of rings is extremely deep.
With groups it was easy for me to omit various definitions without telling you because the
whole concept of groups seems unfamiliar. Rings seem superficially familiar because they are
based on “numbers” and “polynomials”. However, the abstract theory is quite wild and leads
quickly away from intuition. My goal in this section is to say just enough, without veering
into unnecessary abstraction.104

We are guided by the example of modular arithmetic. In the previous chapter we showed that
the subgroups of pZ,`0q are precisely nZ for integers n ě 0. We constructed the set of cosets

Z{nZ “ ta` nZ : a P Zu,

and defined on this the following group operation:

pa` nZq ` pb` nZq “ pa` bq ` nZ.

We called pZ{nZ,`, 0`nZq a quotient group. Furthermore, we had a quotient homomorphism

ϕ : Z Ñ Z{nZ
a ÞÑ a` nZ,

with kernel nZ. But we saw in Chapter 4 that Z{nZ is not just an additive group; it also has
a multiplication operation, making it into a ring. This multiplication is defined on cosets as
follows:

pa` nZqpb` nZq “ pabq ` nZ.

If we can show that this is well-defined then the ring properties will follow immediately. So let
me recall the proof that it is well-defined. Assume that a`nZ “ a1`nZ and b`nZ “ b1`nZ
104This was also a challenge in Chapter 3 on Unique Prime Factorization. In some sense it would be more

efficient to prove the unique factorization theorem in the context of Principal Ideal Domains. On the other
hand, I believe that approach is too abstract for students learning the material for the first time.
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so that a´ a1 P nZ and b´ b1 P nZ. In this case we wish to show that ab´ a1b1 P nZ, so that
pabq`nZ “ pa1b1q`nZ as sets. In Chapter 4 we did this by first naming integers k, ` P Z such
that a´ a1 “ nk and b´ b1 “ `n`, and then we expressed ab´ a1b1 as npsomethingq. Today I
will avoid doing this because this method doesn’t lend itself to generalization. Instead I will
refer to the following abstract properties of the set nZ:

• For all c, d P nZ we have c˘ d P nZ.

• For all c P Z and d P nZ we have cd P nZ.

Then since a´ a1 and b´ b1 are in nZ we immediately have

ab´ a1b1 “ ab´ a1b` a1b´ a1b1 “ pa´ a1qb` a1pb´ b1q P nZ.

This example inspires the following definition.

Ideals and Quotient Rings

Consider a ring pR,`, ¨, 0, 1q and a subset I Ď R. We say that I is an ideal of R when
the following two properties are satisfied:

• For all c, d P I we have c˘ d P I. Equivalently, pI,`, 0q is a subgroup of pR,`, 0q.

• For all c P R and d P I we have cd P I.

Since pI,`, 0q is a subgroup of pR,`, 0q we may construct the quotient group R{I with
operation

pa` Iq ` pb` Iq “ pa` bq ` I.

The second property of ideals guarantees that the following multiplication operation is
also well-defined:

pa` Iqpb` Iq “ pabq ` I.

Then it is an easy and boring exercise to check that R{I is a ring with additive identity
0` I and multiplicative identity 1` I.

Proof. Suppose that a` I “ a` I and b` I “ b1 ` I, so that a´ a1 P I and b´ b1 P I. Then
since I is closed under multiplication by elements of R we have

ab´ a1b1 “ ab´ a1b` a1b´ a1b1 “ pa´ a1qb` a1pb´ b1q P I,

and hence pabq ` I “ pa1b1q ` I. ˝

The general theory of ideals is quite elaborate. In this class we are only interested in the
following special cases.
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A Field is a Ring With Exactly Two Ideals

Every ring R has a zero ideal t0u Ď R and a unit ideal R Ď R.105 We call it the “unit
ideal” because of the following fact: For any ideal I Ď R we have

I “ R ðñ I contains a unit.

It follows from this that R is a field if and only if it has exactly two ideals.

Proof. First suppose that I “ R. In this case I contains every unit of R. In particular, 1 P I.
Conversely, suppose that I contains a unit, say u P I. Since I is and ideal with u P I and
u´1 P R this implies that 1 “ uu´1 P I. Finally, for any a P R we have a “ 1a P I, which
implies that I “ R.

Now we will show that R is a field if and only if it has exactly two ideals. For one direction,
suppose that R is a field. Then any nonzero ideal I contains a nonzero element of R. Since
every nonzero element of a field is a unit, this implies that I contains a unit, hence I “ R.
For the other direction, suppose that R has exactly two ideals t0u and R. For any element
a P R, the following set is an ideal:

aR “ tab : b P Ru.

Indeed, for any ab, ac P aR and d P R we have ab˘ac “ apb˘ cq P aR and pabqd “ apbcq P aR.
If a ‰ 0 then we have aR ‰ t0u and hence aR “ R, since R has only two ideals. It follows
that 1 P aR and hence 1 “ ab for some b P R. In other words, R is a field. ˝

Thus fields are the “simplest” rings from the point of view of ideal theory. The next simplest
kind of rings are the the so-called “principal ideal domains”. The most important class of
these are the Euclidean domains, which we studied in Chapter 3.

Quotients of Euclidean Domains

Let pR,Nq be a Euclidean domain. Then:

(i) Every ideal has the form aR Ď R for some element a P R. An ideal of the form
aR Ď R is called the principal ideal generated by a and any domain having only
principal ideals is called a principal ideal domain (PID).

(ii) There is a bijection between ideals and association classes of elements:

aR “ bR ðñ a „ b.
105Technically: We do allow the case where t0u “ R. This is called the zero ring. However, it is an axiom of

fields that 0 ‰ 1, so there is no such thing as the zero field.
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(iii) R{pR is a field if and only if p P R is prime.106

Proof. (i): Let I Ď R be an ideal. The zero ideal is principal: t0u “ 0R. So let us assume
that I ‰ t0u and let a P I be a nonzero element with smallest possible size Npaq. In this case
I claim that I “ aR. Indeed, since I is an ideal we have ab P I for any b P R, hence aR Ď I.
On the other hand we may divide any element c P I by a to obtain

"

c “ aq ` r,
r “ 0 or Nprq ă Npaq.

Since a, c P I we note that r “ c´ aq P I. If r ‰ 0 then r is a nonzero element of I with size
strictly smaller than a, which a contradiction. It follows that r “ 0 and hence c “ aq P aR.
Since this holds for any c P I we have shown that I Ď aR as desired.

(ii): Next we show that aR “ bR if and only if a „ b. If one of a or b is zero then so is the
other. So let us assume that a and b are both nonzero. For one direction, suppose that a „ b
so that a “ bu and b “ au´1 for some unit u P R. For all r P R it follows that ar “ bpurq P bR
and br “ apu´1rq P aR. Hence we have aR Ď bR and bR Ď aR. For the other direction,
suppose that aR “ bR. Since a P aR this implies that a P bR and hence a “ bu for some
u P R. Similarly, since b P bR “ aR we have b “ av for some v P R. Then since R is a domain
and b ‰ 0 we find that u and v are units:

b “ av

b “ buv

bp1´ uvq “ 0

1´ uv “ 0.

Hence a „ b.

(iii): Let p P R be prime and consider the quotient ring R{pR. We will use the Extended
Euclidean Algorithm from Chapter 3 to prove that R{pR is a field. This is the same proof
that we used to show that Z{pZ is a field. So consider any nonzero element of the quotient
ring: a` pR ‰ 0` pR. By definition this means that p - a. Since p is prime this implies that
gcdpa, pq “ 1, hence from the Extended Euclidean Algorithm we can find b, c P R such that
ab` pc “ 1. Finally, we conclude that

pa` pRqpb` pRq “ ab` pR “ p1´ pcq ` pR “ 1` pR,

so that a` pR has a multiplicative inverse.

Conversely, suppose that p P R is not prime. That is, suppose that we have p “ ab for some
a, b P R both non-associate to p. In particular, this implies that p - a since p|a and a|p would

106If R itself is a field then we can also allow p “ 0, since R{0R – R.
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imply p „ a. Similarly, we have p - b. But then we have two nonzero cosets a` pR ‰ 0` pR
and b` pR ‰ 0` pR whose product in R{pR zero:

pa` pRqpb` pRq “ ab` pR “ p` pR “ 0` pR.

