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1 Complex Numbers

1.1 Cardano’s Formula

One could say that algebra began with the study of quadratic equations. Given any numbers
a,b,c we want to find all numbers x such that

ax’® +br+c=0.

If a = 0 then there is nothing interesting to do, so let us assume that a # 0. First we divide
both sides by a to obtain

Now there is a famous trick called “completing the square.” We add the the quantity (b/2a)?
to both sides and observe that the left side factors:



b b c b2
<.%'+2a) <.’E+2a> :—54—@
<x+b)2:b2—4ac

2a 402

Finally, we can take the square root of the left side and solve for z:

R S 6
2a)  4a?

b +vb2 — 4dac

T+ — =
2a 2a
b +vb?2 — 4dac
T=—
2a 2a
== Vb2 — 4dac
N 2a '

I'm sure that you already knew already this. But let me point out a subtlety that you may
not have thought about. If b?> — 4ac # 0 then the square root symbol v/b? — 4ac can refer to
two different numbers. When b? — 4ac > 0 then we usually assume that v/b2 — 4ac refers to
the positive real square root. However, if b?> — 4ac is negative or non-real then it is not so clear
what the symbol v/b? — 4ac should refer to. For example, we often write i = v/—1 to refer to
“the” square root of —1, but the number —1 actually has two square roots and there is no
good way to distinguish between them. So we should really say:

Let i denote an arbitrary symbol satisfying i> = —1. Then the equation z? = 1
has exactly two solutions: 7 and —i, which are the two square roots of —1.

Later we will prove that any nonzero number of the form a + bv/—1 has exactly two square
roots, which are negatives of each other. With this in mind, here is a modern statement of
the quadratic formula.

Modern Version of the Quadratic Formula

Let a, b, ¢ be any numbers and let A = b? —4ac denote the “discriminant” of the equation
ax? + bx + ¢ = 0. By completing the square we showed above that any solution has the
form x = (—b + §)/2a, where § is some number satisfying 62 = A. Conversely, one can
check that any x of this form is a solution. Thus we have one solution = for each square
root of A. If A = 0 then § = 0 is the only square root. Otherwise, if § is an arbitrary
square root of A then A has exactly two square roots: § and —§. And the quadratic
equation has exactly two solutions:

—b+6 —b+ (=9)
= or r=———".

2a 2a

xT
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The quadratic formula was known to ancient civilizations. The next progress only came in
the 1500s, when several Italian mathematicians discovered algorithms for the solution of cubic
and quartic equations. These formulas were first published by Gerolamo Cardano in the Ars
Magna (1545). For now I will just state the formula without proof.

( )
Cardano’s Formula (1545)

Let a,b, c,d be any numbers with a # 0 and consider the cubic equation
ax® +bx® 4+ cx +d = 0.

To solve this we first divide both sides by a and then we substitute x = y — b/(3a) to
obtain the so-called “depressed form” of the equation:

y3+3py+2q=0,

wherd]]

3ac — b? and o — 27a%d — 9abc + 2b°
B 1= 54a? '

Then Cardano’s formula says that

3 3
y=\/—q+ q2+p3+\/—q—w12+p3-

We could expand all of this to write a formula for x in terms of a, b, ¢, d, but that would

look horrible.
. J

This formula is quite difficult to interpret. In Cardano’s time only real numbers were accepted,
which led to two immediate problems:

(1) Sometimes there is an obvious solution but the formula does not see it.
(2) Sometimes there are 3 solutions but the formula only sees one of them.

These problems were eventually solved by the introduction of “complex numbers” of the form
a + by/—1. The first hint of this idea was observed by Bombelli.

(Bombelli’s Example (1572) ]

!These complicated expressions are one of the reasons why the cubic equation is not studied in high school.



Consider the following cubic equation:
2® — 15z — 4 = 0.

One can easily check that © = 4. On the other hand, by applying Cardano’s formula
with p = —5 and ¢ = —2 we obtain

v = {/=(=2) + VR (3 + /(-2 - V(D2 + (5P
= \3/2—#\/—121—# \3/2—\/—121.

Cardano would say here that the formula gives no solution because square roots of nega-
tive numbers do not exist. Bombelli’s idea was to just pretend that the expression v/—1
is a number with the property (v/—1)2> = —1 and to perform computations as usual.
After some trial and error he observed that?]

2+vV=1)?%=(2+V/=1)2+ V1)
2+V-D{A+4/-1+ (V-1)?)

=2+V-1)4+4/-1-1)

= (2+V-1)(3+4v-1)

=6+ 11v/—1 + 4(v/—1)?)

=6+ 11y/-1—4

=2+ 11V/—1

=2+ V121v/~1

=2+ +/—121.

And a similar computation shows that (2 — 4/—1)3 = 2 — /—121. Therefore Bombelli
concluded that Cardano’s formula really does give the correct answer:
T = {/2 +v—121 + §/2 — /=121
= (2 4+ /1) + (2 - AT)

=4.

In other words: The “real” solution 4 is obtained from Cardano’s formula as a sum of

two “imaginary” numbers.
\. Y,

In the next section I will give the modern interpretation of these computations.

2In the last step we have used the “formula” /ab = \/5\/5, which of course is not really a formula because
it depends on the specific choices of the square roots.



1.2 Complex Numbers as a Ring

Bombelli observed that some issues with Cardano’s formula can be resolved by pretending
that the “imaginary” square roots of negative numbers actually exist. These ideas were slow
to catch on, and were regarded by some as useless speculation well into the 1700s. The modern
formulation is essentially the same as Bombelli’s, just stated with more confidence. Let ¢ be
an abstract symbol. Then a complez number is an abstract symbol of the form a + bi, where
a and b are real numbers. The set of real numbers is denoted by R and the set of complex
numbers is denoted by
C={a+bi:abeR}

Let me emphasize that “a + bi” is only an abstract expression; the plus sign does not at
first have anything to do with addition of real numbers because the symbol bi is not a real
number. In order to make sense of this we will define addition and multiplication of the
symbols “a + bi” by the following formulas#]

(a+bi) + (c+ di) := (a+ ¢) + (b + d)i,
(a + bi)(c+ di) := (ac — bd) + (ad + bc)i.
Perhaps it is not surprising that these operations turn out to behave just like the addition

and multiplication of real numbers. In abstract algebra we capture this behavior with the
following definition.

( )
Definition of Rings

A ringis a set R together with two special elements 0,1 € R (called zero and one) and two
binary operations +,- : R x R — R (called addition and multiplication), which satisfy
the following eight axioms:

(Al) Ya,be R,a+b=b+a (commutative addition)
(A2) Va,b,ce R,a+ (b+c¢)=(a+b)+c (associative addition)
(A3) Vae R,a+0=a (additive identity)
(A4) Yae R,3beR,a+b=0 (additive inversion)
(M1) Ya,be R, ab = ba (commutative multiplication)
(M2) Va,b,ce R, a(bc) = (ab)c (associative multiplication)
(M3) Yae R, al =a (multiplicative identity)

(D) Va,b,ce R, a(b+ c) = ab+ ac (distribution)

If we delete axiom (M1) then we obtain a structure called a non-commutative ring. In
this course all rings will be commutative unless otherwise stated.

We can also define subtraction in a ring. Given any element a € R, axiom (A4) tells us
that there exists at least one element b € R with the property a + b = 0. In fact, there is




exactly one such element. Indeed, if a +b = 0 and a + b = 0 then by combining axioms
(A1), (A2), (A3) we obtain

b=b+0=b+(a+b)=(b+a)+b =0+b =c.

Since this element is unique we will denote it by the symbol “—a”, and for any two
elements a,b € R we will define the symbol

“a—b" :=a+ (D).
\. J

In other words, a ring is a “number system” in which any two numbers can be added, sub-
tracted and multiplied, and in which all of the usuals laws of arithmetic hold. One can check
that the set of complex numbers C forms a ring with the operations defined above, and with
the special elements 0 := 04 0i and 1 := 14 0i[] This is the ultimate justification for referring
to the symbols “a + bi” as “numbers”. Here are the four most commonly discussed rings:

name symbol casual description
integers Z {...,—2,-1,0,1,2,...}
rational numbers Q {a/b:a,be Z,b # 0}
real numbers R {limits of sequences of rational numbers}
complex numbers C {a+by—1:a,beR}

We can think of these as a nested sequence of “subrings”
Z<QcRcC

by identifying each fraction of the form a/1 with the integer a and by identifying the complex
number of the form a + 0¢ with the real number a. But let me observe that the rings Q, R, C
have an important extra property that Z does not have.

4 )
Definition of Fields

Let (F,+,-,0,1) be a ring. We say that F is a field if it satisfies one further axiom:
(M4) Va e F\{0}, 3beF, ab = 1.

In words: For any nonzero element a € F there exists at least one element b € F with
the property ab = 1. In fact, there is exactly one such element. Indeed, if ab = 1 and
ab’' = 1 then by combining axioms (M1), (M2), (M3) we obtain

b= bl = b(ab') = (ba)l/ = 16 = V.

Since this element is unique we can give it the special name “a=!”, or “1/a”. Then for

3The symbol := means “is defined as”. It was adopted by mathematicians from the Pascal programming
language.



any two elements a,b € F with b # 0 we will define the notation

“a/b” = ab™".

You are familiar with the fact that rational numbers @Q and the real numbers R are fields.
Let me quickly observe that the ring of integers Z is not a field. For example, suppose for
contradiction that there exists an integer b € Z satisfying 2b = 1. The integer b must be
positive, which implies that b > 1 because there are no integers between 0 and 1. But then
multiplying both sides by 2 gives a contradiction:

b>1
2b =2
1=2

AR\

1.3 Complex Numbers as a Vector Space

So Z is a ring that is not a field and Q, R are fields. In this section we will show that C is also
a field, which is surprisingly difficult. Before proving this in the next section we need to say
more about the relationship between R and C. Recall that we view each real number a as a
complex number by setting a = a + 0i. With this convention, the abstract symbol “a + bi”
acquires a direct algebraic meaning:

“a. 4 bi” = (a + 0i) + (b + 0§)(0 + 04).

Of course this was the point all along. In order to formalize the relationship between R and
C I will present another of the key concepts from twentieth century abstract algebra.

(Deﬁnition of Vector Spaces and Dimension b
A wector space consists of a set V' (of vectors), a field F (of scalars), an operation + :
V x V — V (called vector addition), and an operation - : F x V' — V (called scalar
multiplication), which satisfy the following eight axioms:

(V1) Vu,veV,u+v=v+u (commutative addition)
(V2) Vu,v,weV,u+ (v+w)=(u+v)+w (associative addition)
(V3) 30eV,YueV,u+0=u (zero vector)
(V4) YueV, IveV,u+v=0 (additive inversion)
(V5) YueV, lu=u (unit scalar)
(V6) Ya,beF,ueV, a(bu) = (ab)u (associative multiplication)
(V7) Ya,beF,ueV, (a+b)ju=au+bu (distribution)

4The proof is extremely boring.



(V8) VaeF,u,veV, a(u+v)=au+av (distribution)

We can also define subtraction of vectors. Given any v € V, axiom (V4) tells us that
there exists at least one element u € V satisfying u+ v = 0. In fact, there is exactly one
such element. Indeed, if v+ u = 0 and v + u’ = 0 then axioms (V1), (V2), (V3) imply
that

u=u+0=u+(v+u)=(u+v)+u =0+u =1’

We will call this unique element “—v” and use it to define subtraction:

We say that a vector space V over F is n-dimensional if there exists a set of n vectors

uy,...,u, € V with the property that every vector v € V has a unique expression of
the form
v =aiu; +asus + -+ a,u, with aq,...,a, €.
In this case we say that uy,...,u, is a basis for V over F.
. J

Remark: The definition of vector space does not include a way to multiply two vectors. Later
we will discuss the definition of “inner product space”, which includes a way to multiply two
vectors to obtain a scalar. (Example: The dot product.) It is almost never possible to multiply
two vectors to obtain another vector but we will see that the complex numbers are a special
case.

The abstract definition of vector space is inspired by the following familiar example.

Prototype of a Vector Space: Cartesian Coordinates

Let R™ denote the set of ordered n-tuples of real numbers:
R" :={x = (21,...,2,) : x; € R for all ¢}.

It is easy (and boring) to check that the following operations make the set R™ in to a
vector space over the field of scalars R:

(X1, yxn) + Y1y ey Yn) = (X1 + Y1, ..., T2 + Y2)
a-(x1,...,x,) := (azxy,...,axy,).

As you know, we can view the vector x as a point in n-dimensional space. We can also
view it as a directed line segment whose head is at the point x and whose tail is at
the “origin” 0 = (0,...,0). Then the addition of vectors can be viewed as the familiar




“head-to-tail” addition of directed line segments. This idea goes back at least to Isaac
Newton, who used it to describe forces acting on rigid bodies.

It is not surprising that the vector space R" is n-dimensional. To prove this, we can
observe that the set of n vectors

e; = (1,0,0,...,0,0)
€y = (0,1,0,...,0,0)

e, = (0,0,0,...,0,1)
is a basis of R"™, called the standard basis. Indeed, for vector x = (x1,...,x,) we have
X = T1€1 + X9€2 + -+ + ITpen,

and by definition these “coordinates” x1,...,x, are unique.
\. Y,

So what? The point of this section is that the complex numbers C naturally form a two-
dimensional vector space over the field of real numbers R.

(" )

C is a Two-Dimensional Vector Space over R

We can view C as a vector space over R where 0 = 0 + 07 is the “zero vector” and
where “vector addition” and “scalar multiplication” are given by the usual addition and
multiplication of numbers:

(a+bi)+ (c+di)=(a+c)+ (b+d)i
a(b+ ci) = (ab) + (ac)i.

It is easy and boring to check that the eight vector space axioms hold in this situation.
To see that this vector space is two-dimensional I claim that the set of two elements
1,7 € C is a basis. Indeed, any complex number can be expressed in the form al + bi for
some a,b € R, and we only need to check that this representation is unique. For this
purpose, suppose that we have a + bi = ¢+ di with a, b, c,d € R. Our goal is to show that
a =cand b = d. So let us suppose for contradiction that b # d. Then we have

a+bi=c+di
0+ (b—d)i=(c—a)+0i

0+ 1i= <C:Z>+Oi,

which implies that ¢ is a real number. But ¢ is not real because any real number a € R

10



satisfies a® > 0, but i> = —1 < 0. This contradiction implies that b = d, hence also

a+bi=c+di

a+%=c+%

a=c.
In summary, we have

a+bi=c+di <= a=candb=d.

You might have noticed here that the vector space C = {a + bi : a,b € R} is basically just the
vector space R? = {(a,b) : a,b € R} in disguise. In technical jargon we will say that C and R?
are isomorphic as vector spaces. This just means that we have a one-to-one correspondence
that preserves all of the vector space operations. In this case the one-to-one correspondence
is particularly obvious:
C « R?
a+bi < (ab).

The word “isomorphism” literally means “same structure”. We use it in mathematics when two
different mathematical structures are “essentially the same”; that is, when there is a one-to-one
correspondence between their elements that preserves all of the relevant structure/operations.

1.4 Complex Numbers as a Field

By using scalar multiplication we can “divide” any complex number a + bi € C by any nonzero

real number ¢ € R: b ) ;
a+ 01 . a .
= (c) (a+bi) = <E> + (c) i.

The question is whether we can also divide by complex numbers:

a+ bi
c+ di

= (some real number?) + (some real number?) .

This can be quite difficult unless you know a clever trick called “rationalizing the denomina-
tor”. The idea is to multiply both the numerator and denominator of the hypothetical fraction
“(a+bi)/(c+ di)” by the “complex conjugate” of the denominator:
a+bi  a+bi c—di
ct+di  c+di c—di
(a + bi)(c— di)
"~ (c+ di)(c— di)
_ (ac+bd) + (bc — ad)i
B 2+ d?

B ac + bd N bc — ad ;
o\ 2+ A+d?)

11




For this to work we require that ¢ + d? # 0, which will be true if ¢ + di # 0 + 0i. Indeed, if
c+ di # 0+ 0i then we must have ¢ # 0 or d # 0, in which case ¢ + d*> > 0. Thus we can
divide by any nonzero complex number.

This trick of rationalizing the denominator is so useful that we turn it into a general concept.

( )

Complex Conjugation and Absolute Value

For any complex number o« = a+bi € C we define its complex conjugate o € C as follows:
(a+bi)* :=a— bi.

Then we define the absolute value |a| € R as the non-negative real square root of a? + b2 €
R and we observe that

aa® = (a+bi)(a—bi) = (a* + b*) + 0i = a® + V* = |af.
For all complex numbers «a, 8 € C, I claim that the following properties hold:
e o =0 if and only if |a| = 0.
e o = a* if and only if a € R,
o (a+ p)* =a* + p%,
o (af)* =a*p*,
o |af| = |af|B].

You will prove all of these assertions on the homework. The final property (the multiplica-
tivity of the absolute value) is probably the deepest fact about the complex numbers. It
was first glimpsed by Diophantus of Alexandria (3rd century), who used the “two-square
identity”

(a® + b)) (c* + d*) = (ac — bd)? + (ad + bc)?

to study “Pythagorean triples of whole numbers”, such as 32 +42 = 52 and 52 +12% = 132
\. Y,

We can use the ideas of conjugation and absolute value to give a slicker proof that C is a field.

( )

Multiplicative Inverses in C

For any nonzero complex number o € C we have |a| # 0. It follows that

ao® = |af?
a(a*/|af’) =1,

12



so the multiplicative inverse of a has the explicit formula
1 a*

o

a

On the homework you will use the same ideas to show that the following set is a field:
Q(V2) :={a+bV2:a,beQ}.

Later we will incorporate all of this into a general theory of “quadratic field extensions”.

1.5 Complex Numbers as Linear Functions

The complex numbers are a central object in mathematics, which means that they can be
viewed from many different angles. So far we have viewed C as a ring (specifically, a field)
and as a two-dimensional vector space over R. Recall that we have a bijection

C o R?
a+bi < (ab)

that preserves the operations of vector addition and scalar multiplication. To be specific, the
addition of vectors corresponds to addition of complex numbers and the scalar multiplication
of vectors by real numbers corresponds to the usual multiplication of complex numbers by real
numbers.

However, there is also a natural way to multiply any two complex numbers. What does this
correspond to in R?? In general there is no sensible way to multiply two vectors in a vector
space to obtain another vector, so this case must be very special. The key to understanding
it is to express complex numbers in “polar form”.

~

Polar Form of Complex Numbers

Based on the isomorphism C =~ R? we can view the complex number a + bi as the point
(a,b) in the Cartesian plane. But we can also express points of R? in polar coordinates.
That is, for any pair of real numbers (a,b), not both zero, there exist a unique pair of
real numbers r and 6 satisfying

a=rcosf, b=rsinf, r>0 and 6e€]0,2n).

In other words, for any nonzero complex number a + bi, there exist unique real numbers
r > 0 and 0 € [0, 27) such that

a+bi= (rcosf) + (rsinf)i = r(cos + isinf).

In geometric terms, r = |a| = ++v/a? + b? is the length of the vector (a,b) and and we
view 6 as the angle of the vector (a,b), measured counterclockwise from the “real axis”:

13



cosB + LrsinG

/2
rSind [
8! \r
~
rcosb

J
\

vV

Using these ideas, we have the following geometric interpretation of complex multiplication.

r

\
Geometric Interpretation of Complex Multiplication

Let «, 8 € C be nonzero complex numbers, thought of as vectors in the Cartesian plane
R2. Suppose that «, 3 have lengths r, s > 0 and angles 6, A € [0, 27), so that

a =r(cosf + isinb),

B = s(cos A +isin\).

Then I claim that the complex number a3 has length rs and angle 6 + A (up to a suitable
multiple of 27). In other words:

the lengths multiply and the angles add.

Here is a quick and dirty proof, using the “angle sum identities” from trigonometry:

af =r(cosf +isinf) - s(cos A +isin \)

(rs)(cosf + isinf)(cos A + isin \)

(rs)[(cos @ cos A — sin@sin A) + i(cosfsin A + sinf cos \)]
(rs)

[cos(0 + A) +isin(0 + )]

= (rs

14




But this proof is not good because it seems like a coincidence. The true meaning of the
theorem is revealed when we view complex numbers as “linear functions”.

( )

Linear Functions and Matrices

Consider the vector space R™ over the field R. We say that a function L : R® — R"” is
R-linear if it preserves vector addition and scalar multiplication by R. That is, for all
u,v € R"” and a € R we must have

e L(u+v)=L(u) + L(v) (preserves addition)
e L(au) = aL(u) (preserves scalar multiplication)

Equivalently, we can combine these by saying that L preserves “linear combinations” ]
L(au + bv) = aL(u) + bL(v).

I claim that there is a one-to-one correspondence between linear functions from R" — R"™
and n x n matrices with entries from R:

linear functions n X n matrices with
from R™ to R™ entries from R ’

In order to find such a correspondence, we will identify each vector u = (uy,...,u,) € R
with the corresponding n x 1 column vector:

Un

1 0 0

0 1 0
[61] = ) [62] =10 7[en] =

0 0 1

And the column [u] has a unique expression as a linear combination of basis vectors:

ul Ul 0 0
Uug 0 u9 0
[u] = = + +oe ot = uifer] + uz[ea] + - + uylen].

15



Now for any linear function L : R™ — R"™ we define the n x n matrix [L] € R™*" whose
ith column is the vector L(e;) € R™:

I claim that the assignment L +— [L] is a one-to-one correspondence. To prove this we
will first show that the assignment is one-to-one. So let L, M € R™ — R"™ be two linear
functions with the same matrix: [L] = [M]. By definition this means that L(e;) = M (e;)
for all 4, because the two matrices have the same column vectors. For all vectors u € R™
it follows from the linearity of L and M that

L(u) = L(uie; + ugea + - -+ + upey)
=wuiL(e1) +uaL(e) + -+ u,L(ey)
=wuiM(er) +uaM(ez) + -+ u,M(ep)
= M(uje; + uges + -+ + upey,)
= M(u),

hence L = M as functions. Finally, we will show that the assignment is onto. So let ®
be any n x n matrix. We need to show that there exists some (necessarily unique) linear
function Lg : R™ — R"™ with the property ® = [Lg]. If ®; is the ith column vector of
the matrix ® then I claim that the following definition works:

L@(u) =ur Py +ug®s + -+ - + u,, Py,

Indeed, it is easy to check that this function is linear. And the matrices [Lg]| and ® have
the same column vectors because

L(e;)) = 0Py + -+ 4+ 00;_1 + 10; + 0P 11 + - - + 0, = D;.
In summary, the following pair of assignments are inverses:

{linear functions R” — R"} «— {n x n matrices}
L — L]
Ly <«— .

More generally, this entire line of reasoning gives a bijection between linear functions
from R™ — R™ and m x n matrices, i.e., matrices with m rows and n columns.
. J

That was quite abstract, so let’s examine a few examples.

®Geometrically, a linear function must send the origin to itself and send parallelograms to parallelograms.
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e The Identity Matrix. The identity function I : R™ — R" defined by I(u) = u is
obviously linear. The corresponding matrix is called the identity matriz:

1] = {[(e)] [L(e2)] --- [I(en)]

1 0 - 0
o1 - 0
0 0 1

e Scalar Matrices. For any scalar r € R the function S, : R® — R" defined by S;(u) = ru
is linear. The corresponding matrix is

[Sr] = | [Si(e1)] [Sr(‘ez)] [Sr(’en)]
\ | !
= [TTl] [rez] [TTn]
r 0 0
B 0 r 0
0 0 r

Note that this includes the identity matrix as a specific example when r = 1.

e Rotation Matrices. Let Ry : R? — R? denote the function that rotates every vector by
angle 6, counterclockwise around the origin. It is easy to see that this function preserves
vector addition and scalar multiplication, hence it is linear.

What is the corresponding 2 x 2 matrix? The following diagram illustrates how the
function Ry acts on the standard basis vectors e; = (1,0) and ez = (0, 1):

17



It follows that the matrix of the rotation function Ry is

| | cos —sin
[Rol = [ [Ro(er)] [Role2)] =< 0 9).

| | sinf cosf

Note that “rotation by zero” is the identity function, hence [Rp] is the identity matrix.

Whenever there is a one-to-one correspondence between two different kinds of structures, for
example between linear functions and matrices, it is important to ask how natural operations
behave under this correspondence. I assume that you are familiar with the definition of matrix
multiplication, but you may not be aware of the reason behind it.

r

Matrix Multiplication = Composition of Linear Functions

~

Recall from previous theorem that any two n x n matrices can be represented as [L] and
[M], where L, M : R™ — R™ are linear functions. But linear functions can be composed,
and it is easy to check that the composite function Lo M : R™ — R" is also linear, hence
it corresponds to another n x n matrix [L o M]. By definition we say that this is the
matriz product of [L] and [M] and we write

[L][M] := [L o M].

More generally, if L : R™ — R and M : R® — R™ are linear functions then the matrices
[L] and [M] are defined, with shapes ¢ x m and m x n, respectively. Since M maps into
R™ and L maps from R™ the composite function L o M : R" — R exists, and we can
define the matrix [L][M] : [L o M], which has shape ¢ x n. Let us investigate how to
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compute the matrix entries of [L][M] from the matrix entries of [L] and [M].

This is an extremely fruitful concept and there are many ways to describe it. I will use
a standard notation from linear algebra. Let A = (a;;) and B = (b;;) be matrices where
a;j, b;j are the entries of A, B in the ¢th row and jth column. Suppose that A has shape
¢ x m and B has shape m x n. Then the matrix AB is defined with shape ¢ x n and its
1,7 entry is given as follows:

m
(1,7 entry of AB) = Z ;i byj.

In various circumstances it is also useful to express this definition in terms of multiplica-
tions with row and column vectors:

(i, entry of AB) = (ith row of A)(jth column of B)
(ith row of AB) = (ith row of A)B
(jth column of AB) = A(jth column of B)

m

AB = Z (kth column of A)(kth row of B).
k=1

This notation takes some getting used to but you should make the effort because it is

very important in all areas of mathematics.
. J

The proof is not very interesting, but here is it.

Proof. Write [L] = A = (a;;) and [M] = B = (b;;), where L : R™ — Rf and M : R® — R™
are linear, so that A has shape ¢ x m and B has shape m x n. By definition we have
AB = [L o M], so thatf]

(jth column of AB) = (jth column of [L o M])

(
= [(L o M)(ej)]
=1
[L

L(M(e;))]
]th column of M)]
[L bljel + bQJGQ + -+ bmjem)]
= bij[L(e1)] + by [L(e2)] + o b L(en)]
5Forgive me for using the notation e; to denote the basis vectors in both R™ and R™ even though these
vectors have different numbers of entries.
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Since the i, j entry of AB is just the ¢th entry of the jth column we obtain the desired formula.

As an interesting example, let me present the “correct” proof of the angle sum trigonometric

— Z b (kth column of [L]).
k=1

m aiy
= 2 bk
k=1
Qg

m
2kt @1kbEj

m
Dk Qerbrj

identities.

r

Correct Proof of the Angle Sum Trigonometric Identities

Let Ry : R? — R? denote the (linear) function that rotates each vector counterclockwise
around the origin by angle . It is geometrically obvious that for all angles «, 8 we have

Ra o Rﬁ = Ra_;.g
(rotate by (3 then rotate by o) = (rotate once by a + ).

On the other hand, we showed that the rotation function Ry corresponds to the matrix

(] = <cose —sin0> |

sinf cosf

By combining these observations with the definition of matrix multiplication we obtain
cos(a+ ) —sin(a + f)
sin(fa+ ) cos(a + fB)

= [ROH-B]
= [Ra o Rg]

= [Ra][R5]
_ (cosa —sina (cosB —sinf
sina  cosa sinff cosf

_ [cosacos B —sinasinf3 —cosasinB —sinacos 3
~ \sinacos 3+ cosasin3 —sinasinB + cosacos3)
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And comparing matrix entries gives

cos(a + ) cos a.cos § — sin asin 3,
sin( + 8) = sinacosf + cosasin .

There is no need to ever memorize these formulas. You only need to memorize the form
of rotation matrix [Ry]| and use the obvious fact that R,13 = Ry o Rg.
\. Y,

Finally, we obtain the main theorem of this section.

(" )

Complex Numbers as Linear Functions

For each complex number o € C we consider the function L, : C — C defined by:

Lo (B) := ap.

This function is called “multiply by o”. If we view C = R? as a vector space then the
function L, is R-linear since for all b,c € R and 3,y € C we have

Lo (bB + cy) = a(bB + ¢y) = b(af) + c(ay) = bLa(B) + cLa(7).

Therefore it corresponds to a 2 x 2 matrix with real entries. To find this matrix, let
a = a+bi and consider the standard basis vectors 1+0i and 0+14. Since L, (1+0i) = a+bi
and Ly (0 + 1) = —b + ai it follows that

a —b
L,| = .
[La] <b a>
But more is true. We observe that multiplication of complex numbers corresponds to
composition of linear functions. In other words, for any o, 3 € C we have L,g = L0 Lg:

Lap(v) = (aB)(7) = a(B7y) = aLg(y) = La(Ls(7)) = (La © Lg)(7)-

Then by definition of matrix multiplication we have [Lqg] = [La 0 Lg] = [La][Lg] and it
follows that multiplication of complex numbers can be viewed as matrix multiplication:

(@ + bi)(c+ di) = (ac —bd) + (ad + bc)i
(69w
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Finally, we observe that real numbers correspond to scalar matrices and complex numbers
of length 1 correspond to rotation matrices:

r 0

cosf) —sinf
[Lr+0i] = (0 ’I”) and [L0059+isin9] = ( » > .

sinf cos@

It follows that complex numbers can be viewed as the set of (linear) functions R? — R?
that can be obtained by scaling and rotation.
\. J

This modern point of view was put forward by Hamilton in order to give a “real meaning” to
the “imaginary numbers”. Under this scheme we see that

v —1 = (rotate by 90°).

That’s not imaginary at all[]

1.6 Euler’s Formula and Roots of Unity

At the beginning of this chapter I mentioned the fact that the “square root function” z — \/x
is not really a function. If z is real and positive then we could take /x to be the unique real
positive square root of . But if z is a negative real number or a complex number then the
symbol 4/z represents two different complex numbers, and there is no good reason to prefer
one over the other. Because of this non-uniqueness we must be careful when interpreting

formulas such as
Vab = v/avb.

For example, if a = b = —1 then this formula seems to imply that
P = VT = (D) =VI= 1,

which is false. This caused significant confusion in the early days of complex numbers.

More generally, if a € C is a nonzero complex number then the expression {/« or o/ rep-

resents n distinct complex numbers. This was slowly clarified during the 1700s and it finally
became transparent in the 1800s with the geometric interpretation of complex numbers. The
first step was made by de Moivre in 1707.

"We have shown that C is a ring, a field, a real vector space, and a collection of 2 x 2 matrices with real
entries. In very modern terms we could summarize this by saying that C is a two-dimensional commutative
real division algebra with a two-dimensional faithful representation (and I could probably add more adjectives).
Never mind. The point is that the complex numbers have a lot of interesting structure, which motivates all of
the structures that we will discuss in this course.
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( )
De Moivre’s Formula (1707)

For any angle 6 and for any integer n > 0 we have

(cos@ + isinf)" = cos(nh) + isin(nh).

This is not difficult to prove once it is observedﬁ The hard part is to observe it in the first
place. In fact, de Moivre stated the theorem in a much more complicated way because he did
not use complex numbers. We’ll return to this below.

The modern proof is essentially just that “n successive rotations by angle 6” is the same as
“one single rotation by angle nf”. This point of view was preceded by an interpretation using
the language of Calculus.

( )
Euler’s Formula (1748)

For any complex number o € C Euler considered the following power series:
2 3 © n

[0 « (6]

exp(a):=1+a+—+7+...:§ =

E
2 6 =

It turns out that this power series always converges. Furthermore, for any complex
numbers «, 8 € C one can show that

exp(a) exp(f) = exp(a + ).

The number e := exp(l) ~ 2.71828 is today called Fuler’s constant. For any integer
n = 1 we observe that

exp(n) =exp(l+14---+1) =exp(1)" =e€".
For this reason it is standard to use the notation
[{PNe %))

e’ 1= exp(a),

even though it is far from clear how to take “e to the power of 7”7, for example. Using
this language, Euler made the discovery that for any real number 6 we have

e = cosf + isind.

8For example, it can be proved by induction using the angle sum trigonometric formulas.
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which immediately gives a proof of de Moivre’s formula:

(cosf +i0)" = ()" = e? — cos(nh) + isin(nh).

Proof: I will assume, as Euler did, that the power series always converges. Rigorous treatment
of convergence only emerged in the 1800s. To prove the identity exp(a + ) = exp(«) exp(S)
we first recall the binomial theorem:

(a+5)™ Z k:'é'

k+l=m

If we multiply the power series for exp(a) and exp(/3) then the binomial theorem gives the

desired simplification:
/BZ
exp(a) exp(8) = Mo
k>0 ! =0 7

[l
3
WV
(=)
/_\
Bl
JF
T
3
=| R,
fﬁ\‘a
N——

1 m!
= L ( i “W)
m=0 k+t=m "
1
= —(a+B)"
=ym!
= exp(a + )

Finally, to prove Euler’s formula we use a direct computation:

W07 0P (0 (o)
or e T T
—02 P 0t it

02 94 ) 93 6>

Euler immediately recognized these as the power series expansions of cosf and sin €, which
had been discovered by Newton. o

exp(if) =1 + 0 +

Apart from being interesting and useful, Euler’s formula allows us to simplify notation by
writing e? instead of cos@ + isinf. We will do this from now on.
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Roots of Unity

Fix an integer n > 1 and consider the complex number w = €2™/". I claim that the
equation ' = 1 has the complete solution

r=1ww? . .. "%

To see this we first observe that
(W)™ = (e2™/mM)" = 2™ — cos(2) + isin(27) = 1.

Thus for any integer k we have

To see that this is the complete solution we must show that the n numbers w® with
k=0,1,...,n — 1 are distinct. This follows from the fact that they represent distinct
points of the complex planef| Indeed, since the number e corresponds to the point
(cos6,sin ) in the Cartesian plane, we observe that ¢’® = ¢ if and only if & — 3 is an
integer multiple of 27. It follows from this that for all integers k, ¢ € Z we have wF = w*

if and only if k — ¢ is a multiple of n[1]

More generally, we can describe the nth roots of an arbitrary nonzero complex number
a € C as follows. We first write a = re? in polar form, so that » > 0. Let 7 > 0 denote
the unique positive nth root of 7 and let o := 7/¢?®/™. We observe that

(a/)n _ (T/eia/n)n _ (Tl)n<ei9/n)n _ TeiO = a,
and we say that o’ is the principal nth root of a. Then I claim that the equation 2" = «
has the complete solution

/ / / / —
z=ad, dw, dw? ... oL

Indeed, each of these is a solution because
(a/wk)n _ (a/)n<wk)n —a-1=a,

and they are distinct because o/w* = o/w’ if and only if w* = w*.

Geometrically, the nths roots of « form a regular n-gon in the complex plane, centered
at the origin.
\. Y,

9We also need to know that an equation of degree n can have no more than n roots. You will prove this
on the homework and we will discuss it more in the next section.
10This idea will reappear below when we discuss “modular arithmetic”.
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Examples:

e n =2 Let w=e2™/2 =¢™ = _1, Then the 2nd roots of 1 are
WwW=1 and w!'=-1.

If o/ is any square root of the nonzero complex number «, then the complete set of
square roots is

oW’ =a and Jdw'=-d.

That was pretty boring.

o n =3 Let w=e?™/3 = cos(27/3) + isin(2n/3) = —1/2 + iv/3/2 = (=1 + i1/3) /2. Then
the 3rd roots of 1 are

0
1

17
(-1 +iv3)/2,

w? = ™3 = cos(4m/3) + isin(4n/3) = —1/2 —iv/3/2 = (=1 — iV/3)/2.

Here is a picture:

.
L

o n=4: Let w= e2™/* = ¢™/2 = cos(/2) + isin(n/2) = i. The 4th roots of unity are

W =e=1,

wl _ e7r7l/2 o i,
w2 =" =1,
w3 =32 = 4,

Here is a picture:
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More generally, let’s compute the 4th roots of & = —4. First we express a = 4e™ in
polar form, so the principal 4th root is

of = V4. et = \/2[cos(m/4) + isin(m/4)] = V2(1/V2 +iV2) = 1 + .
Then the complete set of 4th roots of —4 is

W’ = 1d = 1+14,

dw' =id = -1+ 7,
dw?=—-1a' = -1— 1,
dw? = —ia/ =1—1.

These form a square in the complex plane:

1t At <

As an application, we can use these roots to factor the polynomial z* + 4:

2t d=(x—(1+0)(x—(=1+9))(x— (=1 —1i))(z— (1 —1).
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In 1702, Gottfried Leibniz claimed that the polynomial z%+4 cannot be factored over the
real numbers. However, we can show that he was wrong by grouping the four complex
roots into “conjugate pairs”:

et td =z~ 1+~ 1))z~ (~1+i)(z— (~1-1))]

= (2% — 2z + 2)(2® + 22 + 2).

e n=>5: Let w = e>™/5 = cos(2n/5) + isin(27wi/5). The 5th roots of unity are
0_1q,

w! = ™5 = cos(2m/5) + i sin(27/5)

w? = e¥/5 = cos(4/5) + zsm(47r/5),

w? = e85 = cos(6m/5) in( )

wh = 55 = cos(87/5) + isin(87/5),

which correspond to the vertices of a regular pentagon in the Cartesian plane:

Iw. /5
C
HT\L/%S'
e
2—\‘-/5— o
\=¢
ot/ § ‘
c : ST/5
C

On the homework you will show that these numbers can also be expressed in terms of
integers and square roots. For example, you will show that

2w —1+4/5
cos| — | =—.
5 4

Is it always true that the roots of unity can be expressed in terms of integers and square roots?
As a preview of things to come, let me mention the main theorem in this subject.
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( )

Preview of the Gauss-Wantzel Theorem

Consider an integer n > 1 and define the phi-functiond]
¢p(n):=#{keZ:1<k<n-—1and ged(k,n) = 1}.

This number is always even. Suppose that ¢(n)/2 = mimg---my for some integers
mi,...,mp = 2. Then I claim that the number cos(27/n) can be expressed in terms
of integers and m;th roots for the various i. If ¢(n) is a power of 2 then there exists a
formula for cos(27/n) involving only integers and square roots.

For example, since 5 is prime, all of the numbers 1,2,3,4 are coprime to 5 and hence
#(5) = 4 = 22, Since ¢(5) is a power of 2, the theorem guarantees that cos(27/5) can be
expressed in terms of integers and square roots, as you will show on the homework.

The origin of the theorem is Gauss’ discovery (at the age of 19) that the number
cos(27/17) can be expressed in terms of integers and square roots:

or\ —l+VIT+ 34—2ﬁ+\/17+3ﬁ— 34 — 217 — 24/34 + 2/17
cos { 7= 16
According to the theorem, we know that such a formula is possible because ¢(17) = 16 =
24 is a power of 2. Gauss’ discovery was surprising because it implies that the regular

17-gon can be constructed with straightedge and compass, a construction that was not
known to the ancient Greeks.

In general, we will see that ¢(n) is a power of 2 if and only if n can be expressed as a
power of 2 times a product of distinct Fermat prime numbers of the form p = 2™ + 1.
For example, p = 17 = 2% 4+ 1 is a Fermat prime. Fermat had conjectured that every
number of the form 2™ + 1 is prime, but this turned out to be quite wrong. Today the
only known Fermat primes are

3,5,17, 257, and 65537,

and it is an open question whether there exist any others.
. J

2 Introduction to Polynomials

2.1 Rings of Polynomials

We have talked about polynomials in an intuitive way, but we have not been careful with our
definitions. Here is the modern, abstract, definition of polynomials.

1 The notation ged(k, n) represents the greatest common divisor of k and n. We will study this in detail in
the next section.
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Definition of Polynomials

Let F be a field and let “z” be an abstract symbol. By a polynomial in x over F we mean
a formal expression

f(z) = Zakmk=a0+a1m+aga}2+~--,
k=0

where the coefficients ag, a1, ao,... are elements of F and only finitely many of these
coefficients are nonzero. If a,, is the highest nonzero coefficient then we will say that f(x)
has degree n and we will write

deg(f) = deg(f(z)) = deg(anz™ + an12" V4 a4 ag) = n.
For example:

deg(z?)
deg (72> + 1)
deg(5)

2,
3,
0.

The polynomials of degree 0 are just the nonzero constants. (For the degree of the zero
constant, see below.) Let us denote the set of polynomials by

F[z] = {polynomials in x over F}.

We can view this set as a ring by pretending that x is a number and performing arithmetic
as usual. To be precise, we define addition and multiplication of polynomials as follows:

(Z akmk> + (Z b,M) = > (ag + )"

k=0 k=0 k=0

(Z akxk> (2 bkxk> = Z ( Z akbg> "
k>0 >0 m=0 \k+l=m

The additive and multiplicative identity elements are the zero and one polynomials:

0(z) := 0+ 0z + 02 + 02 + - -+
L(z) =140z +02* +02® +-- - .

However, we usually don’t usually make distinction between the numbers 0,1 and the
polynomials 0(z), 1(z). In fact, we can think of F as a subring of F[z] by identifying each
element a € F with the corresponding constant polynomial:

a=a+0r+0x%+0z>+---.
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An important and basic fact about polynomials is the additivity of degree:

deg(fg) = deg(f) + deg(g)-

To prove this formula, suppose that deg(f) = m and deg(g) = n. By definition this
means that

f(x) = apz™ + m_12™ L+ a1z + ag,

g(x) = bpx™ 4 bp_12" 1 4 - bz + by,
where a,, # 0 and b, # 0. But then we have a,,b, # 0 and
f(@)g(z) = amb,z™*" + lower terms,

so that deg(fg) = m +n = deg(f) + deg(g). Strictly speaking, this formula only applies
to nonzero polynomials. In order to make the formula true in general it is convenient to
define the degree of the zero polynomial as follows:

deg(0) := “ —00”.

We don’t think of this as a number, but just a symbol with the properties —o0 < a and
—0+a=—ow forallaeF.
\. Y,

Some Remarks:

e The ring F[z] is not a field. To see this it is enough to show that some nonzero element
has no multiplicative inverse. We will show that = € F[x] has no multiplicative inverse.
Let us suppose for contradiction that there exists a polynomial f(x) € F[x] satisfying
xf(x) = 1. Then taking degrees gives

zf(z) =1
deg(x) + deg(f) = deg(1)
1+deg(f) =0
deg(f) = —1,

which is a contradiction because there is no such thing as a polynomial of degree —1. In
other words, we have shown that the expression 1/z is not a polynomial. We will call it
a rational expression. Later we will consider the field of rational expressions F(x), which
are basically fractions of polynomials.

e The set of polynomials F[z] can also be thought of as a vector space over F with scalar

multiplication
a (Z bkxk> = Z(abk)xk.

k=0 k=0
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By convention we say that two polynomials are equal if and only if they have the same
coefficients. This implies that the vector space F[x] is infinite dimensional with basis

1,SC,$2,CE3,....

Of course, we are accustomed to thinking of polynomials as functions, not just formal
expressions. We will discuss the relationship between these points of view in the next
section.

2.2 Descartes’ Theorem

There is a deep analogy between the rings Z and F[z], which is based on the following theo-

rem -E]

( )

Division With Remainder

(1) For all integers a,b € Z with b # 0 there exist unique integers ¢, € Z (called the
quotient and remainder) satisfying

a=bqg+r,
0<r<]|b.

(2) Let F be a field. Then for all polynomials f(x),g(z) € F[x] with g(z) # 0(x) there
exist unique polynomials ¢(z),r(z) € F[z] (called the quotient and remainder) satisfying

{ f(z) = g(z)q(z) + r(z),
deg(r) < deg(g).

Note: The condition deg(r) < deg(g) includes the possibility that the remainder is zero,
i.e., that deg(r) = —c0.
\_ J

The idea of the proof in both cases is to define an algorithm and to prove that this algorithm
gives the desired result. We will prove existence here and you will prove uniqueness on the
homework.

Proof for Integers: Let a,b € Z with b # 0 and consider the set

S={a—qgb:qeZ}={...,a—2b,a—b,a,a+b,a+2b,...} Z.

121 ater we will make this analogy more precise when we discuss the concept of a Euclidean domain.
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Let r be the smallest non-negative element of this set. By definition we know that a = gb+r
for some integer ¢ € Z and we also know that 0 < r. It remains only to show that r < |b|. So
let us assume for contradiction that r > |b|. Since b # 0 this implies that

0<r—1o <.
On the other hand, we observe that r — |b| = (a — gb) — |b| = a — (¢ £ 1)b € S. Thus we have

found a non-negative element of S that is strictly smaller than r. Contradiction. O

Proof for Polynomials Over a Field: Let F be a field and consider two polynomials
f(z), g(x) € F[z] with g(x) # 0(x). Furthermore, consider the set

S ={f(z) —q(x)g(x) : q(x) € Flz]} < Flz].

Let 7(z) be some element of S with minimal degree (allowing for the possibility that r(z) =
O(z) and hence deg(r) = —o0). By definition we know that f(z) = ¢(x)g(x) + r(z) for
some ¢(x) € F[x] and it remains only to show that deg(r) < deg(g). So let us assume for
contradiction that deg(r) = deg(g). To be specific, since g(z) # 0(x) we may write

g(z) = apa™ + lower terms  and r(x) = b,x™ + lower terms,

where a,,, # 0 and m < n. Then since n—m > 0 we may construct the following polynomialﬁ

bn n—m
() = r(a) — an g ()
= (b,x™ + lower terms) — — 2" ™ (a,,™ + lower terms)
am

= (b, — by) 2" + lower terms.

Note that the coefficient of 2™ in h(x) is zero, and hence deg(h) < n = deg(r). On the other
hand, we observe that h(z) is an element of S:

(o) = (@) = " g (o)
- (f(&) ~ ala)g(@) — 2" (o)
= f(x) — <Q($) + Z;ﬂcnm> g(x)esS.
Thus h(x) is an element of S with strictly smaller degree than r(z). Contradiction. O

I assume you are familiar with long division of integers. Long division of polynomials is
actually easier because it doesn’t involve any “carrying”. For example, suppose that f(z) =
22* — 62° + 2 — 1 and g(x) = 222 + 1. The algorithm tells us first to multiply g(z) by a

13Here we use that fact that F is a field to divide by an,.
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suitable “monomial” so that it has the same “leading term” as f(z) and then subtract this
from f(x) to “eliminate” this leading term. To be specific, we multiply g(z) by the monomial
x? to obtain 22* + 22 whose leading term matches f(z). Then we repeat the process until it
is impossible to continue

22— 3x—1

2
2x2+1) 2zt — 623 +x—1
— 2zt — 2

— 623 — 22 +x
62> + 3z
— 2244 —1
2 + 2
= 2
1
4.’E—§

In the end we obtain a quotient ¢(x) = 22 — 3z — 1/2 and a remainder r(z) = 4x — 1/2, which
satisfy the desired properties:

(22 — 623 + 2 — 1) = (222 + 1)(2? — 32 — 1/2) + (4 — 1/2),
{ deg(4z — 1/2) < deg(22% + 1).

Polynomial division with remainder was first used for theoretical purposes by René Descartes
(1631) in his Geometry. The following theorem is the foundational property of polynomials,
of similar importance to the Pythagorean theorem in geometry.

( )
Descartes’ Factor Theorem (1631)

Consider a field F, a polynomial f(x) € F[z] and a constant a € F. Dividing f(x) by
T — a gives

f(x) = (z —a)q(z) + r(z)
for some polynomials ¢(z),r(z) € F[z] with deg(r) < deg(z — a) = 1. The condition on

the degree implies that r(z) = ¢ for some constant ¢ € F, either zero or nonzero. To
determine this constant we substitute z = a:

=
o

) = (a—a)g(a) + ¢
f(a) = 0q(a) + ¢

It follows from this that

fla)=0 <= f(z)=(x—a)q(x) for some polynomial ¢(x).

M There are different ways to typeset this. I used a package to do it automatically, which I don’t like very
much, but is much easier than doing it manually.
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In other words, the constant a € F is a root of f(x) if and only if the polynomial z — a
is a divisor of f(x). We will use this to prove by induction that

a polynomial f(z) € F[x] of degree n = 0 can have at most n roots in F.

Indeed, a polynomial of degree 0 is a nonzero constant, which has no roots. So let
deg(f) =n = 1. If f(z) has no roots then we are happy because 0 < n. Otherwise, f(x)
must have some root f(a) = 0 with a € F. From the above remarks this implies that
f(z) = (x — a)q(x) for some polynomial ¢(z) € F[x], which must have degree n — 1:

deg(f) = deg((z —a)q)
n = deg(x — a) + deg(q)
n =1+ deg(q).

But if b # a is any other root of f(z) then we must have

f(z) = (z — a)q(x)

f(b) = (b—a)q(b)
0=(b—a)q(b)
0= q(b),

which implies that b is also a root of ¢(x). Finally, since ¢(x) has degree n — 1 we may
assume by induction that g(x) has at most n — 1 roots in F, which implies that f(z) has

at most 1 4+ (n — 1) = n roots in F.
\. J

This theorem has the following useful consequence that we record for future reference.

4 )
Only the Zero Polynomial Can Have Infinitely Many Roots

If f(x) = 0(z) is the zero polynomial then every element of the field F is a root of f(x). If
the field has infinitely many elements then the zero polynomial has infinitely many roots.
On the other hand, any nonzero polynomial has a finite degree, so Descartes’ Theorem

implies that it has finitely many roots.
\_ J

2.3 Polynomials: Functions or Formal Expressions?

In this class we have defined polynomials in terms of their coefficients and we have said that
two polynomials are equal when they have the same coefficients:

(Z akxk> = (2 bk:vk> <~ a = b for all k.
k k
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On the other hand, given any formal polynomial expression f(z) = Y., axz® we can define a
function by “substitution” or “evaluation”:

f: F — F
a = Y, apak.

The question I want to raise now is whether two polynomials with the same evaluations must
have the same coefficients. In other words:

(Z akock> = (Z bkak> forall aeF PRIN ap = by, for all k.
k k

To show you that this is not a silly question I will you show you an example of two polynomials
with different coefficients that nevertheless define the same function. In order to do this I must
also show you an example of a field with only finitely many elements.

~\
The Field with Three Elements

Consider the set F3 = {0,1,2} of three elements with the following algebraic operations:

+‘012 01 2
00 1 2 00 0 0
111 2 0 10 1 2
212 0 1 210 2 1

These operations are called “arithmetic mod 3” and we will discuss the details later. For
now I only want to observe that the structure (Fs, +, -, 0, 1) satisfies the axioms of a field,
therefore we may consider the ring of polynomials Fs[z] with coefficients in Fj.

Now let us consider the following two polynomials:
f(z) =z +0,

g(z) = 2 + 02 + 0z + 0.

Clearly these polynomials do not have the same coefficients, but the following table shows
that they do have the same values:

alfl@) gla)
0l 0 03=0
1] 1 13=1
21 2 23=2
. y,

That’s not good. Luckily this problem does not occur when our field F has infinitely many
elements.
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Polynomials Over an Infinite Field

Let F be an infinite field and let f(z), g(x) € F[x] be formal polynomial expressions:
fx) = Zaka:k and g(z) = Zbkxk.
k k
If f and g define the same function F — F then I claim that f(z) and g(x) have the same

coefficients. That is, if f(a) = g(«) for all « € F then I claim that a; = by for all k.

To prove this we define the polynomial expression

h(z) == f(x) — g(z) = Y (ar — bp)z".

k

If we can show that h(z) is the zero polynomial (i.e., the polynomial with all zero co-
efficients) then we will conclude ay — by = 0 and hence ap = by for all k. But we have
assumed that f(«) = g(«) for all @« € F and hence

h(a) = f(a) —g(a) =0 forall aeF.

In other words, every element of F is a root of h(z). If the field F has infinitely many
elements then the remark in the previous section shows that h(zx) is the zero polynomial,

as desired.
\_ J

So, at least in the case of polynomials over Q, R and C, there is no distinction between formal
polynomial expressions and polynomial functions.

2.4 Concept of a Splitting Field

We now proceed to the subtleties of Descartes’ Theorem. If f(x) € F[z] and deg(f) =n =0
then we have proved that f(x) has at most n distinct roots in the field F. However, it is a
possibility that there exist less than n distinct roots, and there are two ways this can happen:

e The roots might exist in a larger field. For example, the polynomial 22 + 1 € R[z] has
no roots in R but it has two roots £i in C. And the polynomial 22 — 2 € Q[z] has no
roots in Q, but it has two roots ++4/2 in R.

e There might exist repeated roots. For example, the polynomial 23 — 22 —z + 1 =
(x —1)%(x + 1) of degree three has only two distinct roots: +1 and —1. But the root +1
occurs with multiplicity 2. So it is still the case that 22> — 2> — x + 1 has three roots,
“counted with multiplicity”.
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4 )
Concept of a Splitting Field

Consider a polynomial f(z) € F[x] of degree n > 0 with coefficients in a field F and
let E 2 F be a larger field. We say that f(x) splits over E if there exists elements
r1,...,Tn € E, not necessarily distinct, such that

f(@) = (& =r)(z—ra) - (x —7n).

In other words, f(x) has n roots in E, counted with multiplicity. Later we will show that
such a field always exists, and in fact the minimal such field is unique up to isomorphism.
The minimal field over which f(x) splits is called the splitting field of f(x) € F[z].

Let me also mention that the factorization of f(z) into polynomials of degree 1, when it
exists, is necessarily unique[’] Indeed, suppose that we have
(x—=ri)(x—ro) - (x—ry) =(x—s1)(x—52) - (T — sp)
for some elements r1,...,7,, 81, ..., Sy of a field E. Evaluating each side at x = s1 gives
(s1—7r1)(s1—r2) - (s1—mn) = (51— s1)(51— 82) -+~ (51— 8n)

=0(s1 —s2) (51— Sn)
=0,

which implies that s; — r; = 0 and hence s; = r; for some index ¢. After re-indexing the

elements si,..., s, if necessary we may assume that r; = s; and then we may cancel the
common factor x — r; = x — s1 from each side{l9]

(z—TT)(x —r2) - (z —7rp) = (2—1)(x — 52) - (x — )
(x—rg)-(x—ry) = (x—52) - (x— sp).

By repeating the argument (i.e., by using induction) we may re-index the remaining
elements sg, ..., s, so that vy = s1, 19 = s9, ...and r,, = s, as desired.
. J

Let me emphasize that the concept of the splitting field is relative to field of coefficients.
Examples:

e The polynomial 22 + 1 € R[z] has splitting field C 2 R. Indeed, this polynomial splits
over C because 22 + 1 = (z —4)(z + 1) with +i € C. To see that C is the minimal such
field, suppose that there exists another field C 2 E 2 R such that z? + 1 splits over E.

'5Tn the next section we will prove more generally that any polynomial over any field has a unique factorization
into irreducible polynomials, not necessarily of degree 1.
18You will investigate “cancellation” on the homework.
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By definition this means that
2?2+ 1= (x—r1)(x—ry) for some ri,ry € E.
Then substituting x = i gives
0=(>—7r1)(i—re),

which implies that ¢ = r{ or ¢ = r9. Either way, we must have ¢ € E. Finally, I claim
that every complex number is in E, so that E = C. Indeed, for any a,b € R we have
a,b € E because R < E. Then since a,b,7 € E we have a + bi € E because E is a ring. In
summary:

The polynomial 2% + 1 has splitting field C over R.

e On the other hand, if we regard 2% + 1 as an element of Q[z] then I claim that the
splitting field is
Qi) :=={a+bi:a,beQ} 2Q,
which is strictly smaller than C because, e.g., v/2 is in C but not in Q(i). Indeed, it is
easy to check that Q(7) is a subring of C. It is also a field since for any rational numbers

a,be Q we have
- a N —b ;
a+bi  \a?+ b2 a?+v2 )"

where the coefficients a/(a® + b?) and —b/(a® + b?) are also rational numbers. And the
polynomial 22 + 1 splits over Q because +i € Q. Finally, we need to show that Q(7)
is the smallest extension of Q over which 22 + 1 splits. The proof is the same as
above. Suppose that Q(i) 2 E 2 Q for some some field E over which 22 + 1 splits. Say
22+ 1= (z —7r1)(z —r2) for some 71,75 € E. Then substituting 2 = i shows that i = r;
or ¢ = ro. In either case this implies that ¢ € E. Then for any a,b € Q we have a + bi € E
and hence E = Q(¢). In summary:

The polynomial x> + 1 has splitting field Q(i) over Q.

On the homework you will find the splitting field of z? — 2 over Q.

3 Unique Prime Factorization

3.1 Definition of Euclidean Domains

Before proceeding with topic of polynomial equations, we pause to develop some general
theory. Much of the theory of (commutative) rings is based on a deep analogy between the
ring of integers and rings of polynomials over fields:

7 ~ F|x]

In order to describe this analogy we must first develop the language of “divisibility”.
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Divisibility in a Ring

\.

Let (R, +,-,0,1) be a ring. Then for all a,b € R we define the notation
alb <= there exists k € R such that ak = b.

It is important to note that the symbol “a|b” represents a whole sentence. It means that
“a divides b” or “b is divisible by a”. We have the following basic properties:

e lla for all a € R,
e a0 for all a € R,
e alb and b|c imply alc.

Indeed, we have 1|a because la = a and we have a|0 because a0 = 0. Now suppose that
alb and b|c. By definition this means that ak = b and b¢ = ¢ for some k,/ € R. But then

we also have
a(kl) = (ak)l = bl = c,

which implies that alc.

The properties of divisibility in a general ring can be quite wild. In order to model the
properties of Z and F[z] we make a further restriction.

r

Definition of Integral Domains

We say that a ring (R, +, -,0, 1) is an integral domain (or just a domain) if for all a,b € R,
ab=0 = a=0o0rb=0.

For example, the rings Z and F[z] are integral domains. For a non-example, consider the
ring Z/47 = {0,1,2,3} of “arithmetic mod 4” with the following addition and multipli-
cation tables{]

+/0 1 2 3 01 2 3
0j01 2 3 0{0 0 0O
111 2 3 0 110 1 2 3
212 3 01 210 2 0 2
313 0 1 2 310 3 21

This ring is not an integral domain because 2 -2 = 0 but 2 # 0.

Every field is an integral domain since if ab = 0 and b # 0 then b~! exists and we can
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multiply both sides by b~! to obtain

ab=0
abb™' = 0p!
a=0.

Similarly, if ab = 0 and a # 0 then we must have b = 0. Not every integral domain is
a field; for example Z and F[z] are not fields. However, every integral domain satisfies

multiplicative cancellation:

ac=bc andc#0 = a=0.

To see this, we write

ac = be
ac—bc=0
(a—b)e=0.

If ¢ # 0 then since R is an integral domain we have a — b = 0 and hence a = b.
\ J

The theory of divisibility in integral domains is closer to our intuition coming from Z and F[z].
For example, suppose that some nonzero elements a,b € R satisfy alb and bla. By definition
this means that ak = b and b/ = a for some k,¢ € R and hence

bl =a
akl = a
akl —a =0
a(kt —1) =0.

Since a # 0 this implies that k¢ — 1 = 0 and hence k¢ = 1. This is more interesting than it
looks because there may not be many elements in R that have a multiplicative inverse.

Definition of Units

Let R be a ring. We say that u € R is a unit of R if there exists a (necessarily unique)
multiplicative inverse ! € R. We denote the set of units by

R* ={ue R:3ve Ruv = 1}.

17Tt is not necessarily clear that these operations satisfy the ring axioms, but they do. We will discuss this

in detail later.
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C J

For example, I claim that
7> ={+1} and TF[z]* = {nonzero constants}.

To prove this for integers, we first observe that +£1 € Z are units because 1 -1 = 1 and
(—1)(=1) = 1. To see that every unit is one of these, suppose that some nonzero integers
a,b € Z satisfy ab = 1. Since a, b are nonzero we have |a|, [b] = 1. But if |a| > 2 then we obtain
a contradiction:

1 = [ab] = |al[b] > a] > 2.

Hence |a| = 1, and a symmetric argument shows that |b| = 1.

To prove the result for polynomials, we first observe that each nonzero constant a € F[z] is a
unit whose inverse is the nonzero constant 1/a. To see that every unit has this form, suppose
that some nonzero f(x),g(x) € F[z] satisfy f(z)g(z) = 1, so that

deg(f) + deg(g) = deg(fg) = deg(1) = 0.

Since deg(f),deg(g) = 0 this implies that deg(f) = deg(g)
nonzero constants, as desired.

0 and hence f(x),g(x) are

Units are important for the theory of divisibility.

( )

Definition of Association

For a,b € R in a ring we define the following notation:
a~b — there exists a unit u € R* such that au = b.

Again, the symbol “a ~ b” represents a whole sentence. It says that “a is associate to
b”. You will check on the homework that this is an equivalence relation on the set R.

If R is an integral domain, then I claim that¥]
a~b <= alband bla.

Indeed, suppose that a ~ b so that au = b for some unit u € R*. The equation au = b
implies that a|b and the equation bu~! = a implies that bla. Conversely, suppose that
alb and bla. By definition this means that ak = b and b¢ = a for some k,¢ € R. Since
a # 0 and since R is an integral domain, we have

bl = a
akl = a
akl —a=0
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a(kl—1)=0
kl—1=0
kl = 1.

This implies that k, ¢ € R* and hence a ~ b.
L J

For example, if a,b € Z then since Z* = {£1} we have a ~ b if and only if a = +b. Hence
alb and bla in Z <= a=+b.
And for nonzero polynomials f(z),g(z) € F[x] we have

f(z)|g(x) and g(x)|f(z) in Flz] <=  f(z) = A\g(x) for some nonzero \ € F.

There is one final property that the rings Z and F[z] have in common. Each of them has a
notion of “division with remainder”. The following definition is a little bit non-standard but
it suffices for our purposesF—_g]

( )

Definition of Euclidean Domains

Let (R,+,-,0,1) be a ring. We say that R is a Fuclidean domain if there exists a “size
function” N : R\{0} — N satisfying the following two properties:

e For all nonzero a,b € R with a|b we have N(a) < N(b).

e For all a,b € R with b # 0, there exist some ¢, € R (called quotient and remainder)
satisfying the following two properties:

a=bqg+r,
r=0or N(r) < N(b).

For example, we have already seen that the ring of integers Z with the size function N(a) = |a|
is a Euclidean domain. Indeed, to see that this NV satisfies the desired property, consider some
nonzero a,b € Z with alb. Since b # 0 this means that ak = b for some nonzero k. Since k
is nonzero we have |k| = 1 and then we multiply both sides of this inequality by the positive
integer |a| to obtain

1< [k

18T et us assume that a,b are both nonzero.
19 Actually the concept of Euclidean domain is a bit awkward. The more elegant concept is a principal ideal
domain, but we are not yet ready for that level of abstraction.
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la] < |al|k|
la| < |ak|
la| < [b].