Hence R{pR is not a domain. ˝

Note that a field is trivially a PID since the zero and unit ideals are principal:

t0u “ 0R and R “ 1R.

More interesting examples come from our favorite Euclidean domains Z and Frxs:

• Every ideal of Z has the form nZ for some n P Z. Recall that Zˆ “ t˘1u, hence we have

mZ “ nZ ðñ m “ ˘n.

It follows that each ideal can be expressed uniquely in the form nZ for some n ě 0.

• Every ideal of Frxs has the form fpxqFrxs for some fpxq P Frxs. Recall that the units of
Frxs are the non-zero constants Fˆ. Thus we have

fpxqFrxs “ gpxqFrxs ðñ fpxq “ λgpxq for some λ P Fˆ.

It follows that every non-zero ideal of Frxs can be expressed uniquely in the form
mpxqFrxs for some monic polynomial mpxq P Frxs (i.e., with leading coefficient 1).

Just for context, let me briefly mention the two simplest examples107 of non-PIDs:

Zrxs and Frx, ys.

Indeed, one can check that the following sets are non-principal ideals of Zrxs and Frx, ys:

2Zrxs ` xZrxs “ t2fpxq ` xgpxq : fpxq, gpxq P Zrxsu,
xFrx, ys ` yFrx, ys “ txfpx, yq ` ygpx, yq : fpx, yq, gpx, yq P Frx, ysu.

It is much harder to classify the ideals of these rings, so we won’t even try.

As with groups, the modern study of rings is expressed in terms of homomorphism and isomor-
phism. These concepts are packaged together in the First Isomorphism Theorem for Rings.
Most of this follows from the First Isomorphism Theorem for (Abelian) Groups. We just need
to include the multiplicative structure.

107The original example of a ring that is not a PID is the ring Zr
?
´5s “ ta ` b

?
´5u. The lack of unique

prime factorization in rings such as these frustrated early attempts to prove Fermat’s Last Theorem.
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Definition of Ring Homomorphism

Consider rings pR,`, ¨, 0, 1q and pR1,`, ¨, 01, 11q and a function ϕ : R Ñ R1. We say that
ϕ is a ring homomorphism when

(i) ϕpa` bq “ ϕpaq ` ϕpbq,

(ii) ϕpabq “ ϕpaqϕpbq,

(iii) ϕp1q “ 11.

The first axiom says that ϕ : pR,`, 0q Ñ pR1,`, 01q is a group homomorphism, which
implies that ϕp0q “ 01 as follows:

0` 0 “ 0

ϕp0` 0q “ ϕp0q

ϕp0q ` ϕp0q “ ϕp0q

ϕp0q ` ϕp0q ´ ϕp0q “ ϕp0q ´ ϕp0q

ϕp0q “ 01.

However, the second axiom ϕpabq “ ϕpaqϕpbq does not imply that ϕp1q “ 11, because we
are not necessarily allowed to divide in a ring. Indeed, if we try to use the same proof
idea then we get stuck:

1 ¨ 1 “ 1

ϕp1 ¨ 1q “ ϕp1q

ϕp1qϕp1q “ ϕp1q.

Now we cannot conclude that ϕp1q “ 11 because we are not allowed to “divide both sides
by ϕp1q”. Hence we must include ϕp1q “ 11 as an axiom.

We should think of a ring pR,`, ¨, 0, 1q as an abelian group pR,`, 0q with some extra decora-
tions. Thus the kernel of a ring homomorphism ϕ : RÑ R1 is defined as the set of a P R such
that ϕpaq “ 01. The First Isomorphism Theorem confirms that this is the correct definition.

The First Isomorphism Theorem for Rings

Consider a ring homomorphism ϕ : pR,`, ¨, 0, 1q Ñ pR1,`, ¨, 01, 11q. We define the image
and kernel as follows:

imϕ “ ta1 P R1 : Da P R,ϕpaq “ a1u,
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kerϕ “ ta P R : ϕpaq “ 01u.

I claim that imϕ Ď R1 is a subring and kerϕ Ď R is an ideal.108 Furthermore, I claim
that the following map is a well-defined ring isomorphism:

ϕ̃ : R{ kerϕ Ñ imϕ
a` kerϕ ÞÑ ϕpaq.

Proof. A subring S Ď R is a subset that is closed under the ring operations `, ¨ and contains
the special elements 0, 1. Consider any two elements of the image: a1 “ ϕpaq and b1 “ ϕpbq.
Since a1 ` b1 “ ϕpaq ` ϕpbq “ ϕpa ` bq and a1b1 “ ϕpaqϕpbq “ ϕpabq, we see that a1 ` b1 and
a1b1 are also in the image. And since ϕp0q “ 01 and ϕp1q “ 11, we see that 01 and 11 are in the
image. Hence imϕ Ď R1 is a subring.

Next we show that kerϕ Ď R is an ideal. Since kerϕ was defined in terms of the additive
structure pR,`, 0q we already know from the previous chapter that kerϕ is an additive sub-
group.109 Thus we only need to check the second axioms for ideals. Suppose that a P R and
b P kerϕ, so that ϕpbq “ 01. Then we have ϕpabq “ ϕpaqϕpbq “ ϕpaq¨01 “ 01, so that ab P kerϕ.

Finally, we check that ϕ̃pa`kerϕq “ ϕpaq is a well-defined ring isomorphism. We already know
from the previous chapter that this is a well-defined isomorphism of additive groups. Hence
we only need to check that ϕ̃ is a ring homomorphism. Indeed, it preserves multiplication
because

ϕ̃ppa` kerϕqpb` kerϕqq “ ϕ̃pab` kerϕq

“ ϕpabq

“ ϕpaqϕpbq

“ ϕ̃pa` kerϕqϕ̃pb` kerϕq.

And it preserves the unit element because

ϕ̃p1` kerϕq “ ϕp1q “ 11.

˝

8.2 The Minimal Polynomial Theorem

In Chapter 4 we developed the theory of “modular arithmetic” in the ring Z. Now we pursue
the analogous theory in the ring of polynomials Frxs over a field F. Even though the two
theories are analogous, they are still very different. The ideal theory of Frxs is encoded via
“evaluation homomorphisms”.

108The image is almost never an ideal and the kernel is almost never a subring.
109It’s easy enough to check it again. Given a, b P kerϕ we have ϕpa ´ bq “ ϕpaq ´ ϕpbq “ 01 ´ 01 “ 01 and

hence a´ b P kerϕ.
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Evaluation Homomorphisms

Let E Ď F be a field extension. Then for any element α P E we have a ring homomorphism
Frxs Ñ E defined by evaluating polynomials at x “ α:

ϕα{F : Frxs Ñ E
fpxq ÞÑ fpαq.

We can view this as the unique ring homomorphism Frxs Ñ E that fixes elements of F and
sends x to α. We include F in the notation “ϕα{F” to indicate that this homomorphism
fixes elements of F. The symbol “/” here is not mathematical; it is an abbreviation for
the English word “over”. The symbol “α{F” indicates that we are thinking of α as an
element of a field extension of F.

The unique ring homomorphism ϕα{F : Frxs Ñ E is analogous to the unique group homomor-

phism ϕa : pZ,`, 0q Ñ G that sends an integer k P Z to the power ak P G. Just as the image
xay “ imϕa Ď G is the subgroup generated by a (i.e., the smallest subgroup of G that contains
a), the image of ϕα{F is the “subring of E generated by α over F”.

Adjoining an Element to a Field

Consider an element of a field extension α P E Ď F with corresponding evaluation homo-
morphism ϕα{F : Frxs Ñ E. We denote the image by

Frαs :“ imϕα{F “ tfpαq : fpxq P Frxsu.

Being the image of a ring homomorphism, Frαs is necessarily a subring of E. I claim that
it is the smallest subring of E that contains α and F. Based on this idea, we refer
to the ring110 Frαs as “F adjoin α”.

Proof. Let R Ď E be any subring containing F and α, and consider an arbitrary polynomial

fpxq “ a0 ` a1 ` ¨ ¨ ¨ ` anx
n P Frxs.

Since a0, . . . , an, α P R and since R is closed under addition and multiplication, we see that

fpαq “ a0 ` a1α` ¨ ¨ ¨ ` anα
n P R.