We have also seen that the ring of polynomials F[x] with size function N(f) = deg(f) is a
Euclidean domain. Indeed, to see that this N satisfies the desired property, consider some
nonzero f(z),g(x) € Flx] with f(x)|g(x). Since g(z) # 0 this means that f(z)h(x) = g(x) for
some nonzero h(x). Then since f, g, h are all nonzero we have

deg(f) < deg(f) + deg(h) = deg(fh) = deg(g).

Let me observe, however, that the abstract definition above is more compatible with F[z] than
it is with Z. Indeed, the usual statement of the division theorem for Z says that for all a,b € Z
with b # 0 there exist ¢q,r € Z with

a="bqg+r,
0<r<lb.

This is not quite the same as saying that » = 0 or |r| < |b|] because it also includes the
requirement that » > 0. But it makes no sense to say that » > 0 in a general Euclidean
domain because the elements of a ring need not be ordered. For example, the elements of F[x]
are not ordered; it makes no sense to say that 6z + 5 > 5z + 6, or the other way around.

For this reason, quotients and remainders in a general Fuclidean domain need not be unique.
Luckily, we don’t need them to be. Our purpose for defining Euclidean domains is to prove
that every Euclidean domain has “unique prime factorization”. For example, the integer 60
can be factored into prime integers in essentially only one way:

60=2-2-3-5
=3.2.5.2.1-1
= (=3)-(-5)-2-2

= etc.

We can rearrange the factors and we can insert copies of 1 and —1 as we please, but this does
not change the fact that there are “two copies of 2, one copy of 3 and one copy of 5”7. We
will see that polynomials over a field also have unique prime factorization. For example, the
polynomial 2% — 4 € Q[x] can be factored as

2 —4=(x—-2)(x+2) =(—2+2)(—x —2) = (32 +6) (;x—§> = etc.

This time the prime factors are unique up to multiplication by nonzero constants, which are
the units in the ring. Finally, let me note that the notion of “prime polynomial”lﬂ is relative

29The term “irreducible polynomial” is more common. This might come from the study of the ring Z|x],
where we must distinguish between prime polynomials and prime coefficients.
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to the field of coefficients. For example, the polynomial #? — 2 is prime as an element of Q[x]
but it is not prime as an element of R[z] because 2% — 2 = (z — /2)(z + /2).

We will make all of this precise below.

3.2 The Euclidean Algorithm

In the pursuit of unique prime factorization we must first discuss greatest common divisors.

( )

Definition of Greatest Common Divisors

Let R be a Euclidean domain with size function N : R\{0} — N. For any two nonzero
elements a,b € R we consider their set of common divisors

Div(a,b) = {d € R : d|a and d|b}.
We note that every common divisor d satisfies N(d) < min{N(a), N(b)} because d|a
implies that dk = a for some k and hence N (d) < N(dk) = N(a). Similarly, N(d) < N(b).

Since the sizes of common divisors of a, b are bounded above by min{ N (a), N'(b)} it follows
from the well-ordering property of the integers that there exist elements in Div(a,b) of
maximum size. Any such element will be called a greatest common divisor of a,b.

For example: Consider the set of common divisors of the integers 12 and 30:
Div(12,30) = {1,2,3,6,—1,—2, —3, —6}.

Thus, in this case, we have two greatest common divisors: 6 and —6.

More generally, we will prove below that any two greatest common divisors are associates.
In the case of our two favorite Euclidean domains Z and F[z] this will allow us to make
a further choice and to speak of the greatest common divisor.

Since the units of Z are +1, there will be exactly two greatest common divisors, and we
will choose the positive one. Thus, for any nonzero integers a, b € Z we define

ged(a,b) = the unique positive common divisor of maximum absolute value.

Since the units of F[x]| are the nonzero constants, we can always scale our greatest
common divisor so that the leading coefficient equals 1. [Jargon: A polynomial with
leading coefficient 1 is called monic.] Thus, for any nonzero f(z),g(x) € F[x] we define

ged(f, g) = the unique monic common divisor of maximum degree.

How can we prove that any two greatest common divisors are associate? We will do this by
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giving an algorithm to compute all of the elements of the set Div(a,b). The proof that the
algorithm works will involve the following lemmas.

Lemmas for the Euclidean Algorithm

(1) Let R be any ring and let a,b,c,z € R be elements satisfying a = bz + ¢. Then we
have the following equality of sets:

Div(a,b) = Div(b, c).

(2) Let a € R be a nonzero element of a Euclidean domain. Since every element of R is
a divisor, the common divisors of a and 0 are just the divisors of a:

Div(a,0) = Div(a) = {d € R : d|a}.

I claim that the maximum-sized divisors of a are exactly the associates of a.
\. Y,

Here is the algorithm.

The Euclidean Algorithm

Let R be a Euclidean domain with size function N : R\{0} — N. For any nonzero
a,b e R, I claim that there exists a nonzero element d € R such that the common divisors
of a and b are the same as the divisors of d:

Div(a,b) = Div(d).

Since these two sets are equal, their maximum-sized elements are the same. It then
follows from Lemma (2) that any two greatest common divisors of a and b are associate
to d, hence associate to each other.

To prove that such an element d € R exists we will actually give an efficient algorithm to
compute it. To begin, we set rg = b and then divide a by ry to obtain

a=roq1 +m1, withr =0or N(r;) < N(rg).

If r1 = 0 then the algorithm stops. Otherwise, we divide rg by r1 to obtain

ro =7T1q2 + 2, with ro =0 or N(re) < N(ry).
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If ro = 0 then the algorithm stops. Otherwise, we continue in the same fashion, to
produce a sequence of nonzero remainders satisfying

N(TQ)>N(T1)>N(T2)>~-'.

This process cannot continue forever because there cannot be an infinite decreasing se-
quence of non-negative integers. Hence there exists some index n > 0 such that r, # 0
and r,4+1 = 0. I claim that this 7, is the desired element d. Indeed, by repeated applica-
tion of Lemma (1) we have

Div(a,b) = Div(a,ry) = Div(rg,r1) = Div(ry,r2) = - -- = Div(ry, 0) = Div(r,).
\_ J

To summarize: If R is a Euclidean domain then we have shown that the greatest common
divisor of two elements a,b € R is well-defined up to multiplication by units. Furthermore,
we have given an algorithm to compute this greatest common divisor. If N(a) = N(b) then
Lamé’s Theorem (which we will not prove) says that the algorithm takes no more than 5d + 2
steps, where d is the number of decimal digits in N(b). That’s pretty fast.

3.3 The Extended Euclidean Algorithm

Let R be a Euclidean domain. In the last section we defined the greatest common divisor
of two elements a,b € R (which we proved is unique up to multiplication by units) as the
common divisor of maximum size. But you may see other definitions in the literature. Here
we list three equivalent definitions.

I REGRET DOING IT THIS WAY. I SHOULD FIRST PROVE THAT A EUCLIDEAN
DOMAIN IS A PID AND THEN DEFINE THE GCD FROM THERE.

Show that aR + bR = dR for some d, which is unique up to multiplication by units. Show
that d is a common divisor. Write d = ax + by and a = dq + r with r = 0 or N(r) < N(d). If
r#0thenr =a—dgeaR+bR =dRso N(d) < N(r). Contradiction. Hence d is a common
divisor of a,b. Furthermore, if e|a and e|b then e|d and hence N(e) < N(d). It follows that d
is a greatest common divisor.

Conversely, if e is a greatest common divisor of a,b then e|d and hence N(e) < N(d) and
since d is a common divisor we have N(d) < N(e), hence N(d) = N(e). Finally, since e|d and
N(e) = N(d) we have d ~ e.

é )
Three Equivalent Definitions of GCD

Let R be a Euclidean domain with size function N : R\{0} — N and consider two nonzero
elements a,b € R. I claim that the following three definitions of greatest common divisor
are equivalent:
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(1) A maximum-sized common divisor. To be precise, consider the set Div(a,b) of
common divisors. Then d is a greatest common divisor if d € Div(a,b) and if for
any e € Div(a,b) we have N(e) < N(d).

(2) A maximally-divisible common divisor. To be precise, we say that d is a greatest
common divisor if d € Div(a, b) and if for any e € Div(a,b) we have el|d.

(3) A minimum-sized nonzero R-linear combination. To be precise, for any a € R we
define the set of multiples aR = {ax : x € R} and for any two elements a,b € R we
define the set of linear combinations:

aR+ bR = {ax + by : z,y € R}.

Note that 0 € aR + bR . We say that d # 0 is a greatest common divisor if

d € aR+ bR and if for all e € aR + bR we have N(d) < N(e). This last definition is

the least intuitive but it generalizes more naturally to rings that are not Euclidean.
\ J

The proof that these three definitions are equivalent will involve a modification of the Euclidean
algorithm. In the original statement of the Euclidean algorithm we completely ignored the
sequence of quotients ¢i,qo,.... This time we will keep track of the information that is
contained in the quotients.

Before presenting the general theorem I will give an example from the ring of integers. First
we compute the greatest common divisor of 3094 and 2513 using the standard Euclidean
algorithm, as described in the previous section:

3094 = 2513-1 + 581
2513 = 581-4 + 189
581 = 189-3 + 14
189 = 14-13 + 7

14 = 7-2 + 0 STOP
Hence from the lemma in the previous section we have:

Div(3094,2513) = Div(2513, 581)
— Div(581, 189)
— Div(189, 14)
= Div(14,7)
(
(

Since the set of common divisors of 3094 and 2513 is equal to the set of divisors of 7, we
conclude that the greatest common divisors are +7 and we choose the positive one:

ged (3094, 2513) = 7.
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But note that we have ignored the sequence of quotients: 1,4,3,13,2. What information
do these numbers contain? I claim that we can use them to find a solution z,y € Z to the
following equation@

3094x + 2513y = 7.

In order to do this we first consider the more general equation ax + by = z. This equation has
two obvious solutions (x,y,2) = (1,0,3094) and (x,y, z) = (0,1,2513). It also has the useful
property that any linear combination of solutions is still a solution. To be precise, consider
the following set of triples of integers:

V = {(x,y,2) € Z° : 3094z + 2513y = 2} < Z°.
If x = (z,y,2) and X' = (2/,y/,2’) are any two elements of V then for any integers r,s € Z 1
claim that the linear combination
rx + sx' = r(z,y,2) + sy, 7)) = (ro + sa’,ry + sy’ , vz + s2')
is also in the set V[ Indeed, by assumption we have az + by = z and az’ + by’ = 2’ hence
a(rz + s2') + b(ry + sy') = r(az + by) + s(az’ + by') = rz + s2’.

The goal is to begin with the basic triples x3 = (1,0,3094) and x2 = (0, 1,2513) and then to
perform Z-linear combinations until we obtain a triple of the form (z,y,7) for some integers
z,y € Z. The Euclidean algorithm guarantees that this is always possible, and the sequence
of quotients 1,4, 3, 13,2 tells us exactly which linear combinations to perform. We record the
computation in tabular form:

x Y z |x
1 3094 | x1
0 1 2513 | x2
1 —1 | 581 [x3=x1—1x2

—4 5 189 | x4 = xo — 4x3
13 —16 14 X5 = X3 — 3X4
—173 | 213 7T | x¢g=x4— 13x5
359 —442 0 X7 = X5 — 2X6

Note that the values of z are precisely the sequence of remainders from the Euclidean algo-
rithm, thus we stop when we reach a remainder of 0. The final nonzero remainder is the
greatest common divisor and reading off the corresponding values of x and y tells us that

3094(—173) + 2513(213) = 7,

which solves the desired equation. Here is the general theorem. This result is also sometimes
called Bézout’s Identity.

21t will become clear later why we want to solve this equation.
22Jargon: The set Z?2 is not quite a vector space because Z is not a field. Instead we call it a Z-module. The
fact that V < Z® is closed under Z-linear combinations makes it a Z-submodule.

49



r
The Extended Euclidean Algorithm

Let R be a Euclidean domain with size function N : R\{0} — N. For any nonzero
a,b € R we showed in the previous section that there exists a greatest common divisor
ged(a, b) € R, which is unique up to multiplication by units. I claim now that there exist
(non-unique) elements z,y € R satisfying®

az + by = ged(a, b).
To prove the existence of such z,y we will actually give an algorithm to compute them.
First, consider the set of triples (z,, z) € R? satisfying ax + by = 2:
V = {(z,y,2) e R® :ax + by = 2} < R>.

This set is closed under R-linear combinations 24 since for any vectors x = (z,vy, 2) and

x' = (2/,y',7') in V and for any elements r, 7’ € R, the vector rx + r'x' = (rz +r'2',ry +

'y rz +1'2') is also in V:
a(rz +1'2") + b(ry + r'y") = r(ax + by) + ' (az’ + by') = rz +r2'.

Our goal is to start with the basic vectors x; = (1,0,a) and x2 = (0,1,b) in V and to
form R-linear combinations until we obtain a vector of the form (z,y,gcd(a,b)) € V,
from which it will follow that az + by = ged(a,b). To do this, we consider the steps in
the usual (non-vector) Euclidean Algorithm:

a=bq + 1,
b=r1q2 + 12,
T1 = T2q3 + T3,

Ti—2 = Ti-1qi + Ti,

Tn—2 = Tn—1qn + Tn,

Tn—1 = Tndn+1 + 0,

where r,, = ged(a,b). If we recursively define the vector x;19 = x; — ¢;X;+1 then it will
follow that x,12 = (x,y,r,) for some z,y € R. Indeed, if we assume for induction that
x; = (2/,y/,ri—2) and x;41 = («”,y",r;—1) for some 2/, ¢y, 2", y" € R then it follows that

/ " ! "
Xit2 = X; — ¢iXit1 = (' —qi2”, vy — @y, rice — qiric1) = (x,y,74)

for some x,y € R, as desired. Anyway, that’s how a computer does it. A human would
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find it more convenient to organize all of the computations in a table:

x Yy z
1 a
0 1 b
1 —q1 1

—q2 1+ q1g2 r9

14+qq | —¢1 — 93— q1G2q3 r3

something something ged(a, b)

In summary, for any nonzero elements a, b of a Euclidean domain and for any of their greatest
common divisors d, there exist some elements z, y satisfying

ax + by = d.

This innocuous looking result unlocks the theory of prime factorization, as we will discuss in
the next section. For now, we can use it to prove the equivalence of the three definitions of
GCD discussed at the beginning of this section.

Proof that (1)<(2). Let d be a “maximally-divisible” common divisor of a and b. That
is, suppose that d|a and d|b, and suppose that for all e satisfying e|a and e|b we must have
eld. In this case we want to show that d is a “maximum-sized” common divisor. This follows
immediately since for any other common divisor e we must have e|d, which implies that
N(e) < N(d). Conversely, let d be a “maximum-sized” common divisor of a and b. In order
to show that d is “maximally-divisible” let e be any other common divisor. Our goal is to
show that e|d. To do this we must use the result of the Extended Euclidean Algorithm just
discussed. It tells us that there exist x,y € R satisfying

ax + by = d.
Then since e|a and e|b we have ek = a and el = b for some k,¢ € R, which implies that
d = ax + by = ekx + ely = e(kx + ly),

and hence e|d. o

The third equivalent definition has significant theoretical importance so we will isolate it as a
theorem.

23Tt doesn’t matter which GCD we choose since if d is some GCD satisfying d = ax + by then any other GCD
has the form du for some unit v € R*, hence du = a(zu) + b(yu) for some zu, yu € R.

241f R were a field then R® would be a vector space and we would call V € R® a vector subspace. If R is not
a field then we use the more general terms R-module and R-submodule.
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Bézout’s Identity

Let a,b € R be any two nonzero elements of a Euclidean domain and let d € R be their
greatest common divisor. Then I claim that

aR + bR = dR.

To explain this notation, dR = {dr : r € R} is the set of multiples of d and aR + bR =
{ar + bs : r,s € R} is the set of “R-linear combinations” of a and b.

To prove this we must show both inclusions. To see that aR + bR < dR, consider any
element ar + bs € aR + bR. Since d is a common divisor of a and b we have dk = a and
dl = b for some k,¢ € R and it follows that

ar + bs = dkr + dls = d(kr + (s),

so that ar + bs is an element of dR. Conversely, to see that dR < aR + bR, consider any
element dr € dR. From the Extended Euclidean Algorithm there exist z,y € R satisfying
ax + by = d. It follows that

dr = (azx + by)r = a(xr) + b(yr),

so that dr is an element of aR + bR.
\_ J

Proof that (1) and (2) are equivalent to (3). Let d be any GCD of a,b in the sense of
definition (1) or (2). Then from the basic Euclidean Algorithm we know that the set of all
GCDs of a and b are just the associates of d, and from Bézout’s Identity just proved we have

aR + bR = dR.

It remains to show that the minimum-sized nonzero elements of dR are precisely the associates
of d"| First of all, we note that d itself is a minimum-sized element of dR since d = d1 € dR
and since any element dr satisfies N(d) < N(dr). This also shows that N(d) is the minimum
size of an element of dR. Next we observe that any associate e ~ d is a minimum-sized element
of dR. Indeed, suppose that e ~ d so that d = eu and e = du™"! for some unit u € R*. This
implies that d|e (in particular, e € dR) and e|d. Then from properties of the size function we
have N(d) < N(e) and N(e) < N(d), hence N(e) = N(d). It only remains to show that any
minimum-sized element of dR is associate to d. For this, let m = dk € dR be any multiple of
d satisfying N(m) = N(d). If we can prove that m|d then it will follow from the usual proof*|

25In other words, we need to show that the minimum-sized multiples of d are the associates of d. Compare this
to our lemma for the Euclidean Algorithm which says that the maximum-sized divisors of d are the associates
of d, which you will prove on the homework. Pay attention because the proofs are almost identical.

26Tf d|m and m|d then we have dk = m and mf = d for some k, ¢, which implies m(1 — k¢) = 0. Since m # 0
this implies that 1 — k¢ = 0 so that k, ¢ are units.
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that m ~ d. So let us divide d by m to obtain ¢,r € R satisfying

d=mq+r,
r=0or N(r) < N(m).

If r # 0 then we must have N(r) < N(m). On the other hand, we know that r = d — mq =
d — dkq = d(1 — kq) so that d|r and hence N(r) = N(d) = N(m). This contradiction shows
that = 0 and hence m/|d. o

We end this section by considering the special case when ged(a, b) = 1.

Definition of Coprime

Let R be a Euclidean domain. We say that nonzero elements a,b € R are coprime (or
relatively prime) when 1 is a greatest common divisor, hence the units R* are the set of
common divisors. In this case it is convenient to write

ged(a,b) =1,

even though the GCD is not generally unique. If a,b are coprime then it follows from
the Extended Euclidean Algorithm that we have

ar +by =1

for some x,y € R. Conversely, if such x, y exist then I claim that a, b are coprime. Indeed,
suppose that ax + by = 1 and let d be any common divisor of a and b, so that dk = a
and df = b for some k,f € R. It follows that

1 = ax + by = dkx + dly = d(kx + ly),

and hence d|1. But the divisors of 1 are precisely the units.
\. J

3.4 Unique Prime Factorization

The previous section was fairly technical. The key result was the existence for any nonzero
a,b € R in a Euclidean domain of elements x,y € R satisfying

axr + by = ged(a, b).

In this section we will exploit this result to prove the important Fundamental Theorem of
Arithmetic, which says that elements of a Euclidean domain have “unique prime factorization”.
Before stating the result we must define the word “prime”.
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Definition of Prime

Recall that a positive integer p > 2 is called prime when its only positive divisors are
1 and itself. In a general Euclidean domain R we say that a nonzero, nonunit element
p € R is prime when its only divisors are units and the associates of p. In other words:

dp = d~1lord~np.

Let me also record a useful property of this definition. If a nonunit, nonzero element
a € R is not prime then by definition it can be expressed as

a = bc where b, ¢ are not units and not associate to a.

Applying the size function gives N(b) < N(a) and N(c¢) < N(a). But you will show on
the homework that the maximum-sized divisors of a are the associates of a, hence in this
situation we must have N(b) < N(a) and N(c) < N(a).

.

J

The reason for saying that units are not prime is purely conventionalF_T] We do this so that
factorization into primes will be unique. Indeed, the following factorizations of 60 should be

considered the same:

60=2-2-3-5=2-2-3-5-1=2-2-3-5-1-1=2-2-3-5-1-1-1---.

We should also consider prime factorizations to be the same if they differ by rearranging the

terms or inserting an even number of negative signs:

60=2-2-3-5
=3.2.5.9
= (-3)(=2)-5-2
=(-1)-5-2-(=3)-2
= etc.

The following theorem is sometimes called the Fundamental Theorem of Arithmetic.

Unique Prime Factorization

Let a € R be a nonzero, nonunit element of a Euclidean domain. Then:

(1) We can express a as a product of prime elements.

(2) The prime factors are unique up to permutations and multiplication by units.

2"The reason for saying that 0 is not prime is more subtle and we won’t discuss this.
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In other words, in a Euclidean domain there is a concept of prime multiplicity. Given a
prime element p € R there is a well-defined function v, : R\{0} — N such that v,(a) is
the multiplicity of the prime p in the factorization of a. For example, we have

2,

1
=1

0.

By convention we will also define v,(u) = 0 for all primes p and units .
\. J

Proof of (1). We will use induction on the size of a. If a is prime then we are done. Otherwise
from the remarks above we can write a = bc with N(b) < N(a) and N(¢) < N(a). Since b
and c are strictly smaller than a we can assume that each is a product of primes. Hence a is
also a product of primes. o

For the proof of uniqueness we need the following famous lemma.

Euclid’s Lemma

Let p € R be a prime element of a Euclidean domain. Then for all a,b € R we have
plab = pla or p|b.

The proof is classic and it makes a good exam problem. If p|(ab) and p 1 a then we
will show that p|b. To do this we first observe that ged(a,p) = 1. Indeed, let d be any
common divisor of a and p. Since d|p and p is prime we must have d ~ 1 or d ~ p. But if
d ~ p then since d|a we would have p|a. Contradiction. It follows that d ~ 1, hence the
only common divisors of a and p are the units. In other words, we have ged(a,p) = 1,
hence the Extended FEuclidean Algorithm tells us that there exist z,y € R satisfying

ar +py = 1.

Now the trick is to multiply both sides by b and use the fact that p|(ab) to write ab = pk
for some k € R:

ar +py =1
abr + pby = b
pkx + pby =0
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p(kx + by) = b.

We conclude that p|b as desired.

The hypothesis that p be prime is necessary. For example, we have 4|(6 - 10) but 4 { 6 and
41 10. Now here is the proof of uniqueness.

Proof of Uniqueness. Suppose that we have

Pip2 Pk = uqiqz - - -qp

for some prime elements p1,...,pk, q1,...,q € R and unit v € R*. In this case I claim that
k = ¢ and that we can rearrange the factors so that p1 ~ ¢q1, p2 ~ q2, ..., pr ~ qr. To see this
we observe that p; divides the left hand side, so it also divides the right hand side:

p1l(qig2 - - qe)-

By applying induction to Euclid’s Lemma we must have p;|g; for some i. After rearranging
the factors if necessary we may assume that pj|q;. Since ¢ is prime this implies that p; ~ 1
or p;1 ~ qi1. But p; ~ 1 is impossible because p;, being prime, is not a unit. Hence we must
have p; ~ q1 so that p; = u/qq for some unit v’ € R*. Finally, we cancel p; from both sides:

P1p2 - Pk = Uuq1q2 - - - qy
pip2- Pk = uu'p1ge - - qo
p2pE=uu'qy- - qp.

And the result follows by induction. =

All of these ideas were implicit in Euclid’s Elements, Book X. The explicit proof was first
written down by Gauss in the case of integers. Simon Stevin was the first to observe that the
same arguments apply to factorization of polynomials.

3.5 Irreducible Polynomials

Prime factorization in the ring Z is a familiar concept. However, since F[z] is also a Euclidean
domain, the previous theorem also tells us that polynomials have unique prime factorization.
You should be aware, however, that prime elements of the ring F[x] are more commonly called
wrreducible polynomials.

(Deﬁnition of Irreducible Polynomials ]

| Let f(z) be a nonzero, nonconstant polynomial with coefficients in a field F. We say that
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f(x) is irreducible over F if for all polynomials g(x), h(z) with coefficients in F we have

f(z) =g(x)h(z) == g(x) or h(z) is constant.

Note that we say “irreducible over F” instead of just “irreducible”. For example, the polyno-
mial 22 + 1 is reducible (i.e., not irreducible) over C because

22 +1=(z—1i)(z+1).

However, I claim that 22 +1 is irreducible over R. To see this, let us suppose for contradiction
that 2 + 1 = g(z)h(z) for some nonconstant polynomials g(x), h(x) with real coefficients.
Taking degrees gives

2 = deg(z? + 1) = deg(g) + deg(h),

which since g(z), h(x) are nonconstant implies that deg(g) = deg(h) = 1. In particular, this
tells us that g(x) = ax + b for some real a,b € R with a # 0, which implies that —b/a € R is a
real root of 22 + 1 because

(=b/a)? + 1 = (a(—b/a) + b) h(—bja) = 0 - h(—b/a) = 0.

But we know that the polynomial 22 4+ 1 has no real roots because any real number a € R
satisfies a? > 0 and hence o +1 > 1.

These observations are quite useful so we record them as a theorem.

Irreducible Polynomials of Small Degree

Let f(z) be a polynomial with coefficients in a field F.
(1) If deg(f) = 1 then f(x) is irreducible over any field containing F.
(2) If deg(f) = 2 or 3 then I claim that

f(z) is reducible over F <= f(x) has a root in F.

To prove (1), suppose for contradiction that deg(f) = 1 and that f(x) = g(z)h(x) for
some nonconstant g(x), h(x) with roots in a field containing F. Then taking degrees gives
a contradiction:

1 = deg(f) = deg(g) + deg(h) > 1+1 = 2.

To prove one direction of (2), let us suppose that f(a) for some a € F. Then from
Descartes’ Theorem we have f(x) = (z—a)g(x) for some g(x) € F[x] of degree deg(f)—1.
Since deg(f) = 2 this polynomial g(z) is nonconstant and we conclude that f(z) is re-
ducible over F, as desired. For the other direction of (2), let us suppose that f(z) is
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reducible over F, so that f(xz) = g(x)h(x) for some nonconstant g(x),h(z) with coeffi-
cients in F. Taking degrees gives

deg(g) + deg(h) = deg(f) =2 or 3.

Since deg(g),deg(h) > 1 this implies that we must have deg(g) = 1 or deg(h) = 1.
Without loss of generality, suppose that deg(g) = 1, so that g(z) = ax + b for some
a,b € F with a # 0. Then it follows that —b/a € F is a root of f(z):

F(=bja) = (a(=b/a) + b) h(=b/a) = 0 - h(~b/a) = 0.
\_ J

For example, we have already discussed the prime factorization of ™ — 1 over (CF_g]

"el= (- D@ —w) (@ —w?) (- W),

And over R:
" {(m -1) kn 11 /2( —2cos(2mk/n)x + 1) if n is odd,
(x —1)(x + 1) 2112)/2(:10 —2cos(2mk/n)x + 1) if nis even.
Indeed, for any integer k € Z such that w” is not real, its complex conjugate w™* is also not

real. It follows that the quadratic polynomial
(z — w®)(z —w™%) = 2% — 2cos(2mk/n) + 1
has no real roots, hence is irreducible over R.

But this criterion does not work for polynomials of degree > 4. For example, we have seen
that the polynomial 2* + 4 has no real roots. Nevertheless, it is reducible over R:
gt +4 = (2% 4 22 +2)(2? — 22 + 2).

In general it is quite difficult to prove that a given polynomial is irreducible. To give a taste
of things to come, I will just show you the prime factorizations of " — 1 over Q for the first
several values of n:

22 —1=(x—1)(z+1)

B —1=(z-1)(*+z+1)

2t —1=(x—1)(z+1)(2*+1)

2 —1=@-Da'+23+22+2+1)

P —1=@-De+)@®>+z+ 1) (> -z +1)
e —1=(x -1 +2°+2t + 2%+ 22 +1)
e —1=(r—1)(z+1)@2*+1)(z*+1)

2 —1=(x—1)(a? +z+1)®+23+1).

Do you notice any patterns here?

2 2
8Here we take w = 2™/,
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4 Some Number Theory

4.1 Modular Arithmetic

Before returning to the theory of polynomials in the next chapter, we pause to examine some
consequences of unique prime factorization in the ring of integers. Some of this material was
developed in the homework.

~

Definition of Equivalence Relations

Let S be a set. A relation on S is just a subset of the cartesian product set:
H<SxS={(y): abeS}

However, instead of writing (z,y) € #Z we will write xZy, “x is related to y” by Z. We
will say that Z is an equivalence relation when it satisfies the following three properties:

o Ve S xZx (reflexive)
e Vx,y €S, xZy implies yZx (symmetric)
o Vr,y,z€ S, x#y and yZ=z imply Xy (transitive)

lle

In this case will use a symbol such as ~, ~, ~, = or = to emphasize that # behaves like
an equals sign.

\. J

We have already seen one equivalence relation in this course. For elements a,b € R in a ring
R we have defined the relation of association:

a~b <= JueR*,au=0.
Let us verify that this is, indeed, an equivalence:
e Reflexive. Since 1 is a unit we have al = a and hence a ~ a.

e Symmetric. Suppose that a ~ b so that au = b for some unit v € R*. By definition
this means that « has a multiplicative inverse u™', so that bu™! = a. Since the element

™! is also a unit this implies that b ~ a.

e Transitive. Suppose that a ~ b and b ~ ¢ so that au = b and bv = ¢ for some
units u,v € R*. By definition this means that u and v have multiplicative inverses v~
and v~!. But then the product uv is also a unit with (uv)™! = u~!'v~!. Then since

a(uv) = (au)v = bv = ¢ we conclude that a ~ ¢ as desired.

The next concept was introduced by Gauss in his Disquisitiones Arithmeticae (1801). We still
use the same notation as he did.
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Definition of Congruence Modulo and Integer

Fix an integer n > 1. Then for all integers a,b € Z we define the following notation:
a=b modn <= nl(a—0).

In this case we say that a is congruent to b modulo n. Let us verify that this is an
equivalence relation on the set Z:

e Reflexive. Since n0 = a — a we have n|(a — a) and hence a = a mod n.

e Symmetric. Let a = b mod n so that n|(a — b) and hence a — b = nk for some
k € Z. Then we have b — a = n(—k) so that n|(b — a) and hence b = a mod n.

e Transitive. Let a = b mod n and b =c¢ mod n so that a — b =nk and b —¢c = n¥
for some integers k, ¢ € Z. Then we have

a—c=(a—b)+ (b—a)=nk+nl=n(k+1),

so that n|(a — ¢) and hence a = ¢ mod n.

The main reason for defining this relation is that it behaves well with respect to addition and
multiplication of integers. To be precise, let us suppose that a = a’ mod n and b = b’ mod n,
so that a —a’ = nk and b — b’ = nf for some integers k,/ € Z. Then we have

[(a+b)—(d +V)]=(a—d)+ (b—0)=nk+nl =nk+{),
which implies that a + b = a’ + V' mod n, and we have
ab—a't =ab—ab +abt —d't) = a(b—V) + (a— )b = anl + nkb' = n(al + kV'),

which implies that ab = a/b’ mod n. This just means that we can perform arithmetic using
the symbol = instead of = and we won’t get into trouble. For example, since 3 = 13 and
4 = —6 mod 10, we should also have 3-4 = 13- (—6) mod 10. And, indeed,

13- (—6)=—-78=2=12=3-4 mod 10.

We can use these operations to define a new family of finite rings.

(The Ring Z/nZ (i.e., Modular Arithmetic) ]

| Fix an integer n > 1. I claim that every integer a € Z is congruent mod n to a unique |
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integer r in the set {0,1,...,n—1}. Indeed, dividing a by n gives some ¢, r € Z satisfying

a=nqg-+r,
0<r<n,

and hence a = ng+ r =n0 + r =r mod n. To see that this integer r is unique, suppose
that we have a = r = 7/ mod n for some integers 7,7’ in the set {0,1,...,n — 1}. Our
goal is to show that » = 7’. First we observe that r — ' = a — a = 0 mod n, so that
n|(r —r"). Now let us assume for contradiction that r # r/. Without loss of generality we
can assume that 7’ < r and hence r — 7’ > 0. But then the condition n|(r — ') implies
n < r —r’ and we obtain the desired contradiction:

r<n<r—r <r
In summary, we can define a ring structure on the finite set
Z/nZ ={0,1,2,...,n— 1}.

The ring operations are addition and multiplication mod n and the special elements are
0 and 1. It is boring to check that the eight ring axioms are satisfied so we won’t bother.
. J

Remark: The theorem that every a € Z is congruent mod n to a unique integer r in the set

{0,1,...,n—1} is equivalent to the existence and uniqueness of remainders in the ring Z. We
previously proved the existence but we did not prove the uniqueness until now. Thus we could
view Z/nZ = {0,1,...,n — 1} as the set of possible remainders mod n. For this reason, the

ring structure of Z/nZ is sometimes called the arithmetic of remainders. More commonly it
is called modular arithmetic.

4.2 Some Finite Fields

In the previous section we defined a family of finite rings Z/nZ, one for each positive integer
n > 1. For example, here are the addition and multiplication tables for the ring Z/6Z:

+/0 1 2 3 4 5 012 3 45
0j01 2 3 45 0{0 0 00 0O
111 2 3 4 5 0 101 2 3 4 5
212 3 4 5 01 2/0 2 40 2 4
313 45 01 2 310 3 0 3 0 3
414 5 01 2 3 410 4 2 0 4 2
515 01 2 3 4 50 5 4 3 2 1

The following identities are quite interesting:

2.-3=3-2=4-3=3-4=0mod 6.
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They tell us that the ring Z/6Z is not an integral domain, thus the theory developed in the
previous chapter does not apply to it. The problem here is that the number 6 can be factored
as 2 - 3. The situation is better for prime moduli.

( )
The Ring Z/pZ is a Field

Let p > 2 be a prime integer and consider the ring Z/pZ of size p. Recall Euclid’s Lemma,
which says that
plab = pla or p|b.

Since the statement plc is equivalent to ¢ = 0 mod p, this becomes
ab=0modp = a=0modp or b=0 mod p.

In other words, the ring Z/pZ is an integral domain. You showed on a previous homework
that every finite integral domain is a field. Let me reproduce the proof here. For any
nonzero a € Z/pZ we consider the multiplication function p, : Z/pZ — Z/pZ defined by
fta(b) = ab. Since Z/pZ is an integral domain this function is injectivefY]

pa(b) = pa(c)

ab=ac
alb—c)=0
(b—c)=0
b=c.

But any injective function from a finite set to itself must also be surjective. Hence the
element 1 € Z/pZ is expressible as 4 (b) for some b € Z/pZ. In other words, each nonzero
element a € Z/pZ has a multiplicative inverse

The proof above tells us that inverses ezist in the ring Z/pZ but it does not tell us how to find
them. Since there are only finitely many possibilities we could always just check them all. For
example, to find the inverse of 3 mod 7 we could just multiply 3 by every element of Z/7Z:

29 All congruences are mod p.
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3:3=9=2

3:-4=12=5
3:-5=16=1
3-6=18 =4.

We see that 3-5 =1 mod 7 and hence 37! = 5 mod 7. In the worst case scenario this method
will use p — 1 computations to find the inverse of a nonzero element of Z/pZ.

Luckily we can do much better.

( )
Computing Inverses in Z/pZ

Let p > 2 be prime and consider a nonzero element a € Z/pZ. In other words, consider
an integer a € Z such that p f a. Since p is prime this implies that ged(p,a) = 1, hence
we can use the Extended Euclidean Algorithm to find some integers x,y € Z such that

pr +ay = 1.
Then reducing both sides of this equation mod p gives
l=pr+ay=0z+ay =ay

and it follows that ¢~ = y mod p. For example, we compute 346~ mod 10090 We
consider the set of triples (x,y, z) satisfying 1009z + 346y = z. Then starting with the
easy triples (1,0,1009) and (0,1,346) we perform linear combinations until we obtain a
triple of the form (z,y,1)£]]

and hence

Just to be sure, let’s check:

x z
1 1009
0 1 346
1 -2 | 317
-1 3 29
11 | =32 | 27
12| 35 2
167 | —487 | 1

63

We conclude that 1009(167) 4+ 346(—487) = 1. Reducing this equation mod 1009 gives

1= 1009(167) + 346(—487) = 0(167) + 346(—487) = 346(—487),

34671 = —487 = 522 mod 10009.

346 - 522 = 180612 = 1009 - 179+ 1=0-179 + 1 = 1 mod 1009.




Note that this method only used 5 steps. In general, the Extended Euclidean Algorithm
uses less than log,(a) steps to compute the inverse of a mod p.

The results of computations in Z/pZ have “pseudorandom” behavior. Even though the algo-
rithm is perfectly deterministic, the results seem to bounce around randomly. For example, if
we change a just a little bit then its inverse may change by a lot:

34671 = 522
34771 = 410
34871 =519
3491 =717
35071 = 320

There is no discernible pattern. This is one reason by modular arithmetic is used in cryp-
tography. The next section will discuss a theorem that is at the heart of the most popular
public-key cryptosystem.

4.3 The Euler-Fermat Theorem

Just as inverses behave pseudorandomly in the field Z/pZ, powers also behave pseudorandomly.
For example, here are the first several powers of the element 346 € Z/1009Z:

346! = 346
3462 = 972
346° = 352
346* = 360
346° = 93

346° = 806
346" = 595

This sequence seems to have no pattern. But we know that this cannot go on forever because
the set Z/1009Z is finite. I claim that the sequence of powers will eventually hit 1 and then it
cycle through the same sequence endlessly.

To prove this, we first establish an exponential notation for elements of Z/pZ. For any positive
integer n > 1 and for any nonzero element a € Z/pZ we know that a™ is also nonzero mod p
because Z/pZ is a domain. Furthermore, the inverse of a” is just (a~!)" because

1 -1

ca~!'=1 mod p.

a-(aYV'=ga---a-a a7t
—
n times n times

39My computer told me that 1009 is prime.
31Strictly speaking, we do not need to include the z column.
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This suggests that we should define the notation a™ for any integer value of n, including
zero and negative integers:
a n=1,
a” =<1 n =20,
(a™H)™ n< -1

Finally, we observe that this notation satisfies the general rule

a™™™ =a"-a" mod p for any integers m,n € Z.

The following theorem illustrates the utility of this notation.

The Multiplicative Order of an Element

Let p be prime. For any nonzero a € Z/pZ we consider the sequence of powers mod p:

a,a’,a®,a*, ... € Z/pZ.

Since Z/pZ is finite, some element of this sequence must be repeated. Let’s say ak = at

mod p for some integers 1 < ¢ < k. Then multiplying both sides by a ¢ gives

a* = at
ad* at=at at
a"t=1

We have shown that a*~¢ = 1 mod p for some positive integer k — £ > 1. The smallest
such integer is called the order of a mod p:

ordy(a) = min{r > 1:a" =1 mod p}.

Thus the sequence of powers a,a?, a3, ... mod p will reach 1 after ord,(a) steps, after
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which the sequence will repeat. For example, consider the powers of 3 mod 11:
k | 3* mod 11
1 3
2 9
3 5
4 4
5 1
6 3
7 9
8 5
9 4
10 1
We see from this table that ord;;(3) = 5, and the sequence repeats after every 5 steps.
\ y,

We have proved the existence of the numbers ord,(a) € N for all nonzero elements a € Z/pZ.
It is difficult to predict the exact value of ord,(a) for a given value of a. However, in this
section we will prove the important theorem that the order always divides p — 1:

ordp(a)|(p —1) for all nonzero elements a € Z/pZ.

This theorem was stated by Pierre de Fermat in a letter to Frénicle de Bessy in 1640. After
giving some examples, Fermat said: “I would send you the demonstration, if I did not fear it
being too long.”[ﬂ This was a common way of communicating scientific discoveries at the time,
since there were no scientific journals. The first published proofs of Fermat’s theorem were
given by Euler in the 1700s. We will present Euler’s second proof from 1761 since it involves
a concept that will be important in this course: the concept of a group. We will present the
modern definition, even though this concept was not formalized until the late 1800s.

Informally, a group is a set with an invertible, associative, binary operation. The main exam-
ples are addition +, multiplication - and functional composition o. Each of these examples also
has a special “identity element”, which is 0 for addition, 1 for multiplication, and the identity
function id for functional composition. Because functional composition is not commutative,
we do not assume that a group operation is commutative.

(The Concept of a Group ]

A group consists of a set G together with a binary operation # : G x G — G, which we
write as a * b, and a special element ¢ € G satisfying the following three axioms:

320ystein Ore, Number theory and its history, page 272.
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(G1) Va,b,ce G,ax* (bxc) = (axb)*c (associative)
(G2) VaeG,axe=c*a=a (identity)
(G3) Vae G,IbeG,axb=cand bxa=c¢ (inverses)
We say that the group (G, *,¢) is abelian if it satisfies the additional axiomP]

(G4) VYa,be G,axb="bxa (commutative)

Axiom (G3) says that any element of a group has a two-sided inverse. In fact, this inverse
must be unique. To see this, suppose that we have a *b=b+xa =cand axc=cxa = ¢.
It follows that

b=bxe (G2)
=bx*(ax*c)

—(bra)rc (G1)
=c. (G2)

Since the inverse of @ is unique, we give the name a~!. This notation makes sense when
* is multiplication or functional composition, but is less appropriate when = is addition.
In that case we might sometimes write —a for the inverse.

\ J

We have already seen some examples of groups. If (R, +,+,0,1) is a ring then the structure
(R,+,0) is an abelian group. The structure (R,-, 1) is not a groupE] because it contains the
element 0 € R which has no multiplicative inverse, and it may contain other non-invertible
elements. However, the set of units (R*,-, 1) is an abelian group, called the group of units of
the ring. The ring R is a field if and only if R* = R\{0}.

So far we have not studied any examples of non-abelian groups. These kind of groups come
from functional composition. Here are two of the prototypical examples:

e Given a field F and a positive integer n > 1 we define
GL,,(F) = the set of invertible n x n matrices with entries from F.

This is a group, called a general linear group, with group operation given by matrix
multiplication and identity element given by the n x n identity matrix.

33This is a peculiar notation. It would be more sensible to call this a commutative group. This “abelian”
notation was introduced by Leopold Kronecker to commemorate from a theorem of Niels Henrik Abel, which
says that a polynomial equation with a commutative “Galois group” is solvable by radicals. We will discuss
this next semester.

311 don’t want to overwhelm you with terminology, but a structure (G, #, €) satisfying axioms (G1) and (G2)
is called a monoid.
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e Invertible functions from a finite set to itself are called permutations. The permutations
of a set form a group under composition, with the identity permutations as the identity
element. The group of permutations of {1,2,...,n} is called the symmetric group S,.

Our discussion of multiplicative order generalizes to any group.

4 )
Order of a Group Element

Let (G, *,¢) be a group. Then for any element a € G and for any integer n € Z we define
the exponential notation

axas*--*xa (n times) ifn>1
a®=<¢ ifn=20
atxatx-- xa7! (—n times) ifn< -1
One can check that this notation satisfies a™*" = a™ % a™ for all integers m,n € Z. We
define the order of a € G as the minimum positive exponent r such that a” = ¢, or as
if no such exponent exists:

ordg(a) =min{r > 1:a" = ¢} € Zz; U {o0}.

If G is a finite then then I claim that ordg(a) is finite. Indeed, in this case the sequence

of powers a,a?,... € G must contain repetition, so that a* = a’ for some k > ¢ > 1.

Then we have

a* =at
aFvat=atwat
aF—t = O
A"t =¢
for some positive integer k — ¢ > 1.
\ J

The Euler-Fermat theorem shows us that the order of an element in a finite group is related to
the size of the group. We will prove this in modern group-theoretic language but the ideas are
due to Euler (1761). We will discuss afterwards how this abstract version implies the classical
theorems of Euler and Fermat.
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The Euler-Fermat Theorem

Let (G, #,¢) be a finite abelian group. Then for all a € G we have®)|

aC =,

To save space we will write a * b = ab and £ = 1, but the proof is completely general.
Consider the function u, : G — G defined by ps(b) = ab. This function is injective
because every element of a group is invertible:

ta(b) = palc)
ab = ac

atab = a lac

b=c.

If G is finite then the function p, is also surjective. To be precise, suppose that m =
#G and label the group elements as G = {by,ba,...,by,}. Then we also have G =
{aby,abs, ..., ab,} with the group elements possibly listed in a different order. Indeed,
every element b; has the form ab; for some i because p, is surjective, and ab; = ab;
implies b; = b; because p, is injective. Now we “multiply” all of the group elements
together in two different ways:

ble cee bm = (abl)(abg) e (abm)
byby—~b, = ab “bm

1=a™m

Euler’s original application was to the group of units of the finite ring Z/nZ. I claim that
(Z/nZ)* ={a€Z/nZ : ged(a,n) = 1}.

Indeed, if ged(a,n) = 1 then from Bézout’s Identity we have az + ny = 1 for some z,y € Z.
It follows that

ar +ny =1
ar — 1 =n(—y)
n | (ax—1)

ar =1 mod n,

and hence a € Z/nZ is a unit. Conversely, suppose that a € Z/nZ is a unit, so that ab = 1
mod n for some b € Z. By definition this means that ab — 1 = nk for some k € Z. If de Z

35In fact, this theorem also holds for finite non-abelian groups, but the proof is harder.
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is any common divisor of a and n then the equation 1 = ab — nk implies that d|1 and hence
d = +1. In other words, ged(a,n) = 1.

( )

Euler’s Totient Theorem

For any integer n > 1 we define Euler’s totient functiortd)
d(n) =H#(Z/nZ)* =#{a€Z:1<a<nand ged(a,n) = 1}.
Since ¢(n) is the size of the abelian group (Z/nZ)*, the previous theorem tells us that
a®™ =1 mod n for all a € (Z/nZ)*.
In other words,

a®™ =1 mod n for all a € Z such that ged(a,n) = 1.

If p is prime then Z/pZ is a field. In other words, every nonzero element of Z/pZ is a unit:

(Z/pZ)* = (Z/pZ)\{0}
#(Z/pZ)" = #(Z/pZ) — 1
¢(p) =p—1.

Thus we recover the original theorem of Fermat, which was Euler’s goal.

( )

Fermat’s Little Theorem

Let p be prime so that ged(a,p) = 1 if and only if p{ a. Then since ¢(p) = p — 1, Euler’s
totient theorem tells us that

a’?~! =1 mod p for all a € Z such that p 1t a.
We can clean this up a bit by multiplying both sides by a to obtain

a? = a mod p,

which is true for any integer a € Z whatsoever.

36This notation was introduced by James Joseph Sylvester in 1879. Sylvester is famous for introducing
ridiculous mathematicial terminology, a small percentage of which has become standard. For example, Sylvester
introduced the term matriz for a rectangular array of numbers, his reasoning being that such an array is a
“womb” that gives birth to determinants. True story.
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C J

This result is called Fermat’s Little Theorem in order to distinguish it from Fermat’s Last
TheoremE] Fermat, being an amateur mathematician working in a time before scientific
journals, left behind few proofs. Euler later supplied proofs for most of Fermat’s claimed
results and disproved at least one@ But Euler was unable to prove or disprove the following.

( )

Fermat’s Last Theorem

For all positive integers a, b, ¢,n with n > 3 we have

a” +b" # "

This problem became famous and inspired many fundamental concepts in number theory. It
was finally proved in 1993 by Andrew Wiles and appeared on the front page of the New York
Times. A gap in the proof led to some panic but Wiles was able to patch the gap with his
student Richard Taylor, and a correct proof appeared in 1994. The ideas of this proof are far
beyond the scope of our course.

4.4 The Chinese Remainder Theorem

Recall Euler’s totient function:
d(n) = #(Z/n2)* = #{a€Z:1<a<n and ged(a,n) = 1}.
We proved last time that
a®(n)=1mod n for all integers a € Z satisfying ged(a,n) = 1.
If p is prime then since ¢(p) = p — 1 we obtain Fermat’s little theorem:
a?!'=1modp for all integers a € Z satisfying p { a.

But what if n is not prime? In this section we will prove the following formula:
1

where the product is taken over all prime divisors p|n. This result seems intuitively plausible.
Indeed, we observe that ged(a,n) # 1 if and only if @ and n share a prime factor. Thus we

37T do not know the origin of these names.

38 Fermat had claimed that the number 22" +1 is prime for all integers n = 0. Euler shows that 22" + 1 is not
prime, and no other Fermat prime has ever been found. So this is a case where Fermat was completely wrong.
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wish to remove all multiples of the prime factors of n. We can remove the multiples of p
by multiplying n with (1 — 1/p). Then, presumably, we can remove the multiples of another
prime factor ¢ by multiplying the result with (1 —1/¢). But this is not so simple because some
multiples of ¢ are also multiples of p.

The underlying issue is today expressed in terms of a general property of rings called the
“Chinese Remainder Theorem”ﬂ The first example of the theorem appeared in the fourth
century text Sun Zu Suan Jing (Master Sun’s Mathematical Manual):

There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?

In modern language, we are looking for integer solutions ¢ € Z to the following system of
congruences:

¢ = 2mod 3,
¢ = 3 mod 5,
c = 2modT.

Instead of just solving this one problem we will develop the general theory. The idea is to
compare the set Z/mnZ with the cartesian product set Z/mZ x Z/nZ. To be specific, we
consider the function sending the congruence class a mod mn to the pair of congruence classes
(e mod m,a mod n). Here is an example with m = 2 and n = 3:

a mod 6 | (a mod 2,a mod 3)
0 (0,0)
1 (1,1)
2 (0,2)
3 (1,0)
4 (0,1)
5 (1,2)

Note that each ordered pair on the right appears exactly once, which happens because 2 and
3 are coprime. Indeed, we see that the first coordinate cycles through {0, 1} while the second
coordinate cycles through {0, 1,2}. Since 2 and 3 are coprime there is no repetition. We will
be more precise about this below.

In practical terms, this example tells us that each system of congruences ¢ = a mod 2 and
¢ = b mod 3 has a unique solution mod 6. For example, the final row of the table tells us that

{c = 1 mod 2

¢ = 2mod3} < c¢=5mod 6.

In general, we would like a recipe to send a pair of congruence classes mod m and n to a unique
congruence class mod mn. This is what the Chinese Remainder Theorem does. Actually, the
term “Chinese Remainder Theorem” refers to a collection of ideas, which I will break into a

39The theorem was named by Leonard Dickson in 1929 and this notation has become standard.
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few pieces. The proof will use two lemmas, which are only slight modification of things that

we already know.

Lemmas for the Chinese Remainder Theorem

(1) If gcd(m,n) = 1 then m|c and n|c imply (mn)|c.
(2) If az + by = 1 then ged(a,b) = 1.

To prove (1), let ged(m,n) = 1 so that mz + ny = 1 for some z,y € Z. If mk = ¢ and
nt = ¢ for some k,{ € Z then

(mx +ny)c=c
mxc + nyc = ¢
manl + nymk = ¢

mn(zl + yk) = c.
To prove (2), let ax + by = 1. If dk = a and d¢ = b then

1 =azx + by = dkx + dly = d(kx + ly).

In other words, any common divisor of a and b must be a divisor of 1. Hence ged(a,b) = 1.
\. J

Remark: It is always possible to use unique prime factorization to prove things like this. But
there is a general rule when writing proofs that one should not use a deeper theorem to prove
a shallower theorem. This helps minimize the risk of circular reasoning.

( )

Chinese Remainder Theorem, Part I

Let integers m,n > 1 satisfy ged(a,b) = 1 and consider the following function:

@ : Z/mnZ — Z/mZ x Z/nZ
a mod mn +— (a mod m,a mod n).

To save space we could write p(a) = (a,a), as long as we are clear that the input is a
congruence class mod mn and the output is ordered pair of congruence classes mod m

and n. I claim that ¢ is a bijection.

What needs to be proved?
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¢ Well-Defined 7| First we should check that the definition is not affected by chang-
ing a to another integer o’ satisfying a = o’ mod mn. Indeed, if a = @’ mod mn,
so that a — a’ = mnk for some k € Z, then we have a — a’ = m(nk), which implies
that a = ¢’ mod m and a — o’ = n(mk), which implies that a = @’ mod n.

e Injective? Suppose that a = b mod m and a = b mod n, so that m|(a — b) and
n|(a —b). Then from Lemma (1) we have mn|(a — b), so that a = b mod mn.

e Surjective? We have an injective function from the set Z/mnZ to the set Z/mZ x
Z/nZ. Since these sets have the same size mn any injective function must also be
surjective.

It follows that the function ¢ : Z/mnZ — Z/mZ x Z/nZ has an inverse function:

o1 Z/mZ x Z/nZ — Z/mnZ
(a mod m,b mod n) +— ? mod mn.

But it is not at all clear how to express the output as a function of the input (a,b).

Chinese Remainder Theorem, Part 2

Let integers m,n > 1 satisfy ged(m,n) = 1, so we can use the Extended Euclidean
Algorithm to find some (non-unique) integers x,y € Z satisfying

mzx +ny = 1.

I claim that the inverse of the function ¢(a mod mn) = (a mod m, a mod n) from Z/mnZ
to Z/mZ x Z/nZ can be computed as follows{]

¢ (a mod m,b mod n) = any + bmz mod mn.

In concrete terms, we have the following solution to a system of two congruences:

c b mod n

{c = amodm

} < c¢=any + bmz mod mn.

To prove this we only need to check that ¢(any +bmz) = (a,b). In other words, we need
to check that

any + bmx = a mod m,

any + bmx = b mod n.

498tudents usually have difficulty with the concept of “well-definedness”. The idea is that a function whose
input is an equivalence class must not be affected by changing the representative from this class.
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We only need to check one of these because they are symmetric. All congruences in the
following computation are mod m:

any + bmx = any + b0x

= any
= a(l — mz)
= a(1 — Ox)
= a.
\. Y,
For example, when m = 2 and n = 3 we can take x = —1 and y = 1, so that any + bmz =

3a — 2b, and hence{az]

¢ = amod 2
¢ = bmod3

} < c¢=3a— 2bmod 6.

We can use the same method to solve multiple simultaneous congruences by induction. Recall
Sun Zu’s system of congruences:

¢ = 2mod 3,
¢ = 3 mod 5,
¢ = 2mod?7.

First we take m = 3 and n = 5 and observe that 3(2) + 5(—1) = 1, so that

2 mod 3
¢ = 3modbH

o
|

} <= c=2-5(—-1)+3-3(2) =8 mod 15.

Hence we have
¢ = 2mod3

c 3 mod 5 — {C
c = 2mod?7 ¢

8 mod 15
2 mod 7

Then we take m = 15 and n = 7 and observe that 15(1) 4+ 7(—2) = 1, so that
¢ = 8mod15
{ c = 2mod 7 } D 6287(_2)+215(1)=23m0d 105.

On the homework will you investigate a method to solve a system of multiple congruences in
one step. It is not any faster but it is slightly more beautiful.

410ver the years I have settled on this mnemonic because any is a word and bme is a type of bicycle that
was popular in my childhood.
42We could equally well take = 2 and y — 1. The solution would look different but it would be the same.
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We end this section by using the Chinese Remainder Theorem to compute Euler’s totient
function. We have seen that the the following function is well-defined for any integers m,n > 1:

©: Z/mnZ — Z/mZ x Z/nZ
a mod mn +— (a mod m,a mod n).

But this is not just a function between sets. We know that Z/mnZ is a ring and we can also
view Z/mZ x Z/nZ as a ring by defining addition and multiplication componentwise:

(a mod m,b mod n) + (a mod m,b mod n) = (a + a’ mod m,b + b mod n),

(a mod m,b mod n) - (a mod m,b mod n) = (aa’ mod m,bb’ mod n).

The “zero” and “one” elements of this ring are (0,0) and (1,1). Since the function ¢ preserves
this ring structure we say that ¢ is a ring homomorphism. When ged(m,n) = 1 we also know
that ¢ is a bijection, in which case we say it is a ring isomorphism. The final piece of the
Chinese Remainder Theorem says that this ring isomorphism restricts to a group isomorphism
between the groups of units. I won’t bother to use this language in the official statement. We
will be much more systematic about homomorphisms next semester.

N

Chinese Remainder Theorem, Part 3

Let integers m,n > 1 satisfy ged(m,n) = 1, so the function ¢(a) = (a,a) defines a
bijection:
¢ Z/mnZ — Z/mZ x Z/nZ.

I claim that this restricts to a bijection:
0 (Z/mnZ)* — (Z/mZ)* x (Z/nZ)*.

Hence the domain and codomain have the same size, which gives us the following identity
for Euler’s totient function:

¢(mn) = #(Z/mnL)* = #(Z/mZ)" - #(Z/nZ)* = ¢(m)d(n).

What needs to be checked? We only need to show that a is a unit mod mn if and only
if @ is a unit mod m and n separately:

ged(a,mn) =1 <= ged(a,m) =1 and ged(a,n) = 1.

For one direction, suppose that ged(a, mn) = 1 so that ax + mny = 1 for some z,y € Z.
Then since az+m(ny) = 1, Lemma (2) implies that gcd(a,m) = 1 and since az+n(my) =
1, Lemma (2) implies that ged(a,n) = 1. Conversely, suppose that ged(a,m) = 1 and
ged(a,m) = 1, hence there exist integers z,y,z’,y’ € Z satisfying ax + my = 1 and
azr’ + ny' = 1. Multiplying these equations gives

(ax + my)(ax’ +ny') =1
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a(zz’ + zny’ + mya’) + mn(yy') = 1,

and it follows from Lemma (2) that ged(a, mn) = 1.

Finally, we will prove the formula from the beginning of the section. Consider the prime
factorization of an integer n > 1:

n = p7ll1p§l2 . ,ka‘
Applying the previous result gives
¢(n) = d(pY")P(P5?) - - Ppi*).-
But now we are stuck. It is not true that ¢(p?) = ¢(p)¢(p) because p is not coprime to p. We
need to find a way to compute ¢(p™) when p is prime. I claim that

my _,m __,m—1_ m _1
o(p™) =p" —p p <1 p>'

To see this, we first observe that
ged(a,p™) =1 <= pfa

Indeed, since p is prime the only divisors of p" are the powers of p. If p{a then a is also not
divisible by any power of p, hence a and p™ have no common divisor. Conversely, if p|a then
p is a nontrivial common divisor of a and p.

Recall that ¢(p™) is the number of integers between 1 and p™ that are coprime to p™. By
the previous remark these are just the integers that are not divisible by p. So our goal is to
count the integers between 1 and p™ that are not divisible by p. But it is easier to count the
integers that are divisible by p. Indeed, there are p™ ! multiples of p in this range:

m—l)

1p,2p,3p,..., (" ")p.

m m—

Then throwing away these multiples of p gives ¢p(p™) = p I as desired.

-D
We conclude that
o(n) = ¢(py")P(P3?) - - - d(p}")

1 1 1
71 72 Y2
o (- Dy (- ) (1 1)
! ( pl) 2 ( b2 K Dk
1 1 1
ny, no Mg
s (-2 (-3 (-3)
L2 k( p1 D2 Pk
10-,)
=n 1——
i=1 pi

where the product is taken over the prime divisors of n.
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5 Partial Fractions

5.1 Leibniz’ Mistake

After our detour through number theory, we return to the theory of polynomials over a field.
Because Z and F[x] are both examples of Euclidean domains we will find that some of the
theorems have already been proved. In particular, in this section we will see that the method
of partial fractions from calculus is basically equivalent to the Chinese Remainder Theorem
from number theory.

The goal of this chapter is to prove the following theorem. There are many equivalent state-
ments; for now we will state the original version.

(" )
The Fundamental Theorem of Algebra (Original Version)

Every non-constant polynomial f(z) € R[x] can be expressed as

f(@) = pr(@)p2(2) - - pr(),

where p;(x) € R[z] and deg(p;) = 1 or 2 for all i.
\. J

We will see that this result is highly non-trivial. Several generations of mathematicians (in-
cluding Euler) tried and failed to give a rigorous proof. Even the first generally accepted
proofs had logical gaps that were not completely filled until the late 1800s.

The fundamental theorem is so difficult that Gottfried Leibniz, one of the two founders of
Calculus, temporarily convinced himself that it is false. In 1702, Leibniz wrote a paper on
the integration of rational expressions f(z)/g(x) where f(x), g(z) € R[x]. If the denominator
g(z) could be factored into polynomials of degrees 1 and 2 then Leibniz knew that the integral
could be solved by means of the following two basic integrals:

n+1 1 if -1
fx”dxz {x /n+1) ifn e and J ! dzx = arctan(z).

log |z| ifn=-1 241

For example, consider the integral

25
J 1 3 2 dz.
x* —2x° + 2z° —2x + 1
By inspection we see that x = 1 is a root of the denominator, which then factors as

gt — 2% + 227 — 20 4+ 1 = (z — 1)%(2? + 1).
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After knowing this, one can use the method of partial fractions to computd™|

0 Loy 2 N 1/2 1/2
=7 —
xt—223 4+ 222 — 22+ 1 z—1 (w—1)2 x2+1’

and then the integral is straightforward:

5 2
x x 172 1
dr = — +2x + 21 — 1| = —— — s arct .
Jx4—2x3+2x2—2x+1$ 2 x og |z | 1 2arcan(a:)

However, Leibniz claimed that not all real polynomials can be so factored. As an example he
gave the polynomial z* + a*, where a is a real number. In his Words@

Therefore Sﬁdﬁ cannot be reduced to the squaring of the circle or the hyperbola
by our analysis above, but founds a new kind of its own.

To see that this is wrong, we will compute the 4th roots of —a* for any positive number a > 0.
First we write —a* in polar form as

Thus the principal 4th root is
.
V2

and since 1,4, —1, —i are the 4th roots of unity, the remaining 4th roots of —a* are

ae’™* = q [cos(m/4) + isin(n/4)] = (1 +1),

ae’™hi = a(i — 1) /2,
ae™ (1) = a(—1 — 1) /v/2,
ae’™*(=i) = a(—i + 1)/v2.

Then grouping these roots into conjugate pairs gives the following factorization:

2t +at = [(.’L' —a(l+1)/vV2)(x—a(l - i)/\@)] [(x —a(=1+0)/V2)(z —a(-1- i)/ﬁ)]
= (% — av2z + a®)(2? + aV2 + d?).

If Leibniz had found this factorization then he would have been able to compute the integral.
To illustrate the method we will examine the simplest case a = 4/2. I claim that there exist
real numbers A, B, C, D such thaﬁ

1 1
v+ 4 (22— 20+ 2)(22 + 22 + 2)
A+ Bx N C + Dx
2 —2x+2 242042

3We will discuss this method in detail below.
4 «Squaring the circle” refers to arctan and “squaring the hyperbola” refers to log.
45This follows from a general theorem on partial fractions which we will prove below.
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To find these numbers we could add the fractions on the right hand side and then equate the
coefficients in the numerator to the numerator 1 = 1 + 0z + 022 + 023 on the left side. This
would lead to a system of four linear equations in four unknowns, which is not too difficult to
solve. However, we will use a more general method that is common to all Euclidean Domains.