110If α is a root of some polynomial over F then we will prove below in the Minimal Polynomial Theorem that
Frαs is actually a field. This is surprising.
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Since this holds for any fpxq P Frxs we conclude that Frαs Ď R as desired. ˝

Now we discuss the kernel of ϕα{F. There are two essentially different cases.

Algebraic vs Transcendental Elements over a Field

Consider an element α P E Ě F with evaluation homomorphism ϕα{F : Frxs Ñ E. Since
Frxs is a PID we know that the kernel of ϕα{F is a principal ideal. There are two essentially
different cases:

• If kerϕα{F “ t0u then we say that α is transcendental over F. For example, Lin-
demann proved in 1882 that π “ 3.14 ¨ ¨ ¨ is transcendental over Q. It is generally
quite difficult to prove that a given complex number is transcendental over Q.111

• If kerϕα{F ‰ t0u then since Frxs is a PID there exists a unique monic polynomial
mα{Fpxq P Frxs such that

kerϕα{F “ mα{FpxqFrxs “ tmα{Fpxqgpxq : gpxq P Frxsu.

Equivalently, for all fpxq P Frxs we have

fpαq “ 0 ðñ mα{Fpxq
ˇ

ˇ fpxq in the ring Frxs.

In this case we say that α is algebraic over F and we call mα{Fpxq the minimal
polynomial for α over F.

The concept of a minimal polynomial is a direct generalization of Descartes’ Factor Theorem.
Indeed, for any element α P F and for any polynomial fpxq P Frxs, Descartes says that

fpαq “ 0 ðñ px´ αq
ˇ

ˇ fpxq in the ring Frxs.

In other words, if α P F then the minimal polynomial of α over F is mα{Fpxq “ x´ α.

We also saw a slightly more general example last semester. For any real polynomial fpxq P Rrxs
and for a fixed square root i “

?
´1, we showed that

fpiq “ 0 ðñ px2 ` 1q
ˇ

ˇ fpxq in the ring Rrxs,
111One can show that the algebraic numbers over Q are countable, but the complex numbers are uncountable.

The most famous transcendental number that cannot be proved to be so is the Euler-Mascheroni constant:

γ “ lim
nÑ8

˜

´ logn`
n
ÿ

k“1

1

k

¸

« 0.577.

In fact, no one even knows how to prove that γ is irrational.
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so that mi{Rpxq “ x2 ` 1 is the minimal polynomial of i over R. On the other hand, the
minimal polynomial of i over C is mi{Cpxq “ x ´ i. This is why we include the field in the
notation for minimal polynomials.

Since the evaluation homomorphism ϕi{R : Rrxs Ñ C is surjective, it follows from the First
Isomorphism Theorem that

Rrxs
px2 ` 1qRrxs

“
Rrxs

kerϕi{R
– imϕi{R “ Rris “ C.

This is Cauchy’s construction of the complex numbers, which we discussed in section 6.8.
Recall that we did a lot of work in Chapter 1 to construct the complex numbers and to prove
their basic properties. The following theorem is a generalization of this construction. We will
apply it in the next two sections when we construct finite fields.

The Minimal Polynomial Theorem

Consider an element α P E Ě F with evaluation homomorphism ϕα{F : Frxs Ñ E. Let α
be algebraic over F with minimal polynomial mα{Fpxq P Frxs. Then we have the following:

(1) The minimal polynomial mα{Fpxq is irreducible over F. Furthermore, if fpαq “ 0
for some irreducible monic polynomial fpxq P Frxs then fpxq “ mα{Fpxq.

(2) The subring Frαs Ď E is actually a field.

(3) If d “ degpmα{Fq then every element β P Frαs has a unique expression of the form

β “ b0 ` b1α` b2α
2 ` ¨ ¨ ¨ ` bd´1α

d´1,

for some elements b0, b1, . . . , bd´1.

Proof. (1): Let mα{Fpxq “ gpxqhpxq for some gpxq, hpxq P Frxs. Substituting α gives

0 “ mα{Fpαq “ gpαqhpαq,

which implies that gpαq “ 0 or hpαq “ 0 since we are working in a domain. Without loss,
suppose that gpαq “ 0. By definition of mα{Fpxq this means that mα{Fpxq|gpxq. On the other
hand we have gpxq|mα{Fpxq by assumption. Since we are working in a domain this implies
that mα{Fpxq „ gpxq. Hence mα{Fpxq is irreducible over F.

Now let fpxq P Frxs be monic and irreducible over F, with fpαq “ 0. By definition of the
minimal polynomial we have mα{Fpxq|fpxq. Then since fpxq is irreducible we have mα{Fpxq “
λfpxq for some λ P F. Finally, since mα{Fpxq and fpxq are both monic we have λ “ 1.
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(2): The The First Isomorphism Theorem for Rings tells us that

Frαs “ imϕα{F –
Frxs

kerϕα{F
“

Frxs
mα{FpxqFrxs

.

Then since mα{Fpxq P Frxs is a prime element of a Euclidean domain, it follows from the
previous section that this quotient ring is a field.

(3): Let d “ degpmα{Fq and consider an arbitrary element β P Frαs. By definition, we can
write β “ fpαq for some polynomial fpxq P Frxs. Divide this fpxq by the minimal polynomial
mα{Fpxq to obtain polynomials qpxq, rpxq P Frxs satisfying

"

fpxq “ mα{Fpxqqpxq ` rpxq,

rpxq “ 0 or degprq ă degpmα{Fq.

Since rpxq “ 0 or degprq ă degpmα{Fq “ d, we can write

rpxq “ b0 ` b1x` ¨ ¨ ¨ bd´1x
d´1,

for some elements b0, . . . , bd´1 P F. Then substitute x “ α to obtain

β “ fpαq

“ mα{Fpαqqpαq ` rpαq

“ 0 ¨ qpαq ` rpαq

“ rpαq

“ b0 ` b1α` ¨ ¨ ¨ ` bd´1α
d´1.

To prove uniqueness of this expression, suppose that we have

b0 ` b1α` ¨ ¨ ¨ ` bd´1α
d´1 “ c0 ` c1α` ¨ ¨ ¨ ` cd´1α

d´1

for some b0, . . . , bd´1, c0, . . . , cd´1 P F. We wish to show that bi “ ci for all i. To do this, we
define polynomials rpxq “ b0 ` b1x` bd´1x

d´1 and spxq “ c0 ` c1x` ¨ ¨ ¨ ` cd´1x
d´1. We will

be done if we can show that rpxq ´ spxq is the zero polynomial, since then the coefficients of
rpxq and spxq will be equal.

By assumption we have rpαq “ spαq and hence rpαq ´ spαq “ 0. In other words, we have
rpxq´spxq P kerϕα{F, which implies that rpxq´spxq is divisible by mα{Fpxq. If rpxq´spxq ‰ 0
then this gives a contradiction:

d “ degpmα{Fq ď degpr ´ sq ď maxtdegprq,degpsqu ă d.

Hence rpxq ´ spxq “ 0 as desired. ˝

To end this section we will discuss a few examples. Each example will require us to prove that
a certain polynomial is irreducible over Q, and each time we will use the following trick.
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The Rational Root Test

For any polynomial fpxq P Zrxs112 there is a finite algorithm to determine all of the
rational or roots of fpxq, or to prove that no such roots exist. Suppose that

fpxq “ c0 ` c1x` ¨ ¨ ¨ ` cnx
n P Zrxs,

with cn ‰ 0. If fpa{bq “ 0 for some integers a, b P Z with gcdpa, bq “ 1 then we must
have a|c0 and b|cn. This gives a finite list of possible roots a{b P Q.

Proof. Suppose that fpαq “ 0 for some α P Q and write α “ a{b with a, b P Z and
gcdpa, bq “ 1. Substitute a{b into the expression for fpxq and multiply both sides by n:

fpa{bq “ 0

c0 ` c1pa{bq ` ¨ ¨ ¨ ` cnpa{bq
n “ 0

c0b
n ` c1ab

n´1 ` ¨ ¨ ¨ ` cna
n “ 0.

We find that b divides cna
n because

c0b
n ` c1ab

n´1 ` ¨ ¨ ¨ ` cn´1a
n´1b “ ´cna

n

bpc0b
n´1 ` c1ab

n´2 ` ¨ ¨ ¨ ` cn´1a
n´1q “ ´cna

n.

Then since b|cna
n and gcdpa, bq “ 1 we must have b|cn.113 A similar proof shows that a|c0. ˝

Furthermore, we recall the following result from Chapter 3.

Irreducible Polynomials of Small Degree

Let fpxq P Frxs have degree 2 or 3. Then

fpxq is irreducible over F ðñ fpxq has no root in F.

Examples.

112We can also allow fpxq P Qrxs since the roots of fpxq are the same as the roots of m ¨ fpxq P Zrxs where
m P Z is least common multiple of the denominators of the coefficients of fpxq.
113Recall: If b|ca and gcdpa, bq “ 1 then we can write 1 “ ax ` by for some x, y P Z and then multiply both

sides by c to get c “ cax` cby “ bpsomethingq, hence b|c.
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‚ Square Roots of Integers. Consider any integer d P Z and a fixed square root
?
d P C.

Suppose that
?
d R Z, so that

?
d R Q. In other words, assume that the polynomial x2 ´ d P

Qrxs has no roots in Q. From the above result this implies that x2 ´ d is irreducible over Q,
hence it is the minimal polynomial for

?
d over Q:

m?d{Qpxq “ x2 ´ d P Qrxs.

Thus from the Minimal Polynomial Theorem we obtain a field by adjoining
?
d to Q:

Qr
?
ds “ ta` b

?
d : for unique a, b P Qu.

In this case, division is achieved by “rationalizing the denominator”:

1

a` b
?
d
“

1

a` b
?
d
¨
a´ b

?
d

a´ b
?
d
“

ˆ

a

a2 ´ b2d

˙

`

ˆ

´b

a2 ´ b2d

˙

?
d.

‚ Cube Roots of 1. Let ω P C be any primitive 3rd root of unity, for example ω “ e2πi{3.
Recall114 that ω is a root of the cyclotomic polynomial

Φ3pxq “ x2 ` x` 1.

I claim that Φ3pxq is the minimal polynomial of ω over Q. Since the degree is 2 we only need
to show that Φ3pxq has no root in Q and for this we use the Rational Root Test. Suppose
that Φ3pa{bq “ 0 for some a, b P Z with gcdpa, bq “ 1. Then we must have a|1 and b|1, hence
a{b “ ˘1. But we see that `1 and ´1 are not roots of x2 ` x` 1. We conclude that Φ3pxq is
irreducible115, and hence

mω{Qpxq “ Φ3pxq “ x2 ` x` 1.

Thus from the MPT we obtain the following field by adjoining ω to Q:

Qrωs “ ta` bω : for unique a, b P Qu.

This time it is not so clear how to perform division, since we don’t know how to define
“conjugation”. Instead we pursue a brute force approach. Suppose that elements a` bω and
c` dω satisfy

pa` bωqpc` dωq “ 1` 0ω.

We assume that a, b P Q are known and we try to solve for c, d P Q. Expand the left hand
side and use the identity ω2 ` ω ` 1 “ 0 to obtain

pa` bωqpc` dωq “ ac` pad` bcqω ` bdω2

“ ac` pad` bcqω ` bdp´1´ ωq

“ pac´ bdq ` pad` bc´ bdqω.

114Since 0 “ ω3
´ 1 “ pω ´ 1qpω2

` ω ` 1q and ω ´ 1 ‰ 0 we must have ω2
` ω ` 1 “ 0.

115More generally, it is true that any cyclotomic polynomial Φnpxq is irreducible over Q, and hence is the
minimal polynomial of any primitive nth root of unity over Q.
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Since the coefficients are unique, comparing with the right hand side gives the following system
of two linear equations in the two unknowns c, d P Q:

"

ac ´ bd “ 1,
bc ` pa´ bqd “ 0.

This can be solved by inverting the coefficient matrix:

ˆ

a ´b
b a´ b

˙ˆ

c
d

˙

“

ˆ

1
0

˙

ˆ

c
d

˙

“

ˆ

a ´b
b a´ b

˙´1 ˆ
1
0

˙

ˆ

c
d

˙

“
1

apa´ bq ` b2

ˆ

a´ b b
´b a

˙ˆ

1
0

˙

ˆ

c
d

˙

“
1

a2 ` b2 ´ ab

ˆ

a´ b
´b

˙

.

We conclude that
1

a` bω
“

ˆ

a´ b

a2 ` b2 ´ ab

˙

`

ˆ

´b

a2 ` b2 ´ ab

˙

ω.

In retrospect, we see that the map a ` bω ÞÑ pa ´ bq ´ bω plays the role of “conjugation” in
the field Qrωs. In the next example it will not be so easy to find a “conjugation” map.

‚ Cube Roots of 2. Let ω P C be any fixed cube root of 2, so that ω3 “ 2. One can see
using the Rational Root Test that any root a{b P Q (in lowest terms) of the polynomial x3´2
must satisfy a|2 and b|1, hence a{b “ ˘1 or ˘2. But none of these is a root of x3 ´ 2. Thus
x3 ´ 2 is irreducible over Q and must be the minimal polynomial of α over Q:

mα{Qpxq “ x3 ´ 2.

It follows that we obtain a field by adjoining α to Q:

Qrαs “ ta` bα` cα2 : for unique a, b, c P Qu.

To practice computations in this field, let’s compute the inverse of 1 ` α ` α2. From the
Minimal Polynomial Theorem we know that there exist unique a, b, c P Q satisfying

p1` α` α2qpa` bα` cα2q “ 1` 0α` 0α2.

In order to solve for a, b, c, we expand the left hand side and use the fact that α3 “ 2:

p1` α` α2qpa` bα` cα2q “ a` bα` cα2

` aα` bα2 ` cα3

` aα2 ` bα3 ` cα4
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“ a` bα` cα2

` aα` bα2 ` 2c

` aα2 ` 2b` 2cα

“ pa` 2b` 2cq ` pa` b` 2cqα` pa` b` cqα2.

Since the coefficients are unique, comparing coefficients with the right hand side gives a system
of three linear equations in the three unknowns a, b, c P Q:

$

&

%

a ` 2b ` 2c “ 1,
a ` b ` 2c “ 0,
a ` b ` c “ 0.

After a bit of work, one sees that pa, b, cq “ p´1, 1, 0q, so that

1

1` α` α2
“ ´1` 1α` 0α2.

More generally, the equation pr ` sα` tα2qpa` bα` cα2q “ 1` 0α` 0α2 leads the following
system of linear equations in the unknowns a, b, c:

$

&

%

ra ` 2tb ` 2sc “ 1,
sa ` rb ` 2tc “ 0,
ta ` sb ` rc “ 0.

My computer says that the solution is

pa, b, cq “

ˆ

r2 ´ 2st

∆
,
2t2 ´ rs

∆
,
s2 ´ rt

∆

˙

,

where ∆ “ r3 ` 2s3 ` 4t3 ´ 6rst is the determinant of the coefficient matrix. Clearly it is not
worthwhile to do these calculations by hand.

Remark on “rationalizing the denominator”: This time each element of the field Qrαs will have
two conjugates, obtained by replacing α with one of the other two roots of x3 ´ 2; namely,
ωα or ω2α, where ω is a primitive 3rd root of unity. Denote these “conjugation maps”,116

together with the identity map, by

σ1pr ` sα` tα
2q :“ r ` spωαq ` tpωαq2,

σ2pr ` sα` tα
2q :“ r ` spω2αq ` tpω2αq2.

For a given element β “ r ` sα` tα2 P Frαs, one can check that

σ1pβqσ2pβq “ pr
2 ´ 2stq ` p2t2 ´ rsqα` ps2 ´ rtqα2,

βσ1pβqσ2pβq “ pr
3 ` 2s3 ` 4t3 ´ 6rstq ` 0α` 0α2.

116For a given β P Frαs the complex numbers σ1pβq and σ2pβq do not live in Frαs, but this doesn’t matter.
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So the rationalization of the denominator of 1{β is achieved by multiplying the numerator and
the denominator by both of the conjugates σ1pβq and σ2pβq:

1

β
“

1

β
¨
σ1pβqσ2pβq

σ1pβqσ2pβq
“

1

r3 ` 2s3 ` 4t3 ´ 6rst

`

pr2 ´ 2stq ` p2t2 ´ rsqα` ps2 ´ rtqα2
˘

.