First we will apply the Extended Euclidean Algorithm in the ring R[z] to obtain some poly-
nomials a(x), f(x) € R[z] satisfying

(2?2 + 2z + 2)a(x) + (22 — 2z + 2)B(x) = 1.

The method here is exactly the same as for integers, though the calculations are a bit more
involved. Consider the set of triples of polynomials

V = {(a(z), B(2),7(x)) e R[]’ : f(z)a(z) + g(2)B(z) = v(x)},

which is closed under F[z]-linear combinations@ Then beginning with the basic triples
(1,0, 2% + 22 + 2) and (0,1, 2% — 22 + 1) we perform the steps of the Euclidean Algorithm to
obtain a triple of the form (a(x),5(x),v(z)), where (x) is the greatest common divisor. In
this case we find that y(z) = 1:

a(z) B(z) v(x)
1 0 x4 2x + 2
0 1 2 —2x+2
1 —1 4z
—r/44+1/2 | x/4+1/2
—x/8+1/4 | z/8 +1/4 1

To get from the third to the fourth row we need to compute the quotient and remainder of
22 — 2z 4+ 2 mod 4x:

lp_1
4z)  x? -2z +2
_ g2
— 2z
2z
2

Then the fourth row equals the second row minus (z/4 — 1/2) times the third row. In the last
step we just scaled everything by 1/2 to obtain the monic GCD. In conclusion, we have have

1 1
1= §(2 —x) (2 + 22 +2) + §(2 +z) (2 — 2z + 2).

Then we divide both sides by 2% +4 = (22 + 2z + 2) (22 — 22 + 2) to obtain the desired partial

fraction expansion:

1 (2—2)/8 (2% +22+2) (2+2)/8 (z —22+2)

(@2 +204+2) (22 —2x+2) (22 +20+2)(22—-22+2) (22+20+2)(22—22+2)

“6We say that V is an F[z]-module.
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1 (2-z)/8 (2+2)/8
2 4+4 22—204+2 22420+ 2

At this point, Leibniz would easily have computed the integral in terms of log and arctan.
Since it is not easy for me, and since this is not a Calculus class, I will just tell you the answer
that my computer gives:

xt+4 8 16

f dx arctan(z + 1) + arctan(z — 1) N log(z? + 22 + 2) — log(2? — 2z + 2)

5.2 Fractions

In the previous section we discussed “rational expressions” f(z)/g(x) where f(z) and g(x) are
polynomials. Since we have been careful to study polynomials from an abstract point of view,
we should do the same for rational expressions. The construction of fractions of polynomials
is completely analogous to the construction of fractions of integers. More generally, for any
integral domain R there is a well-defined “field of fractions” Frac(R). In this section we will
study the formal details of this construction. Then we will have earned the right to treat
fractions informally for the rest of the course.

For any ring R we may consider the set of “fractional expressions”:
Frac(R) = {a/b:a,be R,b # 0}.

At first we do not attach any meaning to the abstract symbol “a/b”. Of course, our goal is
to treat these symbols in the same way that we do fractions of integers. The first difficulty is
that many different-looking looking symbols correspond to the same “value”:

1 -1 7 —-13

2 2 14 -26
From past experience, we know that two fractions a/b and ¢/d are equal if and only if the
integers ad and bc are equal. Thus we define the following relation over a general ring R:

a . 2 in Frac(R) <= ad=bc in R.

b
Our first goal is to verify that ~ is an equivalence relation on the set Frac(R):
e Reflexive. For all a,b € R we have ab = ba, which implies that a/b ~ b/a.

e Symmetric. Suppose that a/b ~ ¢/d for some a, b, c,d € R, which by definition means
that ad = be. But then we have ¢b = da, which implies that ¢/d = a/b. Here we assumed
that R is a commutative ring.

e Transitive. Suppose that we have a/b = ¢/d and ¢/d = ¢/f for some a,b,c,d,e, f € R.
By definition, this means that ad = bc and c¢f = de. In this case we wish to show
that af = be, so that a/b = e/f. For this we will use the associative and commutative
properties of R:

d(af) = (ad)f = (be)f = blcf) = b(de) = d(be).
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Now we might be stuck. However, if R is an integral domain, then since d is nonzero
(because it is the denominator of the fraction ¢/d) we may cancel it from both sides to
obtain af = be as desired.

Here is a summary.

~\
Equivalence of Fractions
If R is an integral domain then the relation
% ~ 2 <~ ad=bc
is an equivalence on the set of fractional expressions Frac(R) = {a/b: a,be R,b # 0}.
\ J
Now recall that fractions of integers can be added and multiplied as follows:
a_c ad + be g f.c_oc
-+ == an - ==
b d bd b d bd
So we will do the same for fractions over an arbitrary domain.
( )

Addition and Multiplication of Fractions

For any domain R and for any fractions a/b, c¢/d € Frac(R) we define

ad + be a c¢ ac
= and =

C
L b d T bd

@
b
Note that the denominators are nonzero because b # 0 and d # 0 imply bd # 0

in a domain. More subtly, we must check that these operations are compatible with
equivalence. In other words, if a/b ~ o//b' and ¢/d ~ ¢//d’ then we must check that

(a/b) + (¢/d) ~ (a'/V) + (¢/d') and (a/b) - (¢/d) ~ (a'/V') (¢ /d").

Proof. We have assumed that ab’ = a'b and ed’ = ¢/d. It follows that

(ad + be)(b'd") = (ad)(b'd’) + (be)(V'd')
ab’)(dd’) + (cd')(bb')
'b)(dd’) + ('d)(bb')

a
dd +b'd)(bd),

-
-
-
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so that (ad + be)/(bd) ~ (a'd" + ') /('d'), and
(ac)(t'd') = (ab')(cd') = (a'b)(c'd) = (a'¢')(bd),

so that (ac)/(bd) ~ (a'c")/(b'd").

Note that this proof is similar in spirit to the proof that addition and multiplication of integers
is compatible with congruence mod n. In that case we obtained the ring Z/nZ of congruence
classes. So in this case we expect to get a “ring of fractions”. In fact, we get more.

The Field of Fractions of a Domain

For any domain R we have a field of fractiond™|
(Frac(R), ~,+,-,0/1,1/1).

In other words, we have a ring of fractions with the operations +, - defined above, where
0/1 is the additive identity and 1/1 is the multiplicative identity. It is quite tedious to
check the eight ring axioms, so we won’t. In order to see that this is also a field, consider
any “nonzero” fraction a/b # 0/1. By definition this means that al # b0, or a # 0. It
follows that the fraction b/a exists, and we check that

boa 1
a ba 1

¢
b
In other words, (a/b)~! = b/a.
\. J

It is common to “identify” the fraction of integers a/1 with the integer a, and thus to view
the domain Z as a subring of the field Q. In order to make this formal, it is more correct to
say that the function Z — Q defined by a — a/1 is an injective ring homomorphismﬁ This
observation leads to the so-called “universal property” of fractions.

Universal Property of Fractions

Let R be a domain with field of fractions Frac(R). Then the following function is an

4TThere is a subtle point that the elements of this field are not formal fractions, but equivalence classes of
formal fractions. Similarly, the elements of the ring Z/nZ are not integers, but congruence classes of integers
mod n. I don’t want to be more precise about this right now.

48]s it disheartening to learn that you never really understood fractions in the first place?
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injective ring homomorphism:

¢: R — Frac(R)

a — afl.

This gives us a ring isomorphism between R and the subring {a/1 : a € R} < Frac(R). It
is common to abuse notation and to say that R is a subring of Frac(R).

More generally, let F © R be a field containing R as a subring. Then we obtain an
injective ring homomorphism:

w: Frac(R) — F
a/b +— ab L.

This gives a ring isomorphism between Frac(R) and the subring {ab™! : a,b e R,b # 0} <
F. Furthermore, we observe that the map po ¢ : R — T is just the identity:

a—a/l —»al™t=a.
In colloquial terms, these results just say that

Frac(R) is “the smallest field that contains R”.

Unfortunately, the messing about with arrows is necessary to make this colloquial idea
precise, and therefore to prove anything about it.
\_ J

This theorem is quite abstract so you can mostly forget about it for now; I just wanted to put
it in front of your eyes.

Proof. The function ¢ is injective because a/1 ~ b/1 implies a = b and it is a ring homomor-
phism because a/1 +b/1 ~ (a+b)/1 and (a/1)(b/1) ~ (ab)/1. The function y is well-defined™)]
because

ab~d = ab=db = ab'=dW)" = pula/b) = pud/v).

Here we have used the facts that I is a field and b, b’ are nonzero. And p is injective because
each of the implications above is reversible. Finally, u is a ring homomorphism because

w(a/b) + p(c/d) = ab™ + cd™*
= (ab™")(dd™") + (cd” ) (B0 7T)
= (ad)(b"td™Y) + (be)(b™1d™)
= (ad + be)(b~td™)

“9For any function defined on a set of equivalence classes, one must check that the value of the function does
not depend on the class representative used to compute it.
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= (ad + be)(bd)~*
= p(a/b+ c/d)

and

ula/b)u(c/d) = (ab™ (cd ™) = (ac)(b™d™") = (ac)(bd) ™" = u((a/b)(c/d)).

We have now earned the right to use fractional notation over an arbitrary integral domain;
for example, over the ring of polynomials F[z].

r
The Field of Rational Functions

For any field F we use the following notation
F(z) := Frac(F[z])

and we call this the field of rational functions over F.

Recall that for infinite fields F there is no difference between formal polynomial ex-
pressions F[z] and polynomial functions F — F 9 Unfortunately, the situation is more
complicated for “rational functions”. For example, the rational function 1/(z?+1) € R(x)
defines a perfectly good function R — R, but if we think of 1/(z% + 1) as an element
of C(z) then it does not define a function C — C because it is not defined at x = i or
x = —i. We won’t worry too much about this.

5.3 Partial Fractions

In this section we will prove the general theorem on partial fractions in Euclidean domains,
and relate this to the Chinese Remainder Theorem from the previous chapter. First we prove
a vector version of the Euclidean Algorithm.

4 )
Bézout’s Identity for Vectors

Let R be a Euclidean domain with size function N : R\{0} — N. For any nonzero
elements aq,...,a, € R we consider the set of common divisors:

Div(ai,...,an) = {d € R : d|a; for all i}.

Since d|a; and a; # 0 imply N(d) < N(a;), the set Div(ay,...,a,) has some element of

50Proof: If f(x) and g(x) define the same function then f(z) — g(x) is a polynomial with infinitely many
roots, hence it is the zero polynomial.
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maximum size. If d is such an element, I claim that there exist x1,...,z, € R satisfying

d=aixry+ - -+ apnxy.

Proof. To prove this, we consider the set of R-linear combinations
aR+ - +a,R={a1r1+ - anx, : ¥; € R for all i}.

Since a # 0 implies N(a) > 0, this set has some nonzero element e of minimum size, and we
will write e = a1x1 + - - - apxy, for some x; € R. If we can show that d ~ e are associates then
we will have d = ue for some unit v € R* and hence
d=ai(uzy) + - + ap(uxy)
as desired.
To prove that d ~ e it is enough to show that dle and N(d) = N(e), since we know from a
previous homework that the maximum sized divisors of e are just the associates of e. To show
that d|e let us write dk; = a; for some k; € R, which is possible because d is a common divisor
of ay,...,a,. Then we have
€e=a1x1 + -+ anTn
=dikixy + - + dpkpay
=d(kizy + - + kpxy),
which implies that d|e and hence also N(d) < N(e).
Next we will show that e is a common divisor of a1, ..., ay,, from which it will follow that

N(e) < N(d) because d is a maximum sized common divisor. To show that e|a; for all i, we
use the Division Theorem two find ¢;,r; € R satisfying

a; = eqi + 14,
r=0or N(r;) < N(e).

If r; # 0 then we must have N(r;) < N(e). But this leads to a contradiction because
Ty = a; — €q;
=a; — (@121 + - - an®n)qi
=a1(—z1q;) + -+ a;(1 —z;q;) + - + an(—x0q;)

is an element of a1 R + - - - a, R and e is supposed to be an element of this set with minimum

size. Therefore we must have r; = 0 for all 7. o
If d is a greatest common divisor of elements aq, ..., a, in a Euclidean domain then we have
just proved that there exist elements x1,...,z, € R satisfying

d=aixr;+ -+ anty.

But we have not yet given an algorithm to find such elements.

86



The Euclidean Algorithm for Vectors

Let R be a Euclidean domain. For any nonzero elements aj,...,a, € R we will write
ged(aq, ..., an—1) to denote some maximum sized common divisor of aq, ..., a,—1. I claim
that we have the following equality of sets:

Div(ai,...,a,) = Div(ged(a, ..., an-1),an).
If we can show this then it will follow by induction that
Div(ay,...,a,) = Div(d)

for some element d € R, which will imply that the maximum sized common divisors of
ai,-..,a, are just the associates of d. In other words:

The GCD of aq, ..., a, is unique up to multiplication by units.

To prove the equality of sets, we first use Bézout’s Identity to write e = ged(ay, ..., ap—1) =
a1x1 + + - Gp_1T,_1 for some elements z; € R. Now let d be an element of the right set
so that dk; = a; for some elements k1, ..., k, € R. Then we have

e=dkix1+ - -dkp_1xHn_1 = d(k1$1 + .- kn_lxn_l),

so that d|e. Since we also have d|a, it follows that d is an element of the right set.
Conversely, let d be an element of the right set so that d|e and d|a,,. Since e is a common
divisor of ay,...,a,—1 we can write el; = a; for some {1,...,¢,_1 € R and since d|e we
can write dk = e for some k € R. It follows that a; = el; = dk¢; = d(k¢;) and hence d|a;
for all ¢ from 1 to n — 1. Since we also have d|a,, it follows that d is an element of the
left set.

This theorem allows us to use the notation ged(aq, ..., a,) without confusion since the GCD
is essentially unique. Then the equality of sets

Div(ay,...,a,) = Div(ged(ai, ..., an—1),an).
implies the equality (up to units) of greatest common divisors:
ged(ay, ... an) = ged (ged(ag, ... an—1),an) .

As the title of the theorem implies, we can turn this identity into a recursive algorithm to find
elements x1,...,z, € R satisfying

ged(ay, ... an) = a1y + -+ + apxy,.
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In the base case n = 2 we can just use the Extended Euclidean Algorithm from Chapter 3.
For n = 3, let us assume that we have already found a7, ..., ] € R satisfying

ged(a,...,an_1) = a1y + -+ ap_17,,_4.

We can also use the Extended Euclidean Algorithm to find z,y € R such that
ged(ag, ... an) = ged(ay, ..., apn—1)x + any.

Then putting these together gives

ged(ay, ... an) = ged(ar, ..., an—1)x + any
= (@12} + -+ ap_17,_1)T + any

= a1(212) + -+ an—1 (25 12) + any,

as desired.

Let’s compute an example. Consider the numbers a; = 35, as = 63 and as = 45, which satisfy
ged(35,63,45) = ged(ged(35,63),45) = ged(7,45) = 1.

Since ged(35,63) = 7 we begin by looking for z,y € Z such that 735x + 63y:

01|63
110 (35
-1] 1|28
2 | —-1|7

We find that 7 = 35(2) 4+ 63(—1). Then since ged(7,45) = 1 we look for z,y € Z such that
1="Tx+ 45y:
1 |45
1107
-6 1] 3
13|21
We find that 1 = 7(13) 4+ 45(—2). Then combining the two equations gives

1= 7(13) + 45(—2)
— [35(2) + 63(—1)] (13) + 45(—2)
— 35(26) + 63(—13) + 45(—2). (+)

I have secretly chosen this example to also provide an introduction to partial fractions. Note
that the integer 315 has prime factorization

351 =3%.5-7.
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The general idea of partial fractions is that a factorization of a denominator leads to a sum
of fractions. In the case where the denominator is 315 we will be able to write
! = A + B + ¢ + D +F
315 32 3 5 7
for some integers A, B,C, D, E € Z satisfying0 < A,B<3,0<C<b5and0< D < 7@ How
can we find these integers? It turns out that the hard work has already been done. First we
divide the previous equation (x) by 315 to obtain

1 35(26) + 63(—13) + 45(—2)

315 315
_2% —13+ —9
9 5 7

Thus we have separated the fraction into its “coprime parts”. Next we have to clean things
up. For each fraction of the form a/pk with p prime, we first divide a by p and then we
successively divide each quotient by p to obtain

a=Dpq +71 0<r <p,
q1 = pq2 + 12 0<ry <p,
q2 = pqs + 713 0<r3<p,
Qk—1 = DPqi + T 0<ry<p.

Then putting everything together gives

a=71+qp
=7ry+rep+ CI2P2
=7ry+rep+ 7"3]92 + Q3p3

=1+ rop+r3pt + -+ 4 ggp”

and hence
a_mno, T2
ok pF | phl

Applying this to the partial fractions in our example gives

Tk
ot =+ g
p

26/9 = 2/9 + 2/3 + 2,
~13/5 = 2/5— 3,
—2/7=5/7—1,

5n fact, one can show that the integers A, B,C, D are unique, and that E = 0. But we will not prove
this because these properties do not generalize to other Euclidean domains. See Partial fractions in Fuclidean
domains by Packard and Wilson.
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and then adding these gives

I I (= R I
351 \9 3 5 7 9 3 5 7 7
which has the desired form.

The general story for Euclidean domains works exactly the same way. The most difficult part
is to show that we can always find an equation similar to (x) above. This is established by the
following slightly tricky lemma. (We will use this same lemma in the next section to generalize
the Chinese Remainder Theorem to multiple moduli.)

4 )
Lemma for Partial Fractions and CRT

Let R be a Euclidean domain and consider some elements nq,...,n; € R such that
ged(ng,nj) = 1 for all i # j. (We say that these elements are pairwise coprime.) Now for
each element 1 < ¢ < k we consider the element

~

My =mn1-- ni_1nijp1 Nk € R.

In this case I claim that the elements ny,...,ng are jointly coprime (which is a weaker
condition’? than being pairwise coprime):

ng(ﬁl,ﬁg, Ce ,ﬁk) =1.

The general proof is hard to write down, so we first consider the smallest cases. When k = 2
we have n; = ng and fg = ny, so that ged(ng, n2) = ged(ng, n1) = ged(ny, ne) = 1, as desired.
When k = 3 we have n; = ngons, ng = nins and ng = nine, and our goal is to show that

ged(ng,ng) = 1
ged(ng,ng) = 1 = gcd(nang, nins,ning) = 1.
ng(’I’LQ, ng) = 1

To this end, suppose for contradiction that there exists a common prime divisor p of nons,
ning and nins. Now there are two cases:

e Suppose that p { ng. Since p is prime with p|ning and p|nens we must have p|n; and
p|ne, which gives the contradiction ged(ni,ng) # 1.

e Suppose that p|ns. Since p is prime and p|nine we must also have p|ni or p|ne. If ping
then we obtain the contradiction that ged(ni,ns) # 1 and if p|ne then we obtain the
contradiction that ged(ne,ng) # 1.

52Consider the integers 2,3,4. These are jointly coprime because they have no common prime divisor. But
they are not pairwise coprime because ged(2,4) # 1.
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In any case, we obtain a contradiction, which proves that nine, nins, nine have no common
prime divisor, as desired. The general case is the same but the notation becomes a mess.

Proof of the Lemma. We have already shown that the statement holds for k less than 4.
So let us assume that £ > 4 and consider some elements n1,...,n; and ni,...,Nk as in the
statement of the lemma. In order to use induction, we also define elements n1,...,7p_1 by

Ng=mn1...Mi—1M41 " Nk—1-

Since the elements nq, ..., n; are pairwise coprime, so are the elements ny,...,ni_1. Thus by
induction we may assume that ged(ng,...,ng—1) = 1. In order to show that ged(nq,...,nE) =
1, we assume for contradiction that there exists a prime element p such that p|n; for all 7.
There are two cases:

e Suppose that p t ny and observe that n; = n;ny for all 1 < ¢ < k — 1. Since p is prime
and p|n; for all 1 < i < k—1, it follows that p|n; for all 1 < i < k— 1, which contradicts
the fact that ged(nq, ..., ng—1) = 1.

e Suppose that p|ny and observe that ny = ning---ng_1. Since p is prime and p|ny this
implies that p|n; for some 1 <1 < k — 1, which gives the contradiction ged(n;, ng) # 1.

In any case, we obtain a contradiction, which proves that nq,...,7n; have no common prime
divisor, as desired. o

Theorem of Partial Fractions

Let R be a Euclidean domain with size function N : R\{0} — N and consider any nonzero,
nonunit element n € R. Suppose that n has unique prime factorization

_ 61,62 €k
n=pypy P,

for some distinct primes pq,...,pr. Then we can write
1 r T r r r r
=m+<1’1—|— 1524-...4_ 1é€11>+..._|_<k71+ k52+"'+ kg;k))
n D1 p1 pl Dk pk‘ pk

for some elements m,r; ; € R where r; j = 0 or N(r;;) < N(p;).
\. J

Proof of the Theorem. Let n; = pfi for all 1 < i < k, so that n = nyng ---ng, and define

Ny = N1 Ni—1Mi41 -~ N,

which is the unique element of R satisfying 7;n; = n. Since the primes p;,p; are distinct we
have ged(n;,n;) = 1 for all ¢ # j and it follows from the lemma that

ged(ng, ..., ng) = 1.
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It follows from Bézout’s Identity for Vectors that there exist some x1, ...,z € R satisfying
1 =201 + x9N0 + -+ + TpNp.

Hence we can divide both sides by n to obtain

ni T
—-—=rn—=++rp—=—4+-"-+—.
n n n n1 ng

Finally, we consider the fraction x;/n; = x;/p;'. By dividing z; by p; and then successively
dividing each quotient by p; (as in the example above), we can write

X 5 T Tie:
ezi = Gie, + 1,1 + 2,22 Tt %'

for some elements g; e, ,7i,1,74,2, - - - Ti,e; € R with 7 ; = 0 or N(75;) < N(p;). Then adding all

of these expressions together gives the desired result, with m = Zf;l Gie; € R. o

We gave a motivating example in the ring Z, but the main applications of this theorem come
from rings of polynomials F[z]. Let’s consider the case when F = R.

Let f(z) € R[x] be a non-constant polynomial with real coefficients and suppose we can write

f@) = pr(@)™ - (@) qu (@) - qo(x)*,

where p;(x), ¢;(z) € R[z] are irreducible over R with deg(p;) = 1 and deg(g;) = 2 for all i, j.
In this case, the theorem of partial fractions tells us that

k d;
o+ L3 S 51 St

i=175=1

for some polynomial g(x) € R[z] and some real numbers a; j, b; j, ¢; ; € R. One can show that
each term in this sum can be integrated in terms of log and arctan, as Leibniz knew. In the
next chapter we will prove that every real polynomial can indeed be factored in this way.

5.4 Generalized Chinese Remainder Theorem

To end this chapter, we show that the theorem of partial fractions is intimately related to the
Chinese Remainder Theorem. Recall the system of congruences from Master Sun’s Mathe-
matical Manual:

¢ = 2mod 3,
¢ = 3 mod 5,
c = 2modT.

We previously solved this by combining the congruences two-by-two. The technology devel-
oped in the previous section will now allow us to give a more elegant one-step solution.
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Generalized Chinese Remainder Theorem

Consider some positive integers ni,...,ng € Z and let n = ny---ni. Then we have a
ring homomorphism defined as follows:

v: Z/nZ - Z)onZ x - X L/niZ
amodn +— (amodny,...,amod ng).

If ged(ng,n;) = 1 for all i # j then this homomorphism is invertible. Furthermore, if we
define n; = nq1---n;_1n;11---ny as above then from the previous section we know that
there exist some (non-unique) integers 1, ...,z € Z such that

nx1 + Noxs + -+ + Npxp = 1.
In this case, I claim that we can compute the inverse of ¢ as follows:
o a1, az,...,ap) = ayfyTy + - - + agigpzg mod n.

Please compare this to the formula ¢ ~!(a,b) = any + bma in the case of two moduli.
\_ J

Proof. First we observe that ¢ is well-defined. Indeed, suppose that a = b mod n, so that
n|(a —b). Then since n;|n we must have n;|(a — b) and hence a = b mod n; for all i. In other
words, we have ¢(a) = ¢(b).

Now suppose that ged(n;,nj) = 1 for all ¢ # j, so from the previous section we know that
nix1+---+ngry = 1 for some integers z1,...,x. We can use this to prove that ¢ is injective,
as follows. First suppose that p(a) = ¢(b) so that a = b mod n; for all i. Let’s say n;d; = a—b
for some integers d;. But then we have

(a —b) = (nix1 + Nowe + - -+ + Nk )(a — b)
= nyz1(a —b) + nexa(a —b) + -+ + Ngrr(a —b)
= nxinidy + Noxongds + - -+ + NpxEnEdg

(ﬁlnl)xldl + (ﬁgng)xgdz + -+ (ﬁknk)l’kdk
= nxi1d; + nxads + -+ - + nxpdy
= n(a:ldl + zody + -+ + IL’kdk),

so that a = b mod n. Then since ¢ is an injective function between sets of the same size it
must be invertible.

More precisely, I claim that ¢ ~'(aq,...,ar) = a1f1xy + -+ + apfprg. To see this, we first
observe hat n;|n; and hence 7; = 0 mod n; for all i # j. Furthermore, we have n;x; =
1—=2.;7jz; =1—0=1mod n; for all i. Finally, we conclude that

aihixy + -+ apnpxr = a0+ - a;-10 + a;1 + a;210 + - - - + a0 = a; mod n;
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for all 7, as desired. o

To see how this works, we apply it to Master Sun’s system of congruences. Let (ni,n2,n3) =
(3,5,7) so that (fq,n9,73) = (35,21,15). Since (3,5,7) are pairwise coprime it follows that
(35,21, 15) are jointly coprime, so there exist x1, z2, 3 € Z satisfying 35x1 + 21xg + 1523 = 1.
In order to find such z1, x2, x3 we must use a recursive method. To be precise, we will use the
Extended Euclidean Algorithm and the fact that

ged (35,21, 15) = ged(ged(35,21),15) = ged(7,15) = 1.
First we find some 2,9’ € Z such that 72’ + 15y = 1:
0 [1]15
1 107
-2 (1] 1

We see that 7(—2) + 15(1) = 1. Then we find some z”,y” € Z such that 352" + 21y" = T:

110 135
0] 1 21
1 |-1|14
-1 2|7

We see that 35(—1) + 21(2) = 7. Then we put these together to obtain
1= 7(=2) + 15(1) = [35(=1) + 21(2)] (=2) + 15(1) = 35(2) + 21(—4) + 15(1).

Thus we can take (x1,x2,23) = (2,—4,1). Finally, since (nix1,noze, ngxs) = (70,—84,15),
we obtain an explicit description for the inverse of ¢:

ot ZJ3Z x 757 x Z)TZ — 7/105Z
(CLl,CLQ,CLg) —  70a; — 84as + 15as.

In Master Sun’s case we have (a1, a2,a3) = (2,3,2), so that
0 1(2,3,2) = 70(2) — 84(3) + 15(2) = 23 mod 105.

In other words, we have

c = 2mod3
¢ = 3mod5 < ple) =(2,3,2) & c=¢ 1(2,3,2) =23 mod 105.
c = 2mod?7

Of course, we solved this system before. The advantage of the new method is that we can
tweak the input (a1,a2,a3) = (2,3,2) without doing the work again. For example, since
70(2) — 84(4) 4+ 15(2) = 44 mod 105 we have

¢ = 2mod3
¢ = 4modb < ¢ =44 mod 105.
¢c = 2mod7
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6 The Fundamental Theorem of Algebra

6.1 Equivalent Statements of the FTA

The goal of this chapter is to prove the Fundamental Theorem of Algebra (FTA). The original
statement of the theorem (mentioned in Section 5.1) claims that every non-constant polynomial
f(z) € R[z] can be expressed as

f(z) =pr(x)p2(x) - - - pr(z),

where p;(z) € R[z] and deg(p;) = 1 or 2. As we have seen, if this version of the FTA is true
then any rational expression can be integrated in terms of log and arctan. The proof is quite
involved, and will require an entire chapter to understand.

In this section we seek to increase our understanding of the statement of the FTA. To this
end we will prove the equivalence of several different statements.

( )
Equivalent Statements of the FTA

The following six statements are logically equivalent:
(IR) Every non-constant f(x) € R[z] has a root in C.

(2R) Every non-constant f(x) € R[z] can be expressed as

f(@) = pi(z)p2() - - - pr(w),
where p;(z) € R[z] and deg(p;) = 1 or 2.
3R) Every prime element of R[z] has degree 1 or 2.
1C
2C

Every non-constant f(x) € C[z] has a root in C.

(3R)
(1C)
(2C) Every non-constant f(z) € C[z] splits over C.
(3C)

3C) Every prime element of C[x] has degree 1.

It is straightforward to prove that the three statements (1C), (2C) and (3C) are equivalent.
We will refer to any of these three as the CFTA.

Proof (Equivalent Forms of CFTA).

(1C)=(2C): Consider some non-constant f(x) € C[z]. By assumption there exists a; € C
such that f(aq) = 0, hence by Descartes’ Theorem we can write

f(@) = (& —a1)g(x)
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for some g(z) € Clz]. If g(z) is constant then we are done. Otherwise, there exists some
ay € C such that g(az) = 0. Then by Descartes’ Theorem we have g(x) = (x — az)h(x) and
hence

f(x) = (x —a)g(z) = (x — o) (2 — ag)h(x).
By continuing in this way’| we conclude that f(x) splits over C.
(2C)=(3C): Let p(x) be a prime element of C[z]. Since units are not prime we know that
p(z) is non-constant. Hence by assumption we can write

p(z) = c(z —a1)--- (2 — an)

for some ¢, a,...,a, € C. Since p(z) divides the product | [;(x — ¢;), and since p(z) is
prime, we know from Euclid’s Lemma that p(x)|(x — «;) for some i. It follows that deg(p) <
deg(x — a;) = 1, which implies that deg(p) = 1.

(3C)=(1C): Every non-constant f(z) € C[z] has a unique prime factorization in C|z]:
f(x) = pr(@)pa(z) - - pe().
By assumption, each prime p;(x) has degree 1. In particular, we have p;(z) = ax + b for some

a,be C with a # 0, and hence —b/a € C is a root of f(z). o

The equivalence of the statements (1R), (2R) and (3R) is a bit less straightforward since it
uses some properties of complex conjugation. We will refer to any of these three statements
as the RFTA. Our proof of equivalence will use the following lemma.

4 )
Lemma for the RFTA

For any extension of fields E 2 F we have an extension of rings E[z] 2 F[z]. If there
exist f(z),p(z) € F[z] and ¢q(z) € E[z] such that f(x) = p(x)q(z) then I claim that in
fact q(z) € F[x].

Indeed, we know from the Division Theorem in F[z] that there exist ¢/(z),r'(z) € F[z]
satisfying f(z) = p(x)¢'(z) + () and deg(r’) < deg(p). But now we have f(z) =
p(z)g(z) + 0 and f(x) = p(x)¢'(z) + r/(z) in the ring E[z] and it follows from the
uniqueness of quotients in E[z] that ¢(z) = ¢'(x) € F[z].

Proof (Equivalent Forms of RFTA).

(IR)=(2R): Consider some non-constant f(z) € R[z]. By assumption there exists o € C such
that f(a) = 0. If @ € R then by Descartes’ Theorem we can write f(x) = (v — a)g(x) for

53We could also phrase this as a formal proof by induction.
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some g(z) € R[z]. If a ¢ C then since the coefficients of f(z) are real we also have f(a*) =0
with a # o and it follows from Descartes’ Theorem that

fx) = (x = a)(x = a®)g(x)

for some g(x) € C[z]. But in fact I claim that g(z) € R[z]. To see this we let p(z) =

(z—a)(z—a*) = 22— (a+a*)z+aa*, which has real coefficients. Then since f(z) = p(x)g(r)
with f(z),p(x) € R[z] and g(z) € C[x] we conclude from the Lemma that in fact g(z ) R[z].
In summary, we have shown that any non-constant f(x) € R[z] satisfies f(z) = p(z)g(z) for

some p(x), g(x) € R[z] with deg(p) = 1 or 2. Now the result follows by induction.

(2R)=(3R): Let p(z) be a prime element of R[x]. Since units are not prime we know that
p(z) is non-constant. Hence we can write

p(x) = q1(x) - - gr(x),

where ¢;(x) € R[z] and deg(g;) = 1 or 2 for all i. Since p(x) divides the product [ [, ¢i(z), and
since p(z) is prime, we know from Euclid’s Lemma that p(x)|g;(x) for some i. It follows that
deg(p) < deg(g;), which implies that deg(p) = 1 or 2.

(3R)=(1R): Every non-constant f(z) € R[z] has a unique prime factorization in R|[z]:

f(x) = p1(@)p2() - - pr(z).

By assumption, each prime p;(z) has degree 1 or 2. If there exists a factor p;(x) of degree 1,
say pi(x) = ax + b then f(z) has the root —b/a € R, which is also an element of C. Otherwise,
every factor p;(x) has degree 2. But we know from the quadratic formula that any quadratic
polynomial with real coefficients has a root in C. Hence f(z) has a root in C. =

It is more surprising that the real and complex forms of the FTA are also equivalent. To prove
this we need another trick.

Lemma for the Equivalence of RFTA and CFTA

The field extension C 2 R gives us a ring extension C[xz] 2 R[z]. Recall that R can
be viewed as the set of complex numbers o € C satisfying a* = a. Now we we will
define a similar conjugation operation on polynomials  : C[z] — C[z] such that R[z]
can be viewed as the set of self-conjugate polynomial. To be specific, for any polynomial
f(z) =, apa® € C[x] with complex coefficients, we define

= Z@Zxk.
k

Then we have the following properties:
(1) For all f(z) € C[z] and B € C we have f(B3)* = f*(5*).
(2) For all f(z) € C[z] we have f(z) € R[z] if and only if f*(z) = f(z).
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(3) For all f(z),g(z) € C[x] we have
(f+9)* (@) = f*(@) +9"(x) and (fg)*(z) = [*(z)g"(z).

(4) For all f(x) € C[x] we have f(z) + f*(x) € R[z] and f(x)f*(z) € R[z].
\. J

Proof of the Lemma. (1): Since = : C — C preserves all ring operations, we have
*
F(B)* = <Z akﬂ’“> = ek Bk = 1*(8).
k k

(2): Two formal polynomials are equal if and only if their coefficients are equal. The coefficient
of 2% in f(z) is ay, and the coefficient of ¥ in f*(x) is af. If f*(z) = f(z) then we must have
o} = oy, which implies that oy, € R for all k. In other words, we must have f(x) € R[z].

(3): Let f(z) = >, caiz® and g(z) = >, Bea®. The coefficients of f + g are oy, + B, hence the
coefficients of (f + g)* are (o + Br)* = o) + ;. But these are also the coefficients of f* + g*,
hence (f + g)(z) = f*(x) + g*(z). For the second statement, recall that

f)gla) =3 D) By |«

k \it+j=k

So the coefficients of (fg)*(x) are

*

2, @b = | ) aif

i+i=k i+j=k
But these are also the coefficients of f*(x)g*(z), hence (fg)*(z) = f*(z)g*(x).

(4): As we sometimes do, we will write f instead of f(z) to save space. Let f(z) € C[x]. Then
from part (3) we have

(FHP) = f e f = f=f+f

and
(Ff) =" =1 =11,
hence it follows from part (2) that f + f* € R[z] and ff* € R[z]. o

Proof (Equivalence of RFTA and CFTA).

Note that (1C) trivially implies (1R) because R < C, hence CFTA implies RFTA. To prove
that RFTA implies CFTA, we will show that (1R) also implies (1C). So assume that (1R)
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is true and consider some non-constant polynomial f(x) € C[z]. It follows from Lemma (4)
that g(x) = f(z)f*(z) has real coefficients, so from (1R) there exists some « € C satisfying
g(a) = 0. Then since

0=g(a) = fla)f*(a)

we must have f(a) =0 or f*(a) = 0. If f(a) = 0 then we are done since « is a complex root
of f(x). On the other hand, if f*(«) then Lemma (1) implies

so that a* is a complex root of f(x). o

6.2 Intermediate Value Theorem

In order to prove the FTA we need only prove one of the six equivalent statements from the
previous section. In fact, we will prove statement (1R):

Every non-constant f(x) € R[z] has a root in C.

And we will do this using a strange sort of induction. For each non-constant f(x) € R[x] we
can write deg(f) = 2¥m for some unique integers k, m where k& > 0 and m is odd. The idea is
to prove by induction on k that f(z) has a root in C. There are two important steps:

e The Base Case k = 0. Prove that every polynomial in R[z] of odd degree has a root
in C. In fact, we will show that it has a root in R.

e The Induction Step. Assuming that every real polynomial of degree 2¥(odd) has a
root in C, prove that every real polynomial of degree 2¥+1(odd) has a root in C.

For the induction step we will use a very clever argument of Laplace. Laplace’s proof uses
some deeper facts about multivariable polynomials so we postpone it until the end of the
chapter.

In this section we discuss the base case: polynomials of odd degree. Actually, this case is
“obvious”. If f(z) € R[z] has odd degree then one of the following two cases must hold:

o f(z) > 400 as ¢ — 400 and f(z) > —o0 as ¢ — —©
o f(x) > —wasx — 4o and f(r) > +0 as r — —©

In either case, the graph of f(z) must cross the x-axis at some point (c,0) € R?, so that f(z)
has a real root f(c) = 0. Here is a picture of the first case:
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This argument was perfectly clear to 18th century mathematicians such as Euler and Lagrange.
However, early 19th century mathematicians such as Bolzano and Cauchy became unsatisfied
with arguments based on pictures and they looked for a more rigorous proof. And since a
rigorous proof must be based on axioms, these efforts forced mathematicians to look for an
axiomatic definition of the real numbers.

For my own benefit I will give a modern proof based on the standard axiomatization of the
real numbers. My algebra students can feel free to ignore this.

Definition of Continuity

Intuition: A function f : C — C is called continuous at c € C if f(x) — f(c) as ©z — c.

Partial Formalization: We can make f(x) as close to f(c) as we please by taking x
sufficiently close to c.

Cauchy’s Definition: For any real number € > 0 there exists some real number § > 0
such that |z — ¢| < ¢ implies |f(z) — f(¢)| <e.
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The same definitions apply to real functions f : R — R but the picture is flat.
. J

( )

Cantor’s Axiom for Real Numbers

We say that a sequence ci,co,... € C converges to a limit ¢ € C if for any real number
e > 0 there exists an integer N such that |¢, — ¢| < e for all n > N.

We say that ci,co,c3,... € R is a Cauchy sequence if for any real number £ > 0 there
exists an integer N such that for all m,n > N we have |¢, — ¢;n| < €.

Cantor constructed the real numbers R from the rational numbers Q by declaring that

every Cauchy sequence converges to some limit.
L J

(" )
The Intermediate Value Theorem (IVT)

Let f : R — R be a continuous function with f(a) < 0 and f(b) > 0 for some real
numbers a < b. Then there exists at least one real number ¢ € R satisfying

e a<c<hb,

o f(c)=0.
\. J

Proof. Define (ag,by) := (a,b) and mgy := (ag + bg)/2. If f(my) = 0 then we are done.
Otherwise, define

a _ ) (ao,mo) if f(mo) >0,
(o0 {(mo,bo) if f(mo) <0,

and my =: (a1 + b1)/2. If f(m1) = 0 then we are done. Otherwise we proceed to define

(an, mp) if f(my) >0,

(an+17bn+1) = {(mn;bn) i f(mn) <0.
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At each step we divide the interval in half in such a way that there should still be a root inside
the new smaller interval:

Gy
a, a;  4s
2o N S

;o* '193 -b, v b-,,

If we ever get f(my) = 0 then we are done. So let us assume that the process never terminates.
Then by induction we must have

) aogalg...’
o« . <b <by,
e a, < b, for all n,

f(an) < 0 for all n,
f(bp) > 0 for all n.

I claim that ag,ay, ... is a Cauchy sequence. To see this, let ¢ > 0 and let N be any integer
greater than logy((b — a)/e). Then for any m,n > N the numbers a,, a, lie in the closed
interval [an,by], so that

1 1 1
|am — an| < (by —an) = §(bN,1 —an_1) =---= 2—N(b0 —ap) = Q—N(b— a) < e,
as desired. It follows from Cantor’s axiom that ag,aq,... converges to some limit a’ € R.
Similarly, the sequence by, by, ... converges to some limit o’ € R.

I claim that @’ = o/. To see this we must show that ¥’ < @’ and @’ < V' are impossible. If
b < d then let € = (' —¥')/2 > 0 be half the length of the interval [0/,a']. By definition of
convergence we can find some some M, N such that m > M implies |a,, — a/| < € and such
that n > N implies |b, — b'| < e. But then for any ¢ > max{M, N} we see that by is in the left
half of the interval and ay, is in the right half of the interval. This implies that b, < ay, which
is a contradiction. And if @’ < ¥’ then we let ¢ = (b’ —a’)/3 > 0 be one third the length of the
interval [a,d’]. Then we can find some integex@ N so that n > N implies that |a, — d/| <€,

54Technically, there exist K, L, M so that k > K implies |a, —a'| < e, £ > L implies |by —b'| <e and m > M
implies |am — bm| < €. The existence of K, L follow from the definition of a’,d’ as limits. And we can let M be
any integer larger than log,((b — a)/e), as in the earlier argument. Now let N = max{K, L, M}.
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|b, — V| < e and |a, — b,| < &. But then we get a contradiction:

a —b = (d—ap) + (an —by) + (b, = V)
la’ = b < |d — an| + |an — bn| + b — V]
Je<e+4e+e.

Hence we have shown that o’ = ¢'. Call this common limit ¢ € R.

It remains to show that f(c) = OE] and for this we use the assumption that f is a continuous.
If f(c) > 0 then let ¢ = f(c). By continuity of f there exists some § (depending on ¢) so that
| —c| < § implies |f(x) — f(c)| < e. But then since lima; = ¢ there exists some N (depending
on 4, hence on ¢) such that n = N implies |a,, — ¢| < §, which implies |f(a,) — f(¢)] <e. In
other words, for any n > N we have

f(e) = flan) < [f(an) = F(0)] < f(c)-

This implies that f(a,) > 0, which contradicts the fact that f(ay,) < 0 for all n. Similarly, the
assumption f(c) < 0 leads to a contradiction. Hence we conclude that f(c) = 0 as desired. o

Remark: Rigorous proofs in analysis are not really worth reading because they obscure all the
ideas that led to the proof. For each paragraph above I discovered the appropriate bounds by
drawing a picture of the number line. As I said, writing it down rigorously was only for my
own benefit.

We need one more fact before completing the proof that each odd-degree real polynomial has
at least one real root.

( )

Polynomials are Continuous

Any polynomial f(xz) € C[z] determines a function f : C — C by evaluation. I claim
that this function is continuous at every point in C. The same proof will apply to real
polynomials f(x) € R[z] and real functions f : R — R.

. J

Often this result is proved inductively by showing that constant functions are continuous, the
function x — x is continuous, and sums/products of continuous functions are continuous. I
prefer a more explicit method, which gives some additional useful information.

Proof. Let f(x) € C[x] be non-constant and consider any point ¢ € C. Applying Descartes’
Factor Theorem gives

f(@) = (x = c)q(x) + f(c)

551 guess we also have to show that a < ¢ < b. If ¢ < a then since limb; = ¢ we would find some b,, < a,
which contradicts the fact that a < an, < b,.
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f(x) = f(e) = (z = c)q(x).

Thus for any complex number 2 € C we havd]

[f(x) = f(e)] = |z = cllg(z)].

From this it is clear that | f(z) — f(c)| goes to zero as |z — ¢| goes to zero. To be more rigorous,
let’s consider the Taylor expansion of ¢(x) around z = ¢

q(x) =ap(x—0c)" + -+ a1(xr —c) + aop.

Here ay, is the kth derivative of g(x) evaluated at ¢ and divided by k!, but it doesn’t really
matter. The series is finite because the derivatives of a polynomial eventually vanish. If
|z — ¢| < 1 then it follows from this that |z — c[¥ < 1 for all £ > 1 and hence

g(z)| = |an(z — )" + - + ai1(z — ¢) + ag
< lapllx — ™ + -+ + |a1]|z — ¢| + |ag]

<lan|+ -+ |ai| + |ao|-

Finally, let € > 0 and 6 = min{1,e/(|ay|+-- -+ |ao|)}. Then for all z € C satisfying |z —¢c| < §
we have
€

1) = 7] = o = ella(e)| <

(lan| + - +aol) = ¢,

as desired. o

Finally, the main result.

(Real Polynomials of Odd Degree ]

LIf f(z) € R[x] has odd degree then there exists at least one ¢ € R such that f(c) = 0.

Proof. We may suppose without loss of generality that the leading coefficient is positive.
Then we can write f(x) = apz™ + -+ + a1z + ag for some ag, ...,a, € R with a,, >0. Iif z > 1
then for all 1 < k <n —1 we have 1 < zF < 2", so that

—laglz™ < —\ak|xk < akxk,

56] am being sloppy here by using the symbol  both for an abstract variable and for a complex number. It
doesn’t matter because C is an infinite field, so polynomial expressions and polynomial functions are the same
thing.
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and hence

n—1

f(z) = apx™ + Z apaz®
k=0
n—1

> apz” — Z |lag |z
k=0

n—1
= apz" |z — Z laxl
= a, .
k=0 n
If, in addition, we have z > 3720 0 |ak|/an then this implies that f( ) > (0. Thus for any be R

greater than the maximum of 1 and Y.} |ax|/a, we have f(b) >

So far we have not used the fact that f(x) has odd degree. Consider the polynomial g(z) :=
—f(—x). If f(z) has odd degree then g(x) has positive leading coefficient, so by the same
argument we can find some o' > 0 such that

—f(=0) =g(t') >0
But then a := —’ < 0 satisfies f(a) <0

Finally, since polynomials are continuous, it follows from the IVT that there exists at least
one real number a < ¢ < b satisfying f(c) = 0. o

As a little bonus, the same proof idea gives the following result.

4 )
Lagrange’s Root Bound

Consider a complex polynomial f(z) = apz™ + -+ + a1x + ag € C[z] with a,, # 0. Then
every complex root f(c) = 0 satisfies

o2}

6.3 Descartes and Euler on Quartic Equations

Welcome back algebra students.
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6.4 Multivariable Polynomials

We are interested in the roots of polynomials in a single variable. But the analysis of these
roots forces us to consider polynomials in many variables. It is clear how these should be
defined, but the notation is more difficult.

~

Multivariable Polynomials

Let IF be a field and let z1, ..., z, be some abstract symbols, which we regard as variables.
We define the ring of polynomials in z1, ..., z, by inductionf’|

Flz1,...,2n] = (Flz1,...,20-1]) [2n]

For example, a general element of the ring F[x,y] = (F[z]) [y] has the form f(z,y) =

D=0 ge(2)y* for some polynomials g1 (), go(), . .. € F[z]. If we write g;(z) = k0 Akt
for some coefficients ayy € F then this becomes

fam) =Y (2) =Y ay

=0 \k=0 k=0

where the sum is taken over all pairs of natural numbers (k, ) € N?, and we observe that
only finitely many of the coefficients aps are nonzero. Similarly, an element of the ring
F[z1,...,zy] can be expressed as

ki, k k
f(xla"'a':vn) = Z akl,kg,...,knx11m22 ,,,:L.nn,
k1,k2,....kn=0
where the sum is taken over all n-tuples of natural numbers (ki,...,k,) € N and only

finitely many of the coefficients ay, . 1, € F are nonzero.

Clearly this notation is unworkable, so we make the following abbreviations:

X = (T1,...,%n),
k= (ki,...,kn),
xK = xlfl . :1:];"
By convention we write x° = 1 € F, where 0 = (0,...,0) € N”. Then a general element

of F[x] = Flx1,...,x,] looks like
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for some coefficients ax € F, only finitely many of which are nonzero. This notation
allows us to treat multivariable polynomials very much like polynomials in one variable.
For example, for any k, £ € N we observe that

k£ k Eny (..t Ln,
xx” = (21" a2y ay)
$’f1+£1 .. ‘$ﬁrz+€7z

Xk+£

)

where k + € = (k1 + ¢1,...,k, + £,) € N is the vector sum. Thus the ring operations
can be expressed as follows:

<Z akxk) + (Z ngk> = Z(ak + b )xK,
k £

k

(3] (5 -3 (e

The only difference from single variable polynomials is that the sums are taken over all

elements of N” instead of N.
\_ J

What about the “degree” of a multivariable polynomials? There are many different ways to
do this. For our purpose, we need some way to facilitate proofs by induction. So we make the
following definition.

é )
Lexicographic Order and Degree

Given k, £ € N™ we define k = € when k; = ¢; for all 7. If k # £ then there exists some
minimum ¢ > 1 such that k; # £;. We will write k <jox £ when k; < #;. In other words:

k <iex £ < ks smaller than £ in the first place where they differ.

Under this definition, any finite (nonempty) subset of N™ has a lexicographically maxi-
mum element, which we can use to define the degree of a nonzero polynomial:

deg(f) := HllaX{k e N": ax # 0}.

5THere we are using the fact that R[x] is defined even when the ring R is not a field.
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Note that the degree is a vector in N”. Sometimes this is called a “multi-degree”. The
degree of the zero polynomial is not defined.

For example, consider the polynomial f(z,y,z) = 322y — 5x%y?z + 62%yz. If we think of
(x,y,2) = (x1,22,x3) then we have

deg(z’y) = (2,1,0),
deg(z®y?2) = (2,2,1),
deg(z?yz) = (2,1,1).

Then since (2,2,1) >ex (2,1,1) >1ex (2,1,0) we have
deg(f) = deg(3z2%y — bz*y?z + 62%yz) = (2,2,1).
We say that —5x2y%2 is the leading term of the polynomial f(z,, z), and sometimes we write
f(z,y,2) = —=52%y?2 + lower terms.

The lexicographic degree also has the following nice property.

( )
Degree of a Product

Given two polynomials f(x),g(x) € F[z1,...,x,] with lexicographic degrees

deg(f) =k = (ki,..., kn),
deg(g) =€ = (l1,...,4n),

we must have
deg(fg) = deg(f) +deg(g) =k + £ = (k1 + {1,... . kn + £p).

You will prove this on the homework.
L J

For example, consider the polynomials
f(z,y,2) = 3z%y — 52%y%2 + 62°yz,
9(@,y,2) = xy? — 2zy’z,

with deg(f) = (2,2,1) and deg(g) = (1,2,1). The product is

f(@,y,2)9(z,y,2) = (39329 —52°y’z + 6$2Z/2)(~’U?J2 - 21"922)
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= (3z%y — 5229”2 + 622y2) (2y?) + (32%y — ba*y?z + 622y2)(—2xy°2)
= (32393 — 523yts + 6229°7) + (=622777 + 10239122 — 12231%2?)

= 323y — 5adytz + 1023y*2? — 1223222,
which has degree (3,4,2) because
(3,4,2) >1ex (3,4,1) >1ex (3,3,0) >1ex (3,2,2).
Note that deg(f) + deg(g) = (2,2,1) + (1,2,1) = (3,4,1) = deg(fg). We can also write

flx,y,2) = —5$2y2z + lower terms,
flz,y,2) = —Qnyz + lower terms,

f(z,y,2)g(x,y, z) = 102°y*2% + lower terms.

Note that the leading term of the product is the product of the leading terms.

Ultimately, we will use the degree for writing proofs by induction. For this purpose we need
to know that the lexicographic order on N™ has the so-called “well-ordering property”, also
called the “descending chain condition”.

4 )
Lexicographic Order is a Well-Ordering

Consider the lexicographic ordering on N2{9]

(0,0) < (0,1) < (0,2) < ---

This ordering is a bit strange because it contains infinite ascending sequences that are
bounded above. For example, the infinite ascending sequence (0,0) < (0,1) < (0,2) < ---
is bounded above by (1,0).

However, the lexicographic order does not have any infinite descending sequences. To
be precise, there does not exist an infinite sequence ki, ko, ks, ... € N satisfying

k1>k2>k3>-'-.

Proof. The lexicographic order on N = N! coincides with the usual order. The fact that
N is well-ordered is part of the definition of natural numbers. We will prove that N” is

58When no confusion can I arise I will write < instead of <jex.
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well-ordered by induction on n. So assume for induction N*~! is well-ordered and suppose for
contradiction that we have an infinite descending sequence in N”:

k1>k2>k3>'~. (*)
Let’s write k; = (k;1, ki2, - - ., kin). Then by definition of lexicographic order, we must have
ki1 = ko = k31 = ---

Since N itself is well-ordered there exists some M such that k,,1 = kpm for all m > M.
The idea is to delete this common first element from each of the vectors to obtain an infinite
descending sequence in N”~!. To be precise, let us write

K, = (kio, kiz, - - kin)-
Then from (x) and the definition of lexicographic order we must have
v > Ky > Ko >0
which contradicts our assumption that N*~! is well-ordered. o

Before moving on, we make one final observation about multivariable polynomials, generalizing
the observations of Section 2.3.

( )

Polynomial Expressions vs Polynomial Functions

Any polynomial expression f(z1,...,2,) € Flx1,...,2,] determines a polynomial func-
tion f : F"* — F by evaluation:

I F™ — F
(a1, an) — flag,...,am).
If the field F is infinite then I claim that different polynomial expressions determine

different functions. Equivalently, if two polynomial expressions f(x) = Y} e axX* and
9(x) = Yycnn bicx¥ determine the same function then they have the same coefficients”

fla) = g(a) for all @« e F* = @y = by for all k € N%,

This fact allows us to be a bit sloppy in our reasoning with multivariable polynomials,
at least over infinite fields such as Q, R and C.
. J

Proof. We prove this by induction on the number of variables.

591f the field F is finite then this result is false.
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6.5 Permutations

In the previous section we developed the language of multivariable polynomials. Our ultimate
goal in this chapter is to prove the FTA. But before this we need another kind of notation,
for “permutations”. These could have been defined at any point in the course, but now seems
appropriate.

( )

Definition of Permutations

A permutation is an invertible function from a finite set to itself. Since all sets of the
same size are basically equivalent we usually consider the set {1,2,...,n}. We denote
the set of such permutations by

Sy, = the set of invertible functions o : {1,...,n} — {1,...,n}.

For example, consider the permutation o € Sg defined by the following diagram:

1 2 3 4 5 g

1 * 3 4 5 6

It is inconvenient to draw such diagrams, to we will define two more concise notations.

One-Line Notation. Here we rearrange the arrows so that the number o (i) appears

directly under the number ¢:
3
S

Then we encode ¢ by listing the numbers in the second row:

1 YA

N

L o——— L
W v — e ¢

G 2

-

o = 615432.
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This notation makes it clear that #5S,, = n!, since there are n ways to choose the leftmost
number, then n — 1 ways to choose the next number, etc.

Cycle Notation. Here we only draw the numbers once:
G
g S
& " 7
2

3

Note that the numbers break up into “oriented cycles”. To express these cycles concisely
we write them inside parentheses:

o = (162)(35)(4).

Unfortunately this notation is not unique. For example, we can record a cycle by starting
from any number:

(162) = (621) = (216) and (35) = (53).
Also, the ordering of the cycles is irrelevant:
o= (162)(35)(4) = (4)(216)(35) = (53)(4)(621) = etc.

Another quirk of the notation is that we typically omit the “singleton cycles”. In our
example this means omitting the (4):

o = (162)(35).

Nevertheless, this is our preferred notation for permutations since is the most compact
and meaningful. A particularly nice property is that the inverse of a permutation is
obtained by reversing the orientation of the cycles:

ot = (126)(35).
. J

For example, here are all of the 3! = 6 elements of the set S5, expressed in one-line notation
and in cycle notation:

one-line ‘ 123‘ 213 ‘ 132 ‘ 321 ‘ 231 ‘ 312
eycle | id | (12) | (23) | (13) | (123) | (132)

The important thing about permutations is that they form a “group”. Recall from Chapter 4
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that a group (G, *,¢) consists of a set G with a binary operation * : G x G — G and a special
element ¢, satisfying the following axioms:

(G1) Va,b,ce Gya = (bxc) = (a*b)xc,
(G2) Vae G,axe =ecx*a = a,
(G3) Yae G,3be G,axb=bxa =¢.

If a*b=0b=a for all a,b e G then we say that the group is “abelian”. Abelian groups can be
used to model the properties of addition and multiplication of numbers. Non-abelian groups
are used to model the composition of invertible functions. We will show that the structure
(Sn,0,id) is a group, where o is functional composition and id : {1,...,n} — {1,...,n} is the
identity function defined by id(i) =i for all i € {1,2,...,n}.

But before doing this, let me emphasize the composition of permutations is not commutative.
For example, consider the permutations o, 7 € S3 defined by the following diagrams:

1 1 16—
G G T 7 2
3e——Pp= 3 3 3

Recall that functional composition is defined as follows:
(coT1)(i) =0(7(i)) forallo,7e S, andie{l,...,n}. (%)

Thus we may compose the permutations by juxtaposing the diagrams:

1 (I
507:22 E Ez:z%z
3 3 3 3

—_—

and
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3 3 3 3

Sadly, we read the diagrams from left to right but we read the notation “c o 7” from right to
left, i.e., “do 7 first and then do ¢”. This is an unavoidable consequence of the notation (),
i.e., the fact that we write the name of a function to the left of its argument.

From the diagrams it is clear that o o 7 and 7 o ¢ are different functions. Expressing these in
cycle notation gives

(12)0(23) = (123) and  (23) 0 (12) = (132).

Now we verify the group properties of permutations:

Property (G1) is an automatic property of functional composition. Given p,o,7 € S,
and i € {1,2,...,n} we have by definition that

[po(aom)](@) = p((a07)(i) = plo(r(i))

and
[(poa)or](i) = (poo)(r(i) = pla(r(i)))-
Since the functions po (0 o7) and (po o) o7 do the same thing, they are equal.

And property (G2) is almost the definition of the identity function. For all o € S,, and
i€{l,...,n} we have

(o 0id)(i) = o(id(i)) = o (i)
and

(idoo)(i) =id(o(i)) = o (7).

Since the functions ¢ oid, idoo and o all do the same thing, they are the same function.

For property (G3) we will show that for all 0 € S, we have 0= € S,,. If 0 : {1,...,n} —
{1,...,n} is invertible, then its inverse 0 =1 : {1,...,n} — {1,...,n} satisfies coo~! = id
and 0! 0 0 = id. These same identities show that o~! is invertible with (¢=!)~! = o.
Hence for any o € S,, we also have 0~ € S,,.

But we forgot something. Given two permutations o, 7 € S, is it not quite obvious that the
composite function co7: {1,...,n} — {1,...,n} is a permutation. To see this we must show
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that o o 7 is invertible. In fact, I claim that (co7)™! = 7710 0*1@ Indeed, by applying
properties (G1) and (G2) we obtain

(cor)o(r oo )=0co(ror oot =goidoo =000t =id

and
(t7looHo(oor)=1"to(c7tos)or=r"toidor =7rtor =id.
Since o o 7 is an invertible function from {1,...,n} to itself, it is an element of .S,,.
Here is a summary.
(The Symmetric Group ]

Let S, be the set of permutations of the set {1,...,n}. Then the structure (S, o,id) is
a group, called the symmetric group on n symbols.

For example, here is the group table of the symmetric group S3, where ¢ o 7 is the entry in
the row corresponding to ¢ and the column corresponding to 7:

o id  (12)  (13)  (23) (123) (132)
id | id  (12) (13) (23) (123) (132)

(12) | (12) id  (132) (123) (23) (13)
(13) | (13) (123) id  (132) (12) (23)
(23) | (23) (132) (123) id  (13) (12)
(123)

(123) (13) (23) (12) (132) id
(132) | (132) (23) (12) (13) id  (123)

This group is not abelian since, for example, we have (12)0(23) = (132) and (23)0(12) = (123),
but (123) # (132).

So far we have mostly discussed basic definitions. Before moving on, let’s prove a theorem.

é )
Transpositions and the Alternating Group

Permutations of the form (ij) € S, with i # j are called transpositions, or 2-cycles.
Recall that the function (ij) : {1,...,n} — {1,...,n} switches i < j and sends every
other number to itself. Since (ij) = (ji), the number of transpositions in S, is just the
number of pairs of indices 1 <4 < j <n, which is (3) = n(n —1)/2.

I claim that every element of S,, can be expressed as a composition of transpositions.

50You may remember this formula from multiplication of matrices, which is also defined in terms of functional
composition.
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Assuming this, we let A,, < S, denote the set of permutations that can be expressed
as a composition of an even number of transpositions. This set satisfies the following
properties:

eide A,,
e 0,TEA,=>00TEA,,
eccA,=0leA,.

In other words, A, is a subgroup of S,,. We call it the alternating group on n symbols.
\. Y,

Proof. First we show that every permutation can be expressed as a composition of trans-
positions. The cycle notation has the property that it can be viewed as a composition of
commuting cycles. For example, we have

(137)(256)(48) = (137) o (256) o (48) = (48) o (137) o (256) = (562) o (84) o (712) = etc.

Because of this feature, it is common to omit the composition symbol o when working with
permutations in cycle notation. Next we show that each cycle can be viewed as a composition
of (non-commuting) transpositions. For example, we have seen that (123) = (12) o (23), we
will write as (123) = (12)(23). One can similarly check that

(1234) = (12)(23)(34),
(12335) = (12)(23)(34)(45),

and, indeed, for any numbers i1, i, ..., € {1,2,...,n} we have
(i1i2i3 - - - ip—1ix) = (i1i2)(293) - - - (ix—17g)-

By combining these two observations, we see that any permutation can be expressed as a
composition of (generally non-commuting) cycles@ For example,

(137)(256) (48) = (13)(37)(25)(56)(48).

Next we verify the subgroup axioms:

e By definition we say that id is a composition of no transpositions, which implies that
id € A,, because zero is even. If you don’t like that, observe that for any transposition
(ij) we have id = (i5)(ij). Since 2 is even this implies that id € A,,.

51This expression is not unique. For example, we could also write

(319213 - - - te—11k) = (41%%) (t10k—1) - - - (4132).
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e Suppose that 0,7 € A,,. By definition this means we can write
02510820"'08k’
T:tlotQO"'Otb

for some transpositions s1, ..., Sk, t1,...,ts, where k and £ are even. But then c o7 is a
composition of k + ¢ transpositions:

OOT =810820---08,0t;otgp0-- 0ty
Since k + £ is even this implies that 0 o7 € A,,.

e Let 0 € A, so that 0 = s1 0--- 0 s, for some transpositions si,..., s, where k is
even. Now observe that for any transposition we have s~' = s. Furthermore, for any

permutations p, 7 we have (po7)™! =771 o p~L. It follows that
0'_1 = (310"‘05k)_1 :8;10“'051_1 = S0+ 08q,

which is a composition of an even number of transpositions. Hence 0! € A,,.