Further investigations of this kind lead to the subject of Galois theory, which we will study in
the next chapter.117

8.3 The Classification of Finite Fields

Given a field extension E Ě F and an element α P E that is algebraic over F, the Minimal
Polynomial Theorem tells us that the subring Frαs “ tfpαq : fpxq P Frxsu Ď E generated by
α is actually a field. To be precise, we have

Frαs –
Frxs

mα{FpxqFrxs
,

where mα{Fpxq is the unique monic irreducible polynomial in Frxs having α as a root. This
quotient ring is a field since R{pR is a field for any prime element p P R of a Euclidean domain.

In the next two sections, we will turn this construction around. That is, instead of starting
with an element of a field extension α P E Ě F and ending with an irreducible polynomial
mα{Fpxq P Frxs, we will start with an irreducible polynomial mpxq P Frxs and end up with a
field extension E Ě F containing some element α P E Ě F such that mpαq “ 0.

Why would we do this? There are two reasons:

• We know that any non-constant polynomial fpxq P Qrxs has a root (in fact, all of
its roots) in the field C of complex numbers. This is the content of the Fundamental
Theorem of Algebra. However, our proof of the FTA was based on the assumption that
the roots already exist in some field extension E Ě C, and proceeded to show that the
roots must actually be in C. We did not yet verify this assumption, which is called
Kronecker’s Theorem.

• The same idea should work for polynomials over the finite field Fp “ Z{pZ. That is,
given some non-constant polynomial fpxq P Fprxs, Kronecker’s Theorem will tell us that
there exists some field E Ě Fp where fpxq has all of its roots. The construction of E is
analogous to the construction of the complex numbers, since it involves the adjunction
of some “imaginary elements”. But it does not directly involve the complex numbers
because C does not contain a subfield isomorphic to Fp.

Our main application of these ideas will be to construct all possible finite fields.

Example: A Field of Size Four. Consider the field of two elements, F2 “ t0, 1u. I claim
that the polynomial x2`x`1 P F2rxs is irreducible over F2. Since this polynomial has degree

117No we won’t, because we don’t have time.
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2, we only have to show that it has no roots in F2. And this is easy because there are only
two elements to check:

x 0 1

x2 ` x` 1 1 1

Then since x2 ` x ` 1 is a prime element of the Euclidean domain F2rxs, it follows that the
quotient ring is a field. Let’s call it

E “
F2rxs

px2 ` x` 1qF2rxs
.

I claim that this field has four elements. To prove this we first consider the quotient ho-
momorphism, sending a polynomial fpxq P F2rxs to the coset of px2 ` x ` 1qF2rxs that it
generates:

ϕ : F2rxs Ñ E
fpxq ÞÑ fpxq ` px2 ` x` 1qF2rxs.

Recall that we can view F2 Ď F2rxs as the subring of constant polynomials. Similarly, we can
view F2 Ď E as the subring of cosets generated by constant polynomials. To be precise, the
homomorphism ϕ restricted to F2 is injective:

ϕ : F2 Ñ E
a ÞÑ a` px2 ` x` 1qF2rxs.

Indeed, if ϕpaq “ ϕpbq then the constant polynomial a´b P F2rxs is in the coset px2`x`1qF2rxs,
which implies that a´ b is divisible by x2 ` x` 1. For reasons of degree this is only possible
if a´ b “ 0, and hence a “ b.

Another way to say this is that the kernel of ϕ : F2 Ñ E is the zero ideal. Then from the
First Isomorphism Theorem we have ϕpF2q “ imϕ – F2{t0u “ F2. We will identify F2 with
the subring ϕpF2q Ď E by writing “a” instead of a` px2 ` x` 1qF2rxs.

118

So we have constructed a field extension E Ě F2. In fact, I claim that E “ F2rαs for some
special element α P E. Indeed, let α be the coset generated by x:

α :“ x` px2 ` x` 1qF2rxs.

Note that any element of E looks like fpxq`px2`x`1qF2rxs for some polynomial fpxq P F2rxs.
Let’s say fpxq “

ř

k akx
k. Then from the ring operations in E we have119

fpαq “
ÿ

k

`

ak ` px
2 ` x` 1qF2rxs

˘ `

x` px2 ` x` 1qF2rxs
˘k

“ p
ÿ

k

akx
kq ` px2 ` x` 1qF2rxs

118This is common practice in algebra. We do the same thing when we identify the integer a P Z with the
fraction a{1 P Q, or the real number a P R with the complex number a` 0i P C.
119This is hard to process at first, but I assure you that there is nothing interesting going on here.
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“ fpxq ` px2 ` x` 1qF2rxs.

Furthermore, we observe that this element α is a root of x2 ` x` 1 because

α2 ` α` 1 “ x2 ` x` 1` px2 ` x` 1qF2rxs “ 0` px2 ` x` 1qF2rxs.

But we already know that x2`x`1 is irreducible over F2 and hence x2`x`1 is the minimal
polynomial of α over F2:

mα{F2
pxq “ x2 ` x` 1.

Finally, it follows from the Minimal Polynomial Theorem that

E “ F2rαs “ ta` bα : for unique a, b P F2u.

Since F2 consists of only two elements t0, 1u we conclude that E has four elements:

E “ t0` 0α, 1` 0α, 0` 1α, 1` 1αu “ t0, 1, α, 1` αu.

The addition and multiplication tables for E are obtained by reducing the coefficients mod 2
and using the fact that α2 “ ´1´ α “ 1` α:

` 0 1 α 1` α

0 0 1 α 1` α
1 1 0 1` α α
α α 1` α 0 1

1` α 1` α α 1 0

ˆ 0 1 α 1` α

0 0 0 0 0
1 0 1 α 1` α
α 0 α 1` α 1

1` α 0 1` α 1 α

The steps leading up to these tables were abstract, but once we have them it is easy to teach a
computer how to work with this field. In fact, such fields are used extensively in cryptography
and error correcting codes.

Example: A Field of Size Eight. If we can find an irreducible of polynomial of degree 3
in the ring F2rxs then the same reasoning as in the previous example will yield a field of size
23 “ 8. In fact, the ring F2rxs contains exactly two irreducible polynomials of degree 3:

x 0 1

x3 ` x2 ` 1 1 1

x3 ` x` 1 1 1

Choosing the first of these gives the following field of size eight:

E “ ta` bα` cα2 : for unique a, b, c P F2, where α3 ` α2 ` 1 “ 0u.
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Here is the multiplication table:

ˆ 0 1 α 1` α α2 1` α2 α` α2 1` α` α2

0 0 0 0 0 0 0 0 0

1 0 1 α 1` α α2 1` α2 α` α2 1` α` α2

α 0 α α2 α` α2 1` α2 1` α` α2 1 1` α

1` α 0 1` α α` α2 1` α2 1 α 1` α` α2 α2

α2 0 α2 1` α2 1 1` α` α2 1` α α α` α2

1` α2 0 1` α2 1` α` α2 α 1` α α` α2 α2 1

α` α2 0 α` α2 1 1` α` α2 α α2 1` α 1` α2

1` α` α2 0 1` α` α2 1` α α2 α` α2 1 1` α2 α

You might think that the other polynomial x3 ` x` 1 gives a different field of size eight, but
we will prove that any two finite fields of the same size must be isomorphic. More generally,
we have the following important theorem. It is remarkable that finite fields are completely
understood. This situation is much different, for example, from the theory of finite groups,
which can be arbitrarily complicated.

The Classification of Finite Fields

(1) Any finite field has size pk where p is prime and k ě 1.

(2) There exists a field of size pk for any prime p and integer k ě 0.

(3) Any two finite fields of the same size are isomorphic.

It is common to write q “ pk and to denote the unique field of size q by

Fq or GFpqq.

The notation GF stands for “Galois Field”, since the study of finite fields beyond Z{pZ
was initiated by Galois. However, he did not express his results in this language since the
concept of a “field” was not invented until the 1870s. Dedekind used the word Körper
(body) and Kronecker used the word Bereich (realm). The English translation “field”
was given by E.H. Moore (1896), who first proved this theorem in its modern form.