It is much harder to prove that some permutation o € S, is not in the subgroup A,. We
will have a trick for doing this after we discuss the discriminant of a polynomial. We will also
prove later that exactly half of the permutations are alternating:

#A, = %#Sn =nl/2.
For example, here are the 6!/2 = 3 elements of As:

As = {id, (123), (132)}
And here is the group table:

o ‘ id  (123) (132)

id | id  (123) (132)
(123) | (123) (132) id
(132) | (132) id  (123)

By accident, it happens that this group is abelian, and in fact it is isomorphic to the additive
group (Z/37Z,+,0). This can be seen by observing that the group tables are “the same” up to
renaming of the elements:

We will show later that any two groups of size 3 must be isomorphic.
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6.6 Symmetric Polynomials

The concept of symmetric polynomials is intuitive but the notation is difficult. I could present
the entire discussion at an intuitive level with examples, but I choose also to develop a rigorous
notation. On a first reading you should definitely focus on the examples.

We say that a multivariable polynomial f(x1,...,z,) € Flx1,...,z,] if the value of corre-
sponding function f : F" — F is left unchanged by any permutation of its inputs. Sometimes
we also call this a “symmetric function”. For example, consider the following polynomial in
two variables:

f(z,y) = 2° 4+ 522y + 2z + 2y + bxy® + o>,

This polynomial is symmetric because f(x,y) = f(y,z). However the following polynomial is
not symmetric:
g(z,y) = 23 + 522y + 22 + 2y + 4z + 3>,

To be precise, we have g(x,y) — g(y,z) = 2%y — xy?, which is not zero. The problem here is
that the coefficients of the monomials %y and xy? in g are not the same.

The most basic symmetric polynomials in two variables are just the sum and product. We
call these the “elementary symmetric polynomials in z and ¥”:

61($7y) =T+ Y,
e2(z,y) = xy.

We will prove below that any symmetric polynomial can be expressed in terms of elementary
symmetric polynomials, and the method of proof will be a kind of “division algorithm”. Let
me show you how this works in the case of the polynomial f(z,y) above. The lexicographic
degree of f(x,y) is (3,0) and the leading term is z3. Let’s write

f(z,y) = 2 + lower terms.
It is easy to find a combination of e; and ey with the same leading term:

ei = (z+y)°
= 2% + 322y + 3xy® + ¢°

— 23 + lower terms.
Therefore the difference f — e3 has smaller degree:
f—e3 =22y + 22 + 2y + 2zy® = 22y + lower terms.

Now we play the same trick again. With a bit of trial-and-error we can find a combination of
e1 and eg with the same leading term:

2e1e9 = 2(x + y)(xy)
= 2$2y + 2xy2

118



= 222y + lower terms.
Finally, subtracting this from the previous polynomial gives
f—ed—2e%es = 20 + 2y = 2(x +y) = 2ey,
and we conclude that
fla,y) = er(a,y)” + 2e1(x,y)e2(,y) + 2e1(2,y),
f=el+2e2eq + 2e.
The main goal of this chapter is to generalize this algorithm to any number of variables.

But why do we care about symmetric polynomials? Suppose that a quadratic polynomial
22 + ax + b has coefficients a, b in some field F and has roots «,  in a larger field E 2 F. By
factoring in the ring E[z] we obtain

2 +ax+b=(z—a)(z—pB)

22— (a+ Bz + (ap).

Then comparing coefficients gives

a=—(a+p)=—e(a,pB)
b= apf = e a, ).
Since the coefficients a and b are (up to sign) just the elementary symmetric combinations of
the roots a and g, it follows from above algorithm that any symmetric combination of
the roots «, 8 can be expressed in terms of the coefficents a,b. For example, we have
fa, B) = o 4+ 5a%6 + 2a + 23 + 5ap? + 33
= e1(a, B)? + 2e1(a, B)%ea(a, B) + 2e1(a, B)
— (~a)® + 2(~a)?b + 2(—a)
= —a® + 2d%b — 2a.

We conclude that the number f(a, ), which by definition lives in the extension field E, is
actually in the base field F.

The general version of this theorem is particularly interesting when F = R since it implies that
any symmetric combination of the roots of a real polynomial is real, no matter
where the roots live. This will be a key step in our proof of the FTA.

Definition of Symmetric Polynomials

A permutation o € S, “acts on” a polynomial f(x1,...,x,) € F[z1,...,2z,] by permuting
its inputs. We introduce a special notation for this:

(0 )1, smn) = f(To(1)s To@)s - -+ Ta(n))-



That is, for each permutation o € S, and each polynomial f € F[zy,...,z,] we have
another polynomial o - f € F[zq,...,2,] whose inputs have been permuted according to
o. This is a reasonable notation since for any permutations o, 7 € S,, and any polynomial
f €F[zy,...,x,] one can check that

(cor)-f=0-(T-f).

One can also check that that the “action” of a permutation o preserves addition and
multiplication of polynomials:

o-(f+g9)=oc-f+o-g and o-(fg)=(0-f)(o-g)

We say that a polynomial f(x1,...,z,) is symmetric when it is invariant under any
permutation of its inputs@

f is symmetric <= o-f=fforalloes,.

It follows from the properties above that the set of symmetric polynomials is closed under
addition and multiplication, hence it is a subring of F[z1,...,x,]. We call this the ring
of symmetric polynomials and we denote it by

Flz1,...,20]" € Flz1, ..., 2]
\. J

Below we will prove the Fundamental Theorem of Symmetric Polynomials (FTSP), which
gives a sort of “basis” for the ring of symmetric polynomials. To be precise, there are some

“elementary symmetric polynomials” ey, ..., e, such that every symmetric polynomial f can
be expressed in as a polynomial expression in ey, ..., en:
any symmetric polynomial = some polynomial expression in eq,...,e,
f=gle,... en).
~\

Elementary Symmetric Polynomials

Consider the ring of polynomials in n + 1 variables, which we call x1,...,2p41,y:

Flxi,...,xn,y] = (Flz1,...,20]) [y]-

We define the elementary symmetric polynomials e1, ..., e, € F[z1,...,x,] as the coeffi-
cients of the following polynomial:

(y—21)(y—a2)  (y—a) =y" —ery" "+ ey 2 — -+ (=1) €.

62 Actually, since every permutation can be expressed as a composition of transpositions, it is sufficient to
check that f is invariant under any transposition of its inputs.
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We observe that each coefficient eg(z1,...,z,) is, indeed, a symmetric polynomial in
Z1,...,Zy since the expression (y—x1) - - - (y—zy,) is invariant under permuting zy, . . ., Z,.
To be explicit, we have

€1 =21 +xg+ -+ Tp,

€y = T1X2 + 13+ + Tp—1Tp = Z TiTj,
1<i<j<n

€L = § L Ly * - 'Zik?
1<ty <io<-<ip<n

en:z‘lx2...$n

In essence, the elementary symmetric polynomials just express the relationship between the
roots and the coefficients of a single-variable polynomial. To see this, suppose that a polyno-
mial f(x) € F[z] has roots a4, ..., a, in some field E 2 FF, so that

fl@x)=(r—a1)(x—az) - (x — a,) in E[z].
Then expanding the right hand side gives
flx) =2" —e1(aq,..., an)xn_l +eg(a, ... ,an)x"_Q — 4+ (=D"ep(ag,...,an).

Since the coefficients of f(x) were assumed to be in F we see that the elementary symmetric

combinations of the roots eg(aq,...,a,) are in F. More generally, let g(x1,...,x,) be any
symmetric polynomial with coefficients from F. It will follow from the FTSP below that there
exists some (possibly non-symmetric) polynomial h € F[z1, ..., x,] such that

g(z1,...,xn) = hler(z1, ... xn), .. yen(T1, .., Tp)).

Then by substituting «; for z; we find that the element g(aq,...,a,) of E is actually in F:

glat,...,an) =hle1(ar,...,apn),...,en(aq,...,ap)) € F.

In the case F = R this shows that any symmetric combination of the roots of a real
polynomial is real, no matter where the roots live.

To prepare for the FTSP we examine the lexicographic degrees of the elementary symmetric
polynomials. Another way to to express the kth elementary symmetric polynomial is as follows:

ep(x) = Z xt,

leVnyk
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where V,,, © N is the set of vectors made from £ copies of 1 and n — k copies of 0. For
example, when n = 4 we have

eg(xl, T9, X3, a:4) = 2122 + T1X3 + T1X4 + T2x3 + To2x4 + T34,
62(x) = x(1717070) + X(1707170) + X(1’07071) + x(071’170) + X(07170»1) + X(0707171)'
The lexicographically largest such vector is (1,1,...,1,0,0,...,0), so we conclude that
deg(ex) = (1,1,...,1,0,0,...,0),

T1x9 - - - X + lower terms.

€k

N
Fundamental Theorem of Symmetric Polynomials
For any symmetric polynomial f(z1,...,x,) € F[z1,...,z,] there exists a possibly non-
symmetric polynomial g(z1,...,z,) € F[z1,...,z,] such that®]
f(x) = g(e1(x), e2(x), . . ., en(x)).
L J

The proof of this is an explicit algorithm, similar to division with remainder. The algorithm
was first written down in Edward Waring’s Meditationes Arithmeticae (1770). However, it
was probably generally known, going back perhaps to Isaac Newton. In Lagrange’s Treatise
on the Theory of Equations (1770) he used the fact that any symmetric combination of the
roots of a real polynomial is real, and he said this was well-known. Maybe he just didn’t want
to deal with the horrible notation of multivariable polynomial expressions.

Proof. Let f € F[xy,...,x,] be symmetric with lexicographic degree k = (ki,...,ky,) and
leading coefficient ¢ € F:
f(x) = cx¥ + lower terms.

The fact that f is symmetric implies that k1 > ko > --- > k,,. Indeed, suppose for contradic-
tion that we have k; < k; 11 for some 4 and let

K = (k1,..., ki1, kiv1, ki, ko, . .-, kn).

We observe that k’ > k in lexicographic order, hence by definition of degree the coefficient
of x¥ in f must be zero. On the other hand, since f, being symmetric, is invariant under
switching z; and z;,1, the coefficients of x¥ and x¥" in f must be equal. Contradiction.

531t may be confusing that we write ¢ as an element of Flx1,...,Zn]. This is an annoying property of our
notation for polynomials. We don’t have a good way to distinguish between formal polynomial expressions and
polynomial functions. Here we are viewing f as a formal polynomial and ¢ as function from F[z1,...,z,]" to
Flz1,...,2x]. It might be less confusing to write a formal polynomial as f(—,—,...,—) with empty inputs,
but nobody does this.
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Now we want a combination of elementary symmetric polynomials with the same leading term
as f. I claim that the following polynomial does the job:

g(x) = cey(x)F17R2ey(x)F27Rs e, g (x)Fnm1TRne, (x)Fn
Indeed, by the general properties of degree we have
deg(g) = (k1 — ko) deg(e1) + (ko — k3) deg(ea) + - - + (kn—1 — ky) deg(en—1) + ky deg(ey)
= (k1 — k2)(1,0,...,0)
+ (ko — k3)(1,1,0,. . .,0)

+ (ko1 — kp)(1,...,1,0)
+kn(1,1,...,1)
= (k1. ko, ..., k) = k.

Since f and g are symmetric polynomials with the same leading term, it follows that f — g
is a symmetric polynomial with degree strictly smaller than k. By inductiorﬁ there exists a
polynomial h € F[zy,...,x,] such that

f(x) = 9(x) = h(e1(x), ea(x), ..., en(x)).

Finally, we conclude that f = g(x) + h(ei(x),...,en(x)) is a combination of elementary
symmetric polynomials, as desired. o

When it comes to algorithmic proofs it’s usually more instructive to see an example.

Example. Consider a field extension E 2 F and suppose that
2 +ax® +br+c=(z—a)(r—B)(z—7)

for some a,b,c € F and «, 5,7 € E. By expanding the right hand side and equating coefficients
we see that

—a = el(avﬁa7)7
b= 62(aaﬁa7)a
—C= 63(053/8’7)'

Our goal is to find some polynomial 23 + a’z? + b’z + ¢’ € F[z] whose roots are a?, 32, ~?% € E:
B rde? Ve +d = —a?)(z— Yz —~).
By expanding the right hand side and equating coefficients we obtain

—d =+ B+

54This works because the lexicographic order on N has no infinite descending sequences.
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V= a28% + a2y? + f22,
¢ = 2322
Since each of these is symmetric in «, 8,7y, we know that each of the unknown coefficients
a', b/, can be expressed in terms of the elementary symmetric combinations e;(«, 3,7),

es(a, 8,7), es(a, B,7), and hence in terms of the original coefficients a,b,c. We will apply
the algorithm three times to obtain these expressions.

We begin with a’. Note that a’ and —e? have the same leading term —a?. Expand —e? to get

—ef = —(a+B+7)° =—a’ = 52— 9" = 2(af + ay + ).

Then subtract to get

a —(—ef) = 2(af + ay + B7)
a — (—€2) = 2ey
a = —e% + 2e9
= ()’ +2(0)

=2b— .
Next we compute b'. Observe that ' and e have the same leading term a?3?. Expand to get
2

¢5 = (af + ay + B7)°
= a?6% + a®y? + %4 + 2028y + 2a8%y + 20872

Then subtract to get

V —e5 = —2(a*By + af*y + aBy?)
V—e5=—2(a+B+7)(apy)

b — e% = —2eje3
b = e% — 2eje3
= (b)* = 2(~a)(~¢)
= b% — 2ac.
Finally, we observe that
J o222
= —(afv)’
= —¢3
= (=
= 2
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In conclusion, we have

23+ (2b— a?)2? + (b — 2ac)x — & = (z — a?)(z — ) (z — 7?).

To check that this makes sense, let’s take (a,b,c¢) = 1 so that (a’,t',c) = (2b — a?,b% —
2ac, —c?) = (1,—1,—1). The above formula tells us that the roots of 2® + 22 — x — 1 are the
squares of the roots of 23 + 22 + x + 1. To verify this, we observe that

et —r—1=(x+1)(z—1)>
has roots —1,1, 1, listed with multiplicity. On the other hand, we have the factorization
2t —1=(z—-1)(a3+ 2% +2+1).
Since z* — 1 has roots +1,+4%| and = — 1 has root +1 we see that 2° + 22 + = + 1 has roots

—1,+1%,—%. And, indeed, squaring these gives 1,—1, —1.

We end this section with a more interesting example.

( )

The Discriminant of a Polynomial

Suppose that a polynomial f(z) € F[x] has roots ai,...,a, in a field extension E 2 F:
flx) = (z—a)(@—a)- (z —an).
We define the discriminant of f as the product of the squares of the differences of the
roots:
A= H (OAZ‘ — Ctj)2 e E.
1<i<j<n
The discriminant has two interesting properties:
e We have A = 0 if and only if f(x) has a repeated root.

e Since A(aq,...,qp) is a symmetric combination of the roots of f(z) it can be
expressed in terms of the coefficients of f(z), hence A € F.
\. J

You are certainly familiar with the discriminant of a quadratic polynomial. Suppose that
2 +ar+b=(xr—a)(z-pH),
so that —a = a4+ 8 and b = a5. A quick computation shows that
A= (a—p)

55These are just the 4th roots of unity.
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=a? - 2a8 + (2

= (a+f)* —4(ap)
= (—a)* — 4b

= a? — 4b.

We conclude that the polynomial 22 + ax + b has a repeated root if and only if a® — 4b =
But you are probably not familiar with the formula for the discriminant of a cubic.

0.

The Discriminant of a Cubic Polynomial

~\

Consider a cubic polynomial f(x) € F[x] with roots «, 3,7 in a field extension E 2 F:
fx) =2 +ax® + bz +c= (x —a)(z — B)(xz — 7).
By applying Waring’s algorithm to the discriminant one can show that

(o= B)* (. —7)*(B—~)*
= —4a3c + a®b® + 18abc — 4b% — 272,

A

I do not recommend memorizing this formula. However, we note that the discriminant
simplifies quite a bit in the case when a = 0:

A = —4b3 — 2762,

In this case it is more common to write f(x) = 23 + px + q. Then we have the following
conclusion:

23 4 pr + ¢ has a repeated root <« —4p> — 27¢% = 0.

This strange expression will show up in the next chaptef”] when we discuss the general
solution of cubic equations.

“Nope. This got posponed until Chapter 9 and then it got cut from the course.

\.

6.7 Laplace’s Proof of the FTA

We now have all of the ingredients necessary to discuss Laplace’s 1795 proof of the Fundamental
Theorem of Algebra. As I will mention below, Laplace’s proof has a gap which was filled by
Kronecker in 1887. Literally dozens of proofs of the FTA were presented in the late 1700s and
early 1800s, and none of them was completely rigorous. The traditional “first correct proof”
was given by Gauss in 1799, but it involved topological ideas that were not made rigorous

until the twentieth century.
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I like Laplace’s proof because it is almost completely algebraic. (The only analysis/topology
required is the Intermediate Value Theorem for polynomials.) It is also rather short and
involves the concepts of symmetric polynomials and Kronecker’s Theorem, which I was going
to discuss anyway.

Laplace’s Proof. We will prove statement (1R) from Section 6.1:
Every non-constant f(x) € R[z] has a root in C.

So consider some non-constant f(z) € R[x]. The proof uses induction on the multiplicity of
the prime 2 in the degree of f. Let deg(f) = n and recall that

va(n) =k <= n=2%m for some odd number m.

This multiplicity is well-defined because of the uniqueness of prime factorization in Z. If
vo(n) = 0 then since deg(f) = 2°m is odd we know from the IVT that f(z) has a real root,
hence it has a complex root.

So let us suppose that vo(n) = k > 1 and assume for induction that any polynomial g(z) € R[z]
with va(deg(g)) = k — 1 has a root in C. As was traditional in Laplace’s time, we will assume
the existence of the roots of f(x) and then we will show that at least one of these roots in
C. In modern language, we assume the existence of a field extension E 2 C and elements
at, ..., o, € E such that

f(@) = (2 —ar)(z —az) - (x — an).

The modern proof of this was given by Kronecker, and it can be paraphrased as follows: “If
you pretend hard enough that f(x) has roots, then it does.” We will discuss Kronecker’s 1887
proof in Chapter 8. It is not very “difficult” but it is very abstract; much too abstract for the
year 1795.

Our goal now is to show that «; € C for some i. Laplace used a very clever trick to do this.
For any real number ¢ € R and for any pair of indices 1 < i < 7 < n we consider the following
element of the field E:

ﬁijt =y + Qo + taiaj e E.

Then for any real number ¢ € R we consider the following polynomial with coefficients in E:

gi(@):= [[ (@—Biy)eElz],

1<i<j<n

The first surprise is that this polynomial actually has coefficients in R. To see this, think of
Bijt as a polynomial expression in the roots of f(z):

Bz’jt(al, R ,Ozn) = oy + Q; + tOziOéj.
Let 0 € S, act on this expression by permuting the inputs:

o - Bijt = Bz’jt(aa(l)7 Qg(2)5 - - 7aa(n))'
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The transpositions act on the roots of g,(x) as follows:

(23) - Bijt = Bijt,
(3k) - Bijt = Bkt k¢ {i,j}
(kL) - Bije = Bij- k£ ¢ {i,j}.

We see that each transposition permutes the roots of g¢(x). Since any permutation is a
product of transpositions, this implies that any o € S;, permutes the roots of g;(x), hence the
coefficients of g¢(z) are symmetric combinations of the roots aq, ..., ay, of f(z). Finally, by the
Fundamental Theorem of Symmetric Polynomials, each symmetric combination of the roots
of f(x) is a combination of the coefficients of F (i.e., the elementary symmetric combinations
of ai,...,an) hence is in R. In other words, ¢:(x) € R[z].

2k—1m/ for some odd number m/'.

The second surprise is that the polynomial g;(x) has degree
Indeed, we have assumed that deg(f) = n = 2¥m with m odd. The degree of g; is the number

of pairs of indices 1 < ¢ < j < n, which is

(n) = n(n —1) = 2m(2"m — 1) = k-1 [fm(2km — 1)] — 2¥~1(some odd number).

2 2 2

Hence by induction we know that g;(z) has at least one root in C. In other words: For each
real number ¢ € R there exists at least one pair of indices 1 < i < j < n such that 3;;; € C.
Now we apply the so-called Pigeonhole Principle@ Let N = (g) and choose N + 1 real
numbers t1,...,txy+1 € R, which is always possible because R is infinite. Now consider the
following N x (N + 1) array of numbers from E:

B1,2,t, Brat, || Br2inm

Bn—l,n,tl 5n—1,n,t2 Bn—l,n,tNJrl

The numbers in the ith column are just the roots of g, (z), hence we have shown that each
column contains at least one number from C. Since there are more columns then rows, it
follows that at least one row contains at least two elements from C. We have proved that
there exist some indices 1 < i < j < n and real numbers s,t € R with s # t such that 3;;, and
Bijt are both in C:

a; + o + soo € C,

a; + o + toyaj € C.

Subtracting these complex numbers shows that (s — t)ayo; € C and hence a;o; € C. Then
since s € R we also have sa;o; € C and hence

a; + o5 = /Bijs — sqjor € C.

56This is the principle that any function from a larger set to a smaller set must be non-injective. In German
this is called Dirichlet’s Schubfachprinzip (“drawer principle”).
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We have shown that f(x) has a pair of roots o, a; € E satisfying «; + o € C and a0 € C.
Moreover, I claim that a; € C or o € C (actually we will have a; € C and «; € C, but we
don’t care). Indeed, we observe that «; and «; are the roots of a quadratic polynomial with
complex coefficients:

(x — i) (z — ;) = 2% — (i + )7 + oy € Clz].

But every quadratic polynomial with complex coefficients has a complex root. (This follows
from the quadratic formula and the fact that every nonzero complex number has a complex
square root.) Suppose that our quadratic polynomial has a root v € C. Then we have

(v —ai)(y — ;) =0,

which implies that o; = ye C or aj =y e C. o

And that is the shortest proof of the FTA that I know.

6.8 The Missing Piece: Kronecker’s Theorem

As I'said in the previous section, the missing piece in Laplace’s proof of the FTA is the abstract
existence of roots of polynomials. In Laplace’s time this was usually assumed without proof
because they had no idea how to make it rigorous.

The first glimpse of the proof came from Cauchy, who used Gauss’ idea of “congruence mod
n” to construct the complex numbers from the real numbers. Recall from Chapter 1 that the
complex numbers are originally just abstract symbols:

C:={a+bi:a,beR},

where i is an abstract symbol satisfying the abstract formula “i> = —17. We did a significant
amount of work to show that these abstract symbols can be treated as “numbers” with all of
the obvious properties, including the fact that C is a field, which we proved by “rationalizing

the denominator”:
1 1 1 a n —b .
= . = 2.
a+bi a+bi a—b a? + b2 a? + b?

Cauchy showed that all of this can be explained more simply by doing “modular arithmetic”
in the ring of polynomials R[z]. To be precise, we define an equivalence relation on R[z] called
“congruence mod z2 + 17 by setting

f(z)=g(x) mod 22 +1 <« f(z)— g(z) = (2% + 1)h(x) for some h(z) € R[z].

The proof that this is an equivalence relation is “exactly the same” as the proof that “con-
gruence mod n” is an equivalence relation on Z. Furthermore, we can show that

{ filz) = fao(x) mod * + 1 } _ { filz)fa(x) = g1(x)g2(x) mod 2* + 1 }
gi(z) = go(x) mod 2 +1 filx) +g1(z) = falx) + go(z) mod 2% + 1
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Again, the proof is “the same” as the proof for integers. Thus we obtain a ring of “congruence
classes of polynomials modulo z2 + 17:

(R[z]/(2* + 1)R[z], +,-,0,1) .

But what do the elements of this ring look like? In Chapter 4 we used division with remainder
to prove that each element of Z/nZ has a unique representation as r mod n for some 0 < r <
n — 1, so the ring Z/nZ has n elements. We have a similar property here.

( )

Congruence Classes of Polynomials Modulo z? + 1

For any f(x) € R[x], there exist unique real numbers a, b € R satisfying
f(z) = a+ bz mod 2% + 1.

e Existence. Divide f(z) by 22+ 1 in the ring R[z] to obtain f(x) = (2% +1)q(z) +
r(x) for some r(z) € R[x] satisfying deg(r) < deg(z? 4+ 1) or r(x) = 0. It follows
from this that r(x) = a + bz for some a,b € R. Hence we have

f(x) = (2® + g(z) + r(x) = 0g(x) + () = r(z) = a + bx mod z* + 1.

e Uniqueness. This follows from the uniqueness of remainders in R[x].
\. J

Let us examine how addition and multiplication work using these standard representatives. If
f(z) =a+bx and g(z) = ¢ + dr mod 2% + 1 then we have

f(x) +g(x) = (a+bx) + (c+dr) = (a+c)+ (b+d)x mod 2° + 1
and
f(z)g(x) = (a + bz)(c + dx)
= ac + (ad + be)z + bdz?

= ac + (ad + be)z + be(—1)
= (ad + bc) + (ac — bd)z, mod z% + 1

because 22 = —1 mod 2 + 1. This shows that elements of the ring R[z]/(2? + 1)R[z] behave
just like complex numbers, where the congruence class “z mod z? + 1”7 plays the role of i € C.

And what about the fact that C is a field? Instead of “rationalizing the denominator” we can
use the Euclidean Algorithm. Recall our proof that the ring Z/pZ is a field when p is prime.
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Proof that Z/pZ is a field. Consider any nonzero element a € Z/pZ. By definition this
means that a # 0 mod p, and hence p t a. Since p is prime and p 1 a we have ged(a,p) = 1 and
it follows from the Extended Euclidean Algorithm that there exist some x,y € Z satisfying

ar +py =1
ax +0y=1
ar =1 mod p.

In other words, the element a € Z/pZ is invertible with a=! = z mod p.

The same proof shows that the ring R[z]/p(x)R[z] is a field whenever p(z) € R[z] is a prime
polynomial.

Proof that R[z]/p(z)R[z] is a field. Consider any nonzero element f(x) € R[z]/p(x)R[z].
By definition this means that f(z) # 0 mod p(z), and hence p(z) 1 f(x). Since p(z) is prime
and p(x) 1 f(x) we have ged(f,p) = 1 and it follows from the Extended Euclidean Algorithm
that there exist some a(z), b(x) € R[z] satisfying

f(@)a(z) + p(x)b(

f(z)a(z) + 0b(
f(x)a(x) =1 mod p(z).

= o
8 8
~—
m
_ =

In other words, the element f(x) € R[z]/p(z)R[z] is invertible with f(x)~! = a(x) mod p(z).
Finally, we observe that the polynomial 22 + 1 is a prime element of R[z].

Proof that 2% +1 is primeﬂ Suppose for contradiction that 22 +1 is not a prime element of
R[x]. This means we can write 22 + 1 = f(x)g(z) where f(z), g(x) € R[z] are both non-units,
i.e., where deg(f) > 1 and deg(g) = 1. Since deg(f) + deg(g) = deg(fg) = deg(z? + 1) = 2,
this implies that deg(f) = deg(g) = 1. In other words, we must have f(z) = a + bz and
g(z) = ¢+ dz for some a,b,c,d € R with b # 0 and d # 0. But this implies that

(—a/b) f(=a/b)g(—a/b)

2y1=
211 =

(—a/b) 0g(—a/b)

(—a/b)?> +1=0
(—a/b)* = 1
(—a/b)* <0,

for some real number —a/b € R, which is impossible because o = 0 for all o € R.

57Warning to sophisticated readers: Here I use the words “prime” and “irreducible” interchangeably, which
is okay because R[z] is a Euclidean domain.
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Observe that this proof is significantly different from “rationalizing the denominator” because
it doesn’t give us an explicit formula for the inverse, only an algorithm. This is because in
fields R[z]/p(x)R[z] corresponding to more complicated prime polynomials p(x) the formula
for the inverse can very intricate. See the example at the end of section 8.2.

Finally, let me give a sketch of Kronecker’s Theorem. We will fill in all the details later.

( )

Preview of Kronecker’s Theorem

Let F be a field and consider a polynomial f(x) € F[z] of degree n. Let p(z) be any
prime factor of f(z), with f(z) = p(z)g(z) for some g(z) € R[x]. Now consider the field
of congruence classes modulo p(x):

E := F[z]/p(x)F[x].

We can think of F as a subfield of E via the injective homomorphism that sends a € F
to the congruence class of the constant polynomial a modulo p(z). We also observe that
the field E contains a root of f(x). Indeed, we have

f(z) = p(r)g(z) = 0g(z) = 0 mod p(z),

so that the element  mod p(z) of E is aroot of f(z). (This is what I mean by “pretending
hard enough” that f(x) has a root.) Let’s denote the congruence class of z by « € E.
Then by Descartes’ Theorem we hav

f(z) = (z — a)h(x) for some h(z) € E[z] of degree n — 1.

By induction on degree we may assume that there exists a field E' 2 E 2 F and elements
at,...,0n—1 € E such that

hiz)=(z—a1)(x—ag) (. — ap_1).

Finally, we have
f@)=(z—a)(@—a)-(z—an),

with elements a, a1, ..., a,—1 in the extension field E/ © F.
\_ J

What did you think of that?

58Now you might object that I am using the letter z for two different purposes. I apologize, but I think that
any other symbol would make the proof less understandable. Again, this is the same difficulty that we don’t
have a notation to distinguish between formal polynomials and evaluations of polynomials.
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7 Some Group Theory

7.1 Congruence Modulo a Subgroup

As we have seen in the previous chapter, the theory of polynomial equations can be quite
intricate. Laplace’s 1795 proof of the Fundamental Theorem of Algebra is quite slick but it
hides some deep ideas involving permutations and multivariable polynomials. Laplace’s proof
was built on the hard work of Euler and Lagrange, who had trouble finishing the proof due to
difficulty of the notation. In 1781, Lagrange despaired that the subject had perhaps become
too difficult to merit further investigation:

1 begin to notice how my inner resistance increases little by little, and I cannot say
whether I will still be doing geometrﬂ ten years from now. It also seems to me
that the mine has maybe already become too deep and unless one finds new veins
it might have to be abandoned.

Physics and chemistry now offer a much more glowing richness and much easier
exploitation. Also, the general taste has turned entirely in this direction, and it is
not impossible that the place of Geometry in the Academies will someday become
what the role of the Chairs of Arabic at the universities is now.

The next generation of mathematicians were only able to make progress by abandoning the
old language in favor of a new, abstract point of view. The young mathematician Evariste
Galois around 1830 made a brilliant breakthroughs by inventing the concept of a “group”.
Unfortunately, he died at the age of 21 and it took several decades for his work to be ap-
preciated. Today the concept of an abstract group is probably the most important definition
in algebra. In this chapter we will explore the abstract theory of groups before returning in
further chapters to its applications in the theory of polynomial equations.

First let me remind you of the definition.

(" )
Concept of a Group

A group is a structure (G, #, ) consisting of a set GG, a binary operation * : G x G — G,
and a special element ¢, satisfying the following three axioms:

e For all a,b,c € G we have a* (b*c) = (a=b) = c.
e Forallae G wehaveaxe =cxa = a.
e For all a € GG there exists some b e GG such that a*b=b*a = €.

The element b whose existence is guaranteed by the third axiom is actually unique.
Indeed, if we have a *b =b+a =€ and a *c = c* a = € for some b, c € G then it follows
from the first two axioms that

b=bxe=bx(axc)=(bxa)xc=ecxc=c.

59Geometry was the general 18th century term for mathematics.
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LThis unique element is called the inverse of a € G and we write it as a L. J

In Chapter 4 we studied the group of units (Z/nZ)*, whose group operation is multiplication
modulo n. This group satisfies the extra property that it is abelian, meaning that the group
operation is commutative. In this chapter we want to develop a general theory that applies
also to non-abelian groups, such as a the symmetric group (S, o,id).

The first general theorem of “group theory” involves the notion of “congruence modulo a
subgroup”. This is a vast generalization of modular arithmetic.