In the remainder of this section we will prove (1) and then in the next section we will use
the theory of splitting fields to prove (2) and (3). In order to prove (1) we need the following
concept.

197



The Characteristic of a Field

For any ring R there exists a unique ring homomorphism ϕ : Z Ñ R from the ring of
integers. The kernel of ϕ, being an ideal of Z must have the form nZ for some unique
integer n ě 0. We call this integer the characteristic of the ring:

charpRq :“ n.

If E is a field then we must have charpEq “ 0 or charpEq “ p with p prime. If E is a
finite field then we must have charpEq ‰ 0. Hence there exists120 a prime p such that
E contains a subring isomorphic to Fp:

Fp “ Z{pZ “ Z{ kerϕ – imϕ Ď E.

Proof. Any ring homomorphism ϕ : Z Ñ R must, in particular, be a group homomorphism
ϕ : pZ,`, 0q Ñ pR,`, 0q sending 1 to 1. We know from the previous chapter that a unique
such homomorphism exists and is given by the following definition:121

ϕpkq “ k ¨ 1 :“

$

’

’

’

’

’

&

’

’

’

’

’

%

k times
hkkkkkkkkikkkkkkkkj

1` 1` ¨ ¨ ¨ ` 1 if k ě 1,

0 if k “ 0,

´1´ 1´ ¨ ¨ ¨ ´ 1
looooooooomooooooooon

´k times

if k ď ´1.

One can check that this function also preserves multiplication, hence is a ring homomorphism.

Since the kernel of ϕ is an ideal of Z we have kerϕ “ nZ for some unique integer n ě 0. Then
from the First Isomorphism Theorem we see that R contains a subring isomorphic to Z{nZ:

Z{nZ “ Z{ kerϕ – imϕ Ď R.

If the ring R is finite, then we must have n ě 1 because Z{0Z – Z is infinite.

Now suppose that E “ R is a field with charpEq “ n, and let S Ď E be any subring. Suppose
that we have a, b P S with ab “ 0 and a ‰ 0. Then since a´1 exists in E we must have

ab “ 0

aa´1b “ a´10

b “ 0.

120We will see below that this prime is unique.
121In the previous chapter we used multiplicative language. Recall: For any group element a P G there exists a

unique group homomorphism ϕ : pZ,`, 0q Ñ G sending k to “ak”. When the group structure on G is additive,
we will write “k ¨ a” instead.
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Hence S is a domain. In particular, imϕ Ď E must be a domain. Then since Z{nZ – imϕ,
the theorem on Quotients of Euclidean Domains implies that n “ 0 or n “ p is prime. And if
E is a finite field then the case n “ 0 is impossible. ˝

From this and a bit of linear algebra we obtain part (1) of the Classification of Finite Fields.

Proof of (1). Let E be a finite field. From the previous theorem we have Fp Ď E for
some prime p. Thus we can view E as a vector space over Fp, defining scalar multiplication
FpˆEÑ E via the field multiplication. Since E is a finite set, this must be a finite-dimensional
vector space. In other words, there exists a finite basis α1, . . . , αk P E such that every element
β P E can be expressed uniquely in the form

β “ b1α1 ` b2α2 ` ¨ ¨ ¨ ` bkαk,

for some b1, . . . , bk P Fp.122 This gives a bijection between elements of E and k-tuples of
elements of Fp, which implies that

#E “ #Fkp “ p#Fpqk “ pk.

˝

Remark: It follows from this proof that if Fp1 Ď E and Fp2 Ď E for primes p1, p2 then we must
have p1 “ p2. Indeed, this would imply that

pk11 “ #E “ pk22

for some integers k1, k2 ě 1, which can only happen if p1 “ p2.

8.4 Existence and Uniqueness of Splitting Fields

In this section we complete the Classification of Finite Fields by proving (2) that finite fields
of sizes pk exist, and (3) that any two finite fields of the same size are isomorphic. We will
prove this in four steps:

• Any polynomial fpxq P Frxs over any field F has a splitting field.

• Any splitting field of xp
k
´ x P Fprxs has size pk.

• Any field of size pk is a splitting field for the polynomial xp
k
´ x P Fprxs.

• Any two splitting fields for the same polynomial are isomorphic.

The first step is called Kronecker’s Theorem. In addition to proving the existence of finite
fields, this result also completes our proof of the Fundamental Theorem of Algebra.

122Start with the whole field S “ E. If any element of S is expressible as an Fp-linear combination of the
other elements of S, throw it away. Continue until no element of S is expressible as an Fp-linear combination
of the others. The result will be the desired basis.
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Kronecker’s Theorem

Consider a non-constant polynomial fpxq P Frxs of degree n over a field F. We say that
E Ě F is a splitting field for fpxq over F when the following two properties hold:

• There exist α1, . . . , αn P E such that fpxq “ px´α1q ¨ ¨ ¨ px´αnq.
123 In other words,

fpxq splits over E.

• For any field E Ě E1 Ě F such that fpxq splits over E1, we must have E1 “ E.

Kronecker’s Theorem says that

splitting fields always exist.

The slogan of the proof is to “pretend hard enough and things will work out”.

Proof. Consider any irreducible factor m1pxq|fpxq in Frxs and consider the field

F1 :“
Frxs

m1pxqFrxs
.

As in the previous section, we will view F Ď F1 as the subring of (cosets generated by) constant
polynomials. Now let α1 P F1 denote the coset generated by x:

α1 :“ x`m1pxqFrxs.

As in our discussion of fields of size four, it is a “trivial fact” that m1pα1q “ 0 in the field F1, the
only difficultly being that this notation hides all the details of the construction. Furthermore,
since m1pxq is irreducible over F the MPT implies that F1 “ Frα1s.

Since m1pα1q “ 0 and m1pxq|fpxq we have fpα1q “ 0, hence by Descartes’ Theorem we have

fpxq “ px´ α1qf1pxq for some f1pxq P F1rxs.

If f1pxq is constant then we are done. Otherwise, let m2pxq|f1pxq be an irreducible factor in
the ring F1rxs and consider the field

F2 :“
F1rxs

m2pxqF1rxs
.

Think of F1 Ď F2 as the subring of cosets generated by constant polynomials124 and let α2 P F2

be the coset generated by x:
α2 :“ x`m2pxqF1rxs.

123It does no harm to assume that fpxq is monic.
124To be completely precise, these are cosets of cosets. Now you see why it is necessary to abuse the notation.
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As before, we have m2pα2q “ 0, which since m2pxq is irreducible over F1 implies that F2 “

F1rα2s “ Frα1, α2s.
125 Also, since m2pxq|f1pxq we have f1pα2q “ 0 and hence

f1pxq “ m2pxqf2pxq for some f2pxq P F2rxs.

If f2pxq is constant then we are done. Otherwise, we repeat the process to create a chain of
field extensions F Ď F1 Ď ¨ ¨ ¨ Ď Fn and elements αi P Fi such that

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq.

In other words, fpxq splits over Fn. By construction we also have Fn “ Frα1, . . . , αns which
means that Fn itself is the smallest subring of Fn containing F and the elements α1, . . . , αn.

Finally, suppose that fpxq splits over a field E where Fn Ě E Ě F. In this case we will show
that E “ Fn and hence that Fn is a splitting field for fpxq over F. By assumption there exist
β1, . . . , βn P E such that

fpxq “ px´ β1qpx´ β2q ¨ ¨ ¨ px´ βnq.

But then in the ring Fnrxs we have

px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq “ px´ β1qpx´ β2q ¨ ¨ ¨ px´ βnq.

Substituting x “ α1 gives

0 “ pα1 ´ α1qpα1 ´ α2q ¨ ¨ ¨ pα1 ´ αnq “ pα1 ´ β1qpα1 ´ β2q ¨ ¨ ¨ pα1 ´ βnq,

which implies that α1 ´ βj “ 0 (and hence α1 “ βj) for some j. Similarly, by substituting
x “ αi we find that every αi is equal to some βj and hence is an element of E. We have shown
that the ring E contains F and the elements α1, . . . , αn, and it follows that E “ Fn as desired.
˝

What do you think of this proof? There is a reason that it didn’t get written down until the
1880s. We will use the existence of splitting fields to prove the existence of finite fields of
every possible size. But for this we need two more lemmas.

Repeated Roots

For any field F we define the formal derivative D : Frxs Ñ Frxs by126

D
´

ÿ

akx
k
¯

“
ÿ

k ¨ akx
k´1.

This satisfies all of the usual algebraic properties of derivatives, such as the product rule.

Now consider any element of a field extension, α P E Ě F. We say that α is a repeated
root of fpxq when127

fpxq “ px´ αq2gpxq for some gpxq P Erxs.
125We use the notation Frα1, α2s to denote the field Frα1srα2s.
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I claim that

α is a repeated root of fpxq ðñ fpαq “ 0 and Dfpαq “ 0.

Proof. Consider an element of a field extension α P E Ě F and a polynomial fpxq P Frxs. First
we suppose that α is a repeated root of fpxq. That is, we suppose that fpxq “ px ´ αq2gpxq
for some gpxq P Erxs. Then from the product rule we have

Dfpxq “ 2px´ αqgpxq ` px´ αq2Dgpxq,

and hence
Dfpαq “ 2pα´ αqgpαq ` pα´ αqDgpαq “ 0.

Conversely, consider any polynomial fpxq P Frxs such that fpαq “ 0 and Dfpαq “ 0. Since
fpαq “ 0, Descartes’ Factor Theorem in the ring Erxs tells us that

fpxq “ px´ αqgpxq for some gpxq P Erxs.

Now we compute the derivative of fpxq using the product rule:

Dfpxq “ gpxq ` px´ αqDgpxq.

Since Dfpαq “ 0 we must have

0 “ Dfpαq “ gpαq ` pα´ αqDgpαq “ gpαq.

But then Descartes’ Factor Theorem in the ring Erxs says that

gpxq “ px´ αqhpxq for some hpxq P Erxs,

and hence α is a repeated root of fpxq:

fpxq “ px´ αqgpxq

“ px´ αqpx´ αqhpxq

“ px´ αq2hpxq.

˝

126Given k P Z and ak P F, the element k ¨ ak P F is defined repeated addition or subtraction. More precisely,
we define k ¨ ak “ ϕpkq where ϕ : pZ,`, 0q Ñ pF,`, 0q is the unique group homomorphism sending 1 to ak.
127We do not exclude the possibility that gpαq “ 0, in which case fpxq is disible by px ´ αq3 or some higher

power.
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Freshman’s Dream

Let R be a ring of prime characteristic p ą 0. Then for any elements a, b P R we have

pa˘ bqp “ ap ˘ bp,

and by induction we have

pa˘ bqp
k
“ ap

k
˘ bp

k
for any integer k ě 0.

We will apply this in the special case when R “ E Ě Fp is a field extension of Fp.

Proof. For any ring R and for any integer e ě 0 we have the Binomial Theorem:

pa` bqe “ ae `

ˆ

e

1

˙

¨ ae´1b`

ˆ

e

2

˙

¨ ae´2b2 ` ¨ ¨ ¨ `

ˆ

e

e´ 1

˙

¨ abe´1 ` be.

Suppose that charpRq “ n. That is, suppose that the unique ring homomorphism from the
integers, ϕ : Z Ñ R, has kernel nZ. By definition, this means that for nonzero a P R and
k P Z we have k ¨ a “ 0 if and only if k is divisible by n.

If p P Z is prime and charpRq “ p, our first goal is to show that

pa` bqp “ ap ` bp.

From the above remarks, it is enough to show that
`

p
r

˘

is divisible by p for all 1 ď r ď p´ 1.
Recall the formula for binomial coefficients:

ˆ

p

r

˙

“
p!

r!pp´ rq!
“

ppp´ 1qpp´ 2q ¨ ¨ ¨ 2 ¨ 1

rpr ´ 1q ¨ ¨ ¨ 2 ¨ 1 ¨ pp´ rqpp´ r ´ 1q ¨ ¨ ¨ 2 ¨ 1
.

We know that this is an integer, hence every prime factor in the denominator must be canceled
by a prime factor in the numerator. Thus we need to show that the prime p occurs with higher
multiplicity in the numerator than it does in the denominator. In fact, I claim that p occurs
with multiplicity 1 in the numerator and with multiplicity 0 in the denominator. Indeed, we
clearly have p|p!. But p does not divide the product pp´1qpp´2q ¨ ¨ ¨ 2¨1 because if it did then by
Euclid’s Lemma p would divide one of the factors, but each factor is smaller than p. Similarly,
if 1 ď r ď p´1 then p does not divide the product r!pp´rq!rpr´1q ¨ ¨ ¨ 2¨1¨pp´rqpp´r´1q ¨ ¨ ¨ 2¨1
since each factor in this product is smaller than p.

Now I claim that we also have
pa´ bqp “ ap ´ bp.

If p “ 2 then this follows from the previous because a “ ´a in a ring of characteristic 2. So
suppose that p ą 2. Since p is prime this implies that p is odd, so that

pa´ bqp “ ap ´

ˆ

p

1

˙

¨ ap´1b`

ˆ

p

2

˙

¨ ap´2b2 ´ ¨ ¨ ¨ ` p´1qp´1

ˆ

p

p´ 1

˙

¨ abp´1 ` p´1qp ¨ bp
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“ ap ´ 0` 0´ ¨ ¨ ¨ ` 0´ bp

“ ap ´ bp.

Finally, we observe by induction that for any integer k ě 1 we have

pa˘ bqp
k
“

´

pa˘ bqp
k´1

¯p

“

´

ap
k´1
˘ bp

k´1
¯p

“

´

ap
k´1

¯p
˘

´

bp
k´1

¯p

“ ap
k
˘ bp

k
.

˝

Proof of (2). For any prime power pk we want to show that a field of size pk exists. The key
trick, used by Gauss and Galois, is to consider the following polynomial:

gpxq “ xp
k
´ x P Fprxs.

Let E Ě Fp be a splitting field for gpxq over Fp, which exists by Kronecker’s Theorem. Then
I claim that #E “ pk. To prove this, we consider the set of roots of gpxq in the field E:

S :“ tα P E : gpαq “ 0u.

The proof will follow from two facts:

(i) #S “ pk,

(ii) S “ E.

To prove (i) we first observe that #S ď pk since a polynomial of degree pk can have at most
pk roots in any field. Now consider the formal derivative of gpxq in the ring Fprxs:

Dgpxq “ pkxp
k´1 ´ 1 “ 0xp

k
´ 1 “ ´1.

Since this polynomial is constant and nonzero it cannot have a root in any field extension. It
follows from the lemma that gpxq cannot have a repeated root in any field extension. Since
gpxq splits128 in E this implies that gpxq has pk distinct roots in E, hence #S “ pk.

To prove (ii) we will show that (surprisingly!) the subset S Ď E is actually a subfield. Then
since E is a splitting field for gpxq and since gpxq splits over S it will follow that S “ E. There
are two things to check:

• Let α, β P S so that αp
k
“ α and βp

k
“ β. Then

pαβ´1qp
k
“ αp

k
´

βp
k
¯´1

“ αβ´1,

so that αβ´1 P S.

128Indeed, E is a splitting field for gpxq.
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• Let α, β P S so that αp
k
“ α and βp

k
“ β. Then from the Freshman’s Dream we have

pα´ βqp
k
“ αp

k
´ βp

k
“ α´ β,

so that α´ β P S.

˝

This abstract existence proof is not particularly useful. For practical purposes it is better to
start with an irreducible polynomial in Fprxs of degree k. The existence of finite fields of every
size is equivalent to the statement that there exist irreducible polynomials in Fprxs of every
degree. Apparently there exist fast algorithms for finding such polynomials.129

To complete the Classification of Finite Fields, it only remains to show that any two finite
fields of the same size are isomorphic. This is the hardest part, and the proof was apparently
not written down until 1896.130 We will use the following theorem, which has applications
beyond finite fields.

Uniqueness of Splitting Fields

Consider a non-constant polynomial fpxq P Frxs over a field F. Suppose that E Ě F and
E1 Ě F are splitting fields for fpxq. Then there exists a ring isomorphism E – E1.