é )
Concept of a Subgroup

Let (G, *,¢) be a group and let H € G be a subset. We say that H is a subgroup when
it satisfies the following three properties:

(1) We have e € H.
(2) For allae H we have a~' € H.
(3) For all a,be H we have axbe H.

That is, a subgroup (1) contains the identity, (2) is closed under inversion, and (3) is
closed under the group operation. It follows from this that the structure (H, =, €) is itself
a group. You will prove on the homework that the three defining properties of a subgroup
can be summarized by the following single property:

a,be H = a 'xbeH.

The whole reason for defining subgroups is so we can generalize Gauss’ concept of congruence.

( )

Congruence Modulo a Subgroup

Let (G, #*,¢) be a group and let H € G be a subgroup. Then for all a,b € G we define
the following relation{™|

a=bmod H <— alxbeH.

The properties (1), (2) and (3) of subgroups are defined precisely so that this relation is
an equivalence.

1

Reflexive. From (1) we have a™* *a = ¢ € H and hence a = a mod H for all a € G.
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Symmetric. For all a,b € G we have
a=bmod H = a '+«be H
— (a'+b)lteH from (2)
= bl (ail)f1 eH
—blxaecH

= b=a mod H.

Transitive. For all a,b,c e G we have

a=bandb=cmod H — a 'xbe Handb txce H

— (a7 'xb)x (bl xc)e H from (3)
—alx(bxb HxceH
—atvexceH

—a txceH

= a=cmod H.

Let’s see how this concept connects with Gauss’ concept of modular arithmetic.

( )
Subgroups of (Z, +,0)

Consider the additive group of integers (Z, +,0) and let H < Z be a subgroup. In this
case I claim that there exists an integer n > 0 such that H is just the multiples of n:

H =nZ:={nk: kel}.

Before proving this, we note that the set nZ is, indeed, a subgroup of (Z, +,0):
(1) We have 0 € nZ because 0 = n0.
(2) For all nk € Z we have —(nk) = n(—k) € nZ.
(3) For all nk,nl € nZ we have nk + nl = n(k + ¢) € nZ.

The case n = 0 corresponds to the “trivial subgroup” 0Z = {0}, which has just one element,
and the case n = 1 corresponds to the “full subgroup” 1Z = Z.

"OIf H is not abelian then we can also define a notion of congruence by saying that a = b mod H if and only
if a *b~! € H. In general these two relations are not the same, as we will see in the next section.
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Proof. Let H be a subgroup of (Z,+,0). If H = {0} then we are done because H = 0Z. So
suppose that H # {0}. Since H is closed under taking negatives, it must contain a strictly
positive integer. Let n € H be the smallest positive integer in H. In this case I claim that
H =nZ.

First we show that nZ < H. Indeed, by property (1) we have 0 € H and since n € H we have
by property (3) that n +n + ---+ n € H for any number of summands. Hence nk € H for all
non-negative k > 0. Finally, by property (2) we have n(—k) = —(nk) € H, so that n¢ € Z for
all £ = —k < 0. We conclude that nk € H for all k € Z and hence nZ < H.

On the other hand, we will show that H € nZ. To do this, consider any element m € H and
divide by n to obtain

m=nq+r,
0<r<n.

We observe that » = m—ng is an element of H because m € H and ng € H (from the argument
in the previous paragraph). If r # 0 then the condition 0 < r < n contradicts the fact that
n is the smallest positive element of H. Hence we must have r = 0 and it follows that
m = nq € nZ. Since every m € H is contained in nZ we conclude that H < nZ, as desired. o

So we have seen that every subgroup of (Z, +,0) has the form nZ. Moreover, we observe that
“congruence modulo the subgroup nZ” is just the same as “congruence modulo n”r_T]

a=bmod nZ < —a+benZ
<= —a + b= nk for some k€ Z
<= n|(b—a)
<= nl(a—0)

<= a = b mod n.

Thus the concept of congruence modulo a subgroup is a generalization of modular arithmetic.
It turns out that it is quite a vast generalization, which can be applied to the theory of
polynomial equations and also to geometry.

7.2 Cosets and Lagrange’s Theorem

In this section we will prove a theorem that is a direct generalization of Fermat’s Little
Theorem and Euler’s Totient Theorem from Chapter 4. The key is to investigate the “shape”
of congruence classes modulo a subgroup.

((Left) Cosets of a Subgroup ]

| Let (G, #,¢) be a group and let H < G be a subgroup. For any element a € G we define

""'When the group operation is addition then the expression a~! % b becomes —a + b.
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the (left) coset of H generated by a:
a*H:={axh:heH} <.

I claim that these sets are precisely the equivalence classes for congruence modulo H.
That is, for all a,b € G I claim that

a=bmod H — axH=0bxH.

We will denote the set of all cosets of H by G/H and we read this as “G mod H”. The
reason for the notation “G/H” is explained by Lagrange’s Theorem below.
\ J

Remark: There is a corresponding notion of right cosets H *a = {h*a : h € H} which are the
equivalence classes for the relation of right congruence, where a = b if and only if a * b~ € H.
In the case of abelian groups there is no difference. In the case of non-abelian groups the
difference is quite important. See the next section.

Proof. I will repeat the proof from the homework solutions. First let us suppose that
axH =b+H. Since e € H we have b=bxc € H. Then since b+ H = a+ H we have be a+ H,
hence b = a = h for some h e H. It follows that a=! *b=a"'+a*h = he H and hence a = b
mod H.

Conversely, let us suppose that a = b mod H, so that a=! * b = h for some h € H. Applying
a on the left gives b = a * h and then applying ="' on the right gives a = b+ h™'. Our goal
is to prove that a * H = b H and for this we must prove two inclusions: a * H € b+ H and
b H < a* H. For the first inclusion, consider an arbitrary element a * h’ € a * H. Then since
h™',h e H we have h~! « h € H and hence

axh' = (bxh')xh =bx(h™'«h)ebxH.

For the second inclusion, consider an arbitrary element b = h” € b« H. Then since h,h"” € H
we have h = h” € H and hence

b*h”z(a*h)*h”za*(h*h”)ea*H.

Since the (left) cosets of H are the equivalence classes for congruence mod H, it follows that
G is a disjoint union of these cosets. Here are a few examples:

Examples of Cosets.
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e Consider the group (Z,+,0) and the subgroup nZ < Z. For any integer a € Z the coset
of nZ generated by a is the set

a+nZ=1{a+b:benl}
={a+nk:kelZ}
={a,a tn,a+2n,a+ 3n,...}.

We have seen that each coset of nZ can be expressed as r + nZ for some unique integer
0 < r <n. Thus the set of cosets is

Z/n7 = {0+ nZ,1 +nZ,2+nZ,...,(n—1)+nZ}.

Here we have partitioned the set Z into n pieces, where Z/nZ is the set of pieces. Of
course we know that Z/nZ is much more interesting than just a set; it is a ring. In the
next section we will explain why Z/nZ is an additive group and in the next chapter we
will explain why Z/nZ is a ring.

e Consider the group (R?, +,0) of points in the Euclidean plane under vector addition.
As with any group, we always have the trivial subgroup {0} and the full subgroup R2.
Apart from these, the most interesting subgroups are lines through the om'gmm

L={tv:teR} < R* for some “direction vector” v e R?.

Let’s verify that L is, indeed, a subgroup. First we observe that 0 = Ov € L. Then for
any tv € L we observe that —tv = (—t)v € L. Finally, we observe for any sv,tv € L
that sv +tv = (s+t)ve L.

And what about the cosets of the subgroup L < R?? I claim that the cosets are the lines
parallel to L. (Apart from L itself, these lines do not pass through the origin, hence
they are not subgroups.) To see this, we observe that

a+L={a+tv:teR},

which is the line that is parallel to L and passes through the point a. Here is a picture:

"2 Actually these are the only reasonable subgroups. The other subgroups come from bizarre properties of
the real numbers, which you don’t want to hear about. Another name for “reasonable subgroups of (R?, +,0)”
are “vector subspaces”.
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e Consider the group (C*, x, 1) of nonzero complex numbers under multiplication. I claim
that the unit circle is a subgroup, called the circle groupﬂ

U(l) ={aeC:|al =1}
This is a subgroup because of the fact that |af5| = |«a||8] for all complex numbers
a, B € C. Indeed:
— Since |1| = 1 we have 1 € U(1).
— Given «, 8 € U(1) we have |af| = |a||f| =11, and hence af € U(1).
— Given a € U(1) we have
1)

1=l =laa"[=lalla™|=1"|a o]

and hence ! e U(1).
Using polar form we can also express the circle group as follows:
U(1) = {e? : g e R}.

Then the group operation becomes addition of angles: eei? = ¢i1+9)  The cosets of
U(1) are the circles centered at the origin. (Apart from U(1) itself, these circles do not

"There are several other notations for the circle group, such as T, S* and SO(2). The notation U(1) comes
from the wunitary group U(n), which is the group of n x n matrices A with complex entries that satisfy the
relation AA* = I, where A* is the conjugate-transpose matrix. The 1 x 1 unitary matrices are just numbers

a € C satisfying aa™ = 1, hence |a] = 1.
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pass through 1, hence are not subgroups.) To see this, we observe for any o € C* that

aU(1) = {ae® : 0 e R},

which is the circle centered at 0 and passing through «, as in the following picture:

)

Each of these examples was abelian. We will see in the next section that the situation is
more interesting/complicated for non-abelian groups. Now we present one of the fundamental
results of group theory. The proof is quite easy since we have developed the right technology.

r

~
Lagrange’s Theorem

Let (G,#,¢) be a group and let H < G be a subgroup. If G is finite then the size of H
divides the size of G:

4H | #G.

More specifically, if G/H is the set of cosets of H then we have

#G = #(G/H) - #H.
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This motivates the notation “G/H” for the set of cosets, since it implies that

#(G/H) = #G/#H.

Remark: This theorem can be viewed as a vast generalization of the Euler-Fermat Theorem
from Chapter 4. See the section below on Cyclic Groups.

Proof. For any element a € G we have a natural function from H to a = H:

p: H — a=xH
h — a=h.

This function is surjective by definition and it is injective because

o(h1) = @(hg) => a*hy = a=*hy
—atx(axh) =a ' (axhy)
:(a_l*a)*hl = (a_l*a)*hg
= cxh) =¢c=*hy
= h1 = ho.
Hence ¢ is bijective. If G (and hence H) is finite, it follows that any two cosets of H have the

same size; namely, #H. Finally, if G/H is the set of cosets of H then since G is the disjoint
union of these cosets we conclude that

#G = (# of cosets) - (size of each coset) = #(G/H) - #H.

As the name suggests, Lagrange’s Theorem has something to do with Lagrange, but he only
stated a very special case. In his study of the roots of polynomials, Lagrange considered the set
of permutations that leave a given polynomial invariant. Given f(x1,...,x,) € Q[x1,...,zy],
he considered the following setf]

H:={ceS,:0-f=f}<5,.

It is easy to check that this set H < S, is a subgroup, hence it follows from Lagrange’s
Theorem that the size of H divides the size of S,,:

#H |nl

The set H is also called the stabilizer of f under the action of S, on the set of polynomials.
We discuss the general context in the next section.

" Note that this set H is equal to the full group S, if and only if f is a symmetric polynomial.
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7.3 The Orbit-Stabilizer Theorem

The abstract concept of a group emerged at the end of the 19th century as a way to systematize
certain ideas that are common to the following three subjects:

e Number Theory. As we have seen in Chapter 4, Euler’s Totient Theorem a?™ = 1
mod n is an example group-theoretical thinking. The Chinese Remainder Theorem can
also be viewed as an isomorphism of groups Z/mnZ = Z/m x Z/n.

e Classical Algebra. By this I mean the theory of solutions of polynomial equations.
Indeed, this was the context that inspired the definition of groups. Evariste Galois
invented the group concept in order to be able to talk more precisely about permutations
of the roots of a polynomial.

e Geometry and Physics. Many new concepts of “geometry” emerged in the 19th
century, including projective and hyperbolic geometry. In his Erlangen program (1872),
Felix Klein proposed to organize all of these new geometries in terms of their groups of
transformations, which can often be viewed as groups of matrices. This group-theoretic
language became fundamental to physics in the 20th century.

Thus we have three types of groups:
e Additive groups and multiplicative groups of numbers, which are abelian.
e Groups of permutations.
e Groups of matrices.

The second and third types are based on functional composition, and are in general not
abelian. These types of groups can also be viewed as “acting on” certain structures, such
as polynomials or points in space. This concept of “action” is also an important part of the
abstract theory of groups.

Definition of Group Action

Let (G, *,€) be a group and let X be a set. Suppose we have a function G x X — X,
which we denote by (g, ) — g -x. We call this function an action of G on X when the
following two properties are satisfied:

(i) For all z € X we have ¢ -z = z.
(ii) For all a,be G and x € X we have a- (b-z) = (a = b) - x.

Having such an action allows us to think of each group element a € GG as a function X — X
defined by x — a - z[®] Axiom (i) says that the identity element € € G corresponds to
the identity function X — X and axiom (ii) tells us that the group operation in G
corresponds to the composition of functions.

\ J
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Here are the two fundamental examples.

e Permuting the Inputs of a Function. Recall from the previous chapter that for
any permutation o € S, and any polynomial f(x1,...,z,) we have another polynomial
obtained by permuting the inputs of f according to o:

(U . f)(a;l, N ,:L’n) = f(xg(l), N ,xa(n)).

It is easy to check that this satisfies the axioms of group action. Namely, the group S,
acts on the ring of polynomials F[x1,...,z,]| over any field F. We can also apply this
construction to more general kinds of functions with several inputs.

e Matrices Acting on Vector Spaces. Let GL,(F) denote the group of invertible n x n
matrices with entries from a field F, which is called a general linear groupm Here the
group operation is matrix multiplication and the identity element is the identity matrix.
Let F™ denote the vector space of n x 1 column vectors. Then for each invertible matrix
A € GL,(F) we obtain a function F" — F", also defined by matrix multiplication:

AeGL,(F)and ve F" = AvelF"

As we saw in Chapter 1, matrix multiplication is defined so that the matrix AB corre-
sponds to the composition of functions A o B. Hence this is a group action.

The following theorem could also be called the “fundamental theorem of group actions”. It
is closely related to Lagrange’s Theorem from the previous section. The theorem looks quite
abstract at first, but it turns out to be quite useful.

~\
The Orbit-Stabilizer Theorem

Consider an action of a group (G, *,¢) on a set X. For each element x € X, its orbit is
the set of elements of X that can be obtained from z by the action of G{]

Orb(z) ={a-z:ae G} c X.
For each element x € X, its stabilizer is the set of elements of GG that act trivially on x:
Stab(z) ={aeG:a -z =2z} < G.

I claim that Stab(z) € G is a subgroup, and, furthermore, that the assignment a - z —
a* Stab(x) defines a bijection from elements of the orbit to (left) cosets of the stabilizer:

¢: Orb(z) — G/Stab(x)
a-x — a=* Stab(x).

"The only subtlety is that two different group elements a,b € G might correspond to the same function
X x X. That is, we might have a -z = b - x for all x € X.
" Equivalently, G L, (F) is the set of matrices with nonzero determinant.
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If the group G is finite, it then follows from Lagrange’s Theorem that the sizes of G,
Orb(x) and Stab(z) are related as follows:

#G = #O0rb(x) - # Stab(z).

Proof. First we show that Stab(xz) € G is a subgroup.
e From (i) we have € - 2 = = and hence € € Stab(x).
e Suppose that a,b € Stab(x) so that a-x =z and b-z = x. Then from (ii) we have
(axb)-x=a-(b-z)=a-x=u,

and hence a = b € Stab(z).

e Suppose that a € Stab(x) so that a -z = z. Then from (i) and (ii) we have

a-r=u1
al - (a-z)=at 2z
(atxa) - z=at z
ecx=a'lz
asza_l-ar,

and hence a~! € Stab(z).

Next we show that the function ¢(a-x) = a* Stab(z) is a bijection from the set Orb(z) to the
set of cosets G/ Stab(x). It is clearly surjective because any coset has the form a * Stab(x) =
¢(a - ). The following two-way sequence of implications shows that ¢ is well-defined and
injective:
a-x=b-realt-(a-z)=at (b-x)

—(atsa) - z=(a"xb) -z

e—=c-ax=(@'xb) -z

—z=(a"txb) x

= a !« be Stab()

<= a * Stab(z) = b* Stab(z).

The last step follows from the theorem on cosets proved in the previous section.

""In the formalism of Hamiltonian mechanics, the evolution of a physical system can be viewed as an infinite,
continuous group acting on a phase space of possible configurations. For example, the evolution of our solar
system under gravity can be viewed this way, in which case the planetary orbits are literally orbits under this
group action.

144



Finally, we apply Lagrange’s Theorem. If G is finite then the subgroup Stab(z) is finite and
the number of cosets satisfies

#(G/Stab(x)) = #G/# Stab(x).
Then since ¢ is a bijection, the orbit Orb(z) has the same size as G/ Stab(zx), hence

#(G/ Stab(x)) = #0rb(x)
#G/# Stab(z) = #0rb(z)
#G = #O0rb(x) - # Stab(z).

Are you starting to get a feel for these abstract algebra proofs? The key is to work with
the symbols literally and not try to interpret them. David Hilbert was one of the leading
mathematicians in the late 1800s and early 1900s, and was instrumental in raising the level
of rigor in the foundations of mathematics. When it comes to rigorous proofs in geometry, he
apparently said the following:

One must be able to say at all times — instead of points, straight lines, and planes
— tables, beer mugs, and chairs.

The interpretation comes after the theorem is proved.

So let’s see some interpretations.

( )
The Icosahedral Group

Let I be the group of rotational symmetries of a regular icosahedron:

This is one of the five Platonic solids, which are the polyhedra with maximal symmetry@
Suppose that the icosahedron is centered at the origin in R3. By definition each element
of a € I is a rotational function a : R? — R3 that leaves the icosahedron “looking the
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same” [T claim that
#I = 60.

Proof. Let V be the set of vertices of the icosahedron, so that #V = 12. By definition,
elements of the group [ send vertices to vertices, hence the group I acts on the set V. Fix
some vertex v € V and consider the orbit Orb(v) € V and the stabilizer Stab(v) < I. The
word “regular” in “regular icosahedron” means that any two vertices look the same with
respect to some symmetry. To be precise, for any two vertices u, v € V there exists some a € [
such that v = a(v). In other words, we hav

Orb(v) = {a(v) :ael} =V.

Now let’s consider the stabilizer Stab(v) = {a € I : a(v) = v}. Since each element of [ is a
rotation, Stab(v) consists of rotations that do not move the vertex v. Since 5 triangles meet
at each vertex, we observe that Stab(v) consists of the 5 rotations around v by angles 27k/n5,
where k = 0,1,2,3,4, hence # Stab(v) = 5. Finally, we conclude from the Orbit-Stabilizer
Theorem that

#I = #O0rb(v) - # Stab(v) = #V - # Stab(v) = 12 - 5 = 60.

In the next example we compute the size of the alternating group An@

The Alternating Group, Part 2

Recall from the previous chapter that every permutation o € S, can be expressed (in
many ways) as a composition of transpositions (ij) € S,. We defined A, < S, as
the set of permutations that can be expressed as a composition of an even number of
transpositions:

A, = {0 € S, : there exist transpositions ¢1,...,to, with 0 =t 0--- 0t}

And we showed that A, < 5, is a subgroup. Based on this definition, it is not imme-
diately clear that A, # S,. That is, it is not immediately clear that there exists any
permutation that is not alternating. Now we will use the Orbit-Stabilizer Theorem to

"The other four are the regular tetrahedron, cube, octahedron and dodecahedron.

™It is actually a bit tricky to show that this is a group. The identity and inverse axioms are easy, but it is
difficult to show that a composition of two rotations of R? is also a rotation of R3. See the homework.

80Tn this case we say that I acts transitively on the set V.

81This example is not unrelated to the previous. It is a surprising fact that the icosahedral group I is
isomorphic to the alternating group As. Maybe we will prove this later.
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prove that exactly half of the permutations are not alternating:

1 !
#Anz§#SH=%=2-3---(n—1)-n.

I will phrase the proof as a discussion. The key idea is to view A,, as the stabilizer of a very
specific polynomial in n variables. Recall that S, acts on polynomials by

(0 @1, szn) = f(@oq), - Tam))-

Now consider the polynomia][g_fl

0z, .. xy) = H (i —xj).

1<i<j<n

Observe what happens when a permutation o € S, acts on 9:

o0 = H (asg(i) — CCU(j)).

1<i<j<n

If o(i) < o(j) then the factor z,(;y — z,(;) also appears in d. But if (i) > o(j) then the
negative factor —(7,(;) — Z4(;)) appears in ¢. In other words, we must have o -§ = £4 and
the sign is determined by the number of pairs (7, j) satisfying i < j and o(i) > o(j). We give
these a special name.

( )

Inversions of a Permutation

Consider the set of pairs T = {(4,j) : 1 <i < j < n}, of size #T = (}) = n(n—1)/2. Any
permutation o € 5, breaks this set into two pieces, called inversions and non-inversions
of 0. The set of inversions is defined as follows:

Inv(o) ={(4,j):1<i<j<nand o(i) >o(j)} = T.

Then from the above discussion we see that the action of ¢ on § is determined by the

number of inversions:
o5 = (—1)#Hv(o)

Inversions can be computed graphically using the one-line notation for ¢. They corre-
spond to pairs where the larger number appears to the left. For example, the following
diagram shows the inversions of the permutation o = 3147562:

82Note that § is a square root of the discriminant A. This fact plays an important role in solvability of
polynomial equations.
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We can read the set of inversions from the diagram:

Inv(o) = {(1,2),(1,7),(3,7),(4,5),(4,6),(4,7),(6,7)}.

The key fact about inversions is that the adjacent transpositions have one inversion each. Let
us define the adjacent transpositions s1, s92,...,S8,-1 € S, by

s1=(12),s0 = (23),...8p-1 = (n,n —1).
Then one can see by drawing the diagram that Inv(s;) = {(¢,7 + 1)}. It follows from this that
si-6 = (=1)#vGs — (—1)1§ = 4.

In fact, I claim that for any transposition ¢ € S,, we have t-§ = —J. To see thisﬁ we first
observe that the transposition (37) can be expressed as follows:

(37) = (34)(45)(56)(67) (56)(45) (34).

More generally, any transposition ¢ = (ij) with ¢ < j can be expressed as a composition of an
odd number of adjacent transpositions:

t=(ij) = 808410+ 08j_208j_108j_20-+-08;410 5.
By grouping in pairs we see that #Inv(¢) = 2(j — ¢ — 1) 4+ 1, which is odd, and hence

t-6=(—1)°4d5 = —4.

Now we are ready to prove that A, = Stab(d). First, suppose that o € A, so there exist
transpositions t1, . .., tor satisfying o =t o - -- o tox, so that

G0 =1 (ty-(tg - tog-0)--) = (—1)%6 = 4.

It follows that o € Stab(d). Conversely, suppose that o € Stab(d) so that o -6 = ¢, and
assume for contradiction that o ¢ A,,. Any permutation is a composition of transpositions.

83This can also be seen by drawing the diagram in one-line notation.
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Since o is not a composition of an even number of transpositions, there exist an odd number
of transpositions t1,..., %911 such that

g =110 0lgky1,
and hence
o-0=t1-(tg-(tg - togy1-0) ) = (—1)2k+15: —9.

Since we also have ¢ - § = ¢, this implies that § = —9. But then 2§ = 0 implies § = 0, which
is a contradiction.

Finally, we observe that the orbit of § under the action of S, is just the two element set
{6,—6}. Indeed, if o is a composition of k transpositions then o - § = (—1)¥§ = 46, hence
Orb(d) < {9, —d}. And we know that both possibilities occur because id-6 = § and ¢ -6 = —9
for any transposition t. It follows from the Orbit-Stabilizer Theorem that

#O0rb(9) - # Stab(9) = #S,,
2-#A, = #5,

1

Remark: This proof is trickier than you might have expected. Secretly, we are developing
some of the properties of determinants of square matrices. Indeed, the polynomial § can be
viewed as a determinant:

2 n—1
1 x1 oy Ty X
2 n—
1 zo 3 Ty i
2 n—
det [1 23 23 - a3 = H (z; — ;).
: : : . : 1<i<j<n
2 n—1
1 zp =, -+ =z,

This is called Vandermonde’s determinant.

7.4 Quotient Groups

For any subgroup H < G we have studied the set G/H of (left) cosets. The definitions were
inspired by our previous experience with modular arithmetic:

e Every subgroup of (Z, +,0) has the form nZ for some n > 0.
e Congruence mod nZ is the same as congruence mod n.

e The set of cosets Z/nZ has n elements:

Z/nZ = {0+ nZ,1 +nZ,...,(n—1)+ nZ}.
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But Z/nZ is not only a set; it is a ring. In Chapter 4 we proved (using slightly different
language) that the following operations on cosets are well-defined:

(a +nZ)+ (b+nZ):=(a+b) +nZ,
(a +nZ)(b+ nZ) := (ab) + nZ.

Then one can check that these operations make the set Z/nZ into a ring with additive identity
0 + nZ and multiplicative identity 1 + nZ.

We will generalize this construction to arbitrary rings in the next chapter. For now we will
focus on groups, which have only a single operation. So let (G, #,¢) be a group and let H < G
be a subgroup. Then there is a natural candidate for a group operation on the set G/H F_ZI

(axH)*(bxH):=(a*b)* H.

However, this operation might not be well-defined. Let’s try to imitate the proof for Z/nZ
and see where it goes wrong. Our goal is to prove that

ap«*H=ay+«Hand by + H=by+ H = (a1*by)*H = (ag*by) = H.
By the results in the previous section this is equivalent to the following statement:
al_l*aQEHand bl_l*bQEH — (al*bl)_l*(ag*bg)EH.

So let us assume that al_l * ao = hy and b1_1 * by = hgy for some elements hq, ho € H. In this
case we want to show that (aj * b1)~!  (ag * by) € H. We begin by observing that

(ay #by) "1 # (ag * by) = b1_1 * al_1 * ag * by
= b7 " by # by,

but then we are stuck. If G is abelian then b1_1 * hy*by = hy * b1_1 x by = hy % hg € H, but in
general bfl * h1 * by need not be an element of H.

The following concept will seem unmotivated at first. It was introduced by Galois (1830) in
his study of polynomials. I will describe Galois’ motivation at the end of this section. In the
next section I will describe the modern point of view, which makes the definition seem less
random.

é )
Concept of a Normal Subgroup

Let (G, *,¢) be a group and let H € G. Then I claim that the following two conditions
are equivalent:

(N1) Forall ge G and h e H we have g+ h+g~' e H.
(N2) For all g € G the right and left cosets are equal: g« H = H = g.

When these conditions hold we say that H is a normal subgroup of G.

84Don’t take the notation too literally. Tt is not necessarily true that (a # H) # (b H) is the set of elements
of the form g1 * g2 where g; is in the set a * H and g2 is in the set b+ H.
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Remark: Every subgroup of an abelian group is normal. This concept is only interesting
for non-abelian groups such as the symmetric group or general linear groups.

Proof. (N2)=(N1): Suppose that (N2) is true. In order to prove (N1), consider any g € G
and h € H. Our goal is to show that gxh*g~' € H. Since g*h € g+ H and since g« H = Hxg
by (N2), we must have g h € H = g and hence g *h = h' % g for some h' € H. Finally, we have

gxh+g ' =hneH.

(N1)=(N2): Suppose that (N1) is true. In order to prove (N2), consider any g € G. Our goal
is to prove the following inclusions:

(i) g« HS Hxg
(i) Hxg< gxH

To prove (i), consider any element a € g * H, which must have the form a = g * h for some
h e H. Then by (N1) we have g * h* g~ = b’/ for some b’ € H and it follows that

a=g+xh=hs+geH=xg.
The proof of (ii) is similar. o
Before moving on, it is good to see at least one example of a non-normal subgroup. As

mentioned, every subgroup of an abelian group is normal so we must begin with a non-abelian
group. The smallest such group is the symmetric group of size 3! = 6:

Sy = {id, (12), (23), (13), (123), (132)}.

I claim that the subset H = {id, (12)} is an example of a non-normal subgroup. Indeed, it is a
subgroup because (12) o (12) = id and (12)~! = (12). To see that it is non-normal we observe
that property (N2) fails:

(23) o H = {(23) 0id, (23) o (12)} = {(23), (132)},
H o (23) = {ido (23), (12) 0 (23)} = {(23), (123)}.

These two cosets are not equal because the permutations (123) and (132) are not equal.

The concept of a normal subgroup allows us to construct quotient groups.
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4 )
Concept of a Quotient Group

Consider a group (G, *,¢) and a normal subgroup H < G. Then the following operation
is well-defined and makes the set of cosets G/H into a group:

(axH)*(bxH):=(a*b)* H.

Proof. Suppose that a1 * H = a9 * H and by + H = by + H for some ai1,a9,b1,b0 € G. In
this case we want to prove that (a; * by) * H = (ag # by) * H. Equivalently, we want to show
that afl * a9 € H and bfl # by € H implies (a1 * by) ™! = (ag * ba) € H. So let us suppose that
al_l * ag = hy and b1_1 x bg = hg for some hq, hg € H. Then we have

(ay =* bl)_l # (ag * by) = bl_l * al_l * Qg * by

= by x by by,

Now we will use the fact that H is normal. In particular, we will use the fact that by« H =
H * by. Since hy * by is an element of H * by, it must also be an element of by * H, so that
h1 # by = by % hg for some element hy € H. Then we have

bylshysby=b" %byxhy=ho*hse H.

as desired. Hence the operation is well-defined.
Next we check the groups axioms:

e The coset ¢ *+ H = H plays the role of the identity element. Indeed, for any element
a € G we have

(axH)x(exH)=(a*e)*H=axH=(e¢xa)*H = (¢« H)*(a* H).

e Given a coset a € H, the coset a~! * H plays the role of the inverse:

(axH)s (a7 '« H)=(axa )« H=c+H=(axa" ')+« H=(axH)*(a '+ H).

e Finally, the associative property follows from the associative property in G:

(a s H)x [(bx H) = (c+ H)] =
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That is a lot of abstraction, so there had better be some good applications. Galois originally
applied this concept to the problem of solvability of polynomials. Recall the quadratic formula:

—a++va?—4b

24ar+b=0 = z= 5

In Chapter 1 we discussed a similar formula for cubic polynomails, called Cardano’s formulaig_gl

a
2 tar’ +br+c=0 = \S/—q—&- q2+p3+\3/—q— q2+p3+§,

where p and ¢ are given in terms of a, b, ¢ by

B 3b — a?
9

and q_2%—9@+2&
a 54 '

p

As we saw, there is some difficulty to interpret this formula, but at least it gives a precise
algebraic algorithm to find the roots of the polynomial 23 + az? 4+ bx + ¢ in terms of the
coefficients, the field operations +, —, X, =, square roots v and cube roots - Cardano’s
student Ferrari gave a similar formula for equations of degree 4. After this, the central problem
of algebra was to find formulas for polynomials of higher degree.

4 )
The Central Problem of Classical Algebra

Consider the general polynomial equation of degree n:

2

2"+ a " a2+ ap_1x+ap, = 0.

Find a precise formula to express the solutions of this equation in terms of the coefficients,
the field operations +, —, X, =+, and the root operations NZEZRRRRE 2 If this can be done
then we say that the equation is solvable by radicals.

\. Y,

The cubic and quartic formulas were discovered in the early 1500s and published by Cardano
in the Ars Magna (1545). After this, progress stalled on the quintic equation. After the
efforts of many generations of “geometers” (the word “algebraist” did not yet exist), Lagrange
summarized the state of the art in his Treatise on the solution of equations in all degrees