The proof will use induction on the degree of the polynomial. In order to facilitate the
induction step we will actually prove a more general statement.

Uniqueness of Splitting Fields (General Statement)

Any isomorphism of fields ϕ : F Ñ F1 induces an isomorphism of polynomial rings
ϕ : Frxs Ñ F1rxs by acting on coefficients:

ϕ : Frxs Ñ F1rxs
ř

k akx
k ÞÑ

ř

k ϕpakqx
k.

We use the same symbol ϕ for both isomorphisms to save notation. We will also write
fϕpxq “ ϕpfpxqq to save notation.131

Now consider a non-constant polynomial fpxq P Frxs and its image polynomial fϕpxq P
F1rxs. If E Ě F is a splitting field for fpxq and if E1 Ě F1 is a splitting field for fϕpxq then
I claim that there exists an isomorphism ϕ̃ : EÑ E1 with the property that ϕ̃paq “ ϕpaq

129https://arxiv.org/abs/0905.1642
130E.H. Moore, A Doubly-Infinite System of Simple Groups, 1896.
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for all a P F. Here is a diagram:

E ϕ̃ // E1

F

OO

ϕ
// F1

OO

The vertical arrows here are just the “inclusion homomorphisms”, sending elements of F
and F1 to themselves. The idea of this diagram is that the two composite functions from
F to E1 yield the same function.132

The induction step is a bit complicated, so we isolate this as a separate lemma.

The Lifting Lemma

We are given the following data:

• An isomorphism of fields ϕ : FÑ F1.

• An irreducible polynomial mpxq P Frxs.

• Some field extensions E Ě F and E1 Ě F1.

• Elements α P E and β P E1 such that mpαq “ 0 and mϕpβq “ 0.

Since mpxq P Frxs is irreducible, the image polynomial mϕpxq P F1rxs is also irreducible.
It follows from the Minimal Polynomial Theorem that mpxq and mϕpxq are the minimal
polynomials of α{F and β{F1, respectively. Furthermore, the subrings Frαs Ď E and
F1rβs Ď E1 are actually fields. Finally, we obtain an isomorphism of fields ϕ̂ : Frαs Ñ F1rβs
by composing the following three isomorphisms:

Frαs –
Frxs

mpxqFrxs
–

F1rxs
mϕpxqF1rxs

– F1rβs.

The middle isomorphism is induced by ϕ. From the definitions, we observe that ϕ̂pαq “ β
and that ϕ̂paq “ ϕpaq for all a P F, where we think of F Ď Frαs and F1 Ď F1rβs as subfields.

We can summarize all of this information with a commutative diagram:

131Every author seems to invent their own notation for this operation, i.e., the operation of acting on coeffi-
cients by a ring homomorphism.
132We say that the diagram “commutes”. Such “commutative diagrams” originated in the 1940s, which is

quite late. But they have recently taken over most branches of algebra.
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E E1

Frαs

OO

ϕ̂ // F1rβs

OO

F

OO

ϕ
// F1

OO

We call this the Lifting Lemma because it lifts the isomorphism ϕ : FÑ F1 to an isomorphism
of field extensions ϕ̂ : Frαs Ñ F1rβs. To prove the uniqueness of splitting fields we will adjoin
the roots of a polynomial one at a time, each time lifting the original isomorphism, until we
obtain an isomorphism between the splitting fields.

Proof of Uniqueness of Splitting Fields. Consider an isomorphism of fields ϕ : F Ñ F1
and a non-constant polynomial fpxq P Frxs. Let E Ě F be a splitting field of fpxq and let
E1 Ě F be a splitting field of the image polynomial fϕpxq P F1rxs. Our goal is to construct an
isomorphism ϕ̃ : EÑ E1.

To begin, we consider any irreducible factor mpxq|fpxq in the ring Frxs. The image polynomial
mϕpxq will be an irreducible factor of fϕpxq in the ring F1rxs. Choose any element α1 P E such
that mpα1q “ 0, which must exist because E is a splitting field,133 and define β1 :“ ϕpα1q so
that mϕpβ1q “ 0. From the conditions of the Lifting Lemma, we obtain an isomorphism of
fields ϕ1 : Frα1s Ñ F1rβ1s, as in the following diagram:

E E1

Frα1s

OO

ϕ1 // F1rβ1s

OO

F

OO

ϕ
// F1

OO

Since mpα1q “ 0 and mpxq|fpxq we must have fpα1q “ 0. Hence from Descartes’ Factor
Theorem we obtain

fpxq “ px´ α1qf1pxq for some f1pxq P Frα1srxs.

If f1pxq is constant then we stop. Otherwise, we consider any irreducible factor m1pxq|f1pxq in
the ring Frα1srxs. Since fpxq splits in E and since m1pxq|f1pxq|fpxq, we can find some α2 P E
133Since fpxq splits in Erxs and mpxq|fpxq, the uniqueness of prime factorization in Erxs implies that mpxq

also splits in Erxs.
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such that m1pα2q “ 0. Define β2 :“ ϕ1pα1q so that mϕ1
1 pβ1q “ 0. Then we can apply the

Lifting Lemma again to obtain an isomorphism of fields ϕ2 : Frα1, α2s Ñ F1rβ1, β2s making
the following diagram commute:134

E E1

Frα1, α2s

OO

ϕ2 // F1rβ1, β2s

OO

Frα1s

OO

ϕ1 // F1rβ1s

OO

F

OO

ϕ
// F1

OO

We repeat this process until we obtain complete factorizations135

fpxq “ px´ α1qpx´ α2q ¨ ¨ ¨ px´ αnq,

fϕpxq “ px´ β1qpx´ β2q ¨ ¨ ¨ px´ βnq,

and an isomorphism of fields ϕn : Frα1, . . . , αns Ñ F1rβ1, . . . , βns. Since fpxq splits over
Frα1, . . . , αns and since E is a splitting field (i.e. is minimal with respect to splitting f) we
must have E “ Frα1, . . . , αns. Similarly, we must have E1 “ F1rβ1, . . . , βns. Thus we have
produced the desired isomorphism E – E1. ˝

Remark: Our original goal was to prove that any two splitting fields E Ě F and E1 Ě F for
the same polynomial fpxq P Frxs are isomorphic. We obtain this from the above result by
starting with the identity isomorphism ϕ : F Ñ F. Isomorphisms between splitting fields are
certainly not unique. For example, if E Ě F is a splitting field for fpxq P Frxs then there
might exist many automorphisms of E (i.e., self-isomorphisms ϕ : EÑ E) fixing the elements
of F. The collection of such automorphisms is called the Galois group of fpxq over F. This is
a fascinating topic, which we have no time to pursue.

Finally, we can complete our Classification of Finite Fields. The last step is to prove that any
two finite fields of the same size are isomorphic. We will do this by showing that any two
finite fields of the same size are splitting fields for the same polynomial.

Proof of (3). Let E and E1 be fields of size pk, with p prime. Then we must have charpEq “
charpE1q “ p. Indeed, suppose that charpEq “ p1 for some prime p1. Then from the proof at
the end of the last section we must have

pk “ #E “ pk11

134We use the notation Frα1, α2s to denote the field Frα1srα2s.
135It does no harm to assume that fpxq is monic.
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for some integer k1, which can only happen if p1 “ p. Thus each of E and E1 contains a
field isomorphic to Fp. I claim that each of E and E1 is a splitting field for the polynomial

gpxq “ xp
k
´ x P Fprxs, from which it will follow that E – E1.

To prove this, I claim that every element of E is a root of gpxq. Indeed, since E is a field
of size pk, the group of units pEˆ, ¨, 1q has size pk ´ 1. Hence for any nonzero element α P E
the generalized Euler-Fermat theorem tells us that

αp
k´1 “ 1,

and multiplying both sides by α gives

αp
k
“ α

αp
k
´ α “ 0

gpαq “ 0.

This last equation also holds for α “ 0, hence it holds for every element of E. In other words,
we can write

gpxq “
ź

αPE
px´ αq.

It follows from this that E is a splitting field for gpxq, since any subfield of E must necessarily
omit some of root of gpxq. A parallel argument shows that E1 is a splitting field for gpxq. ˝

THE END

9 Introduction to Galois Theory

Nope, no time.
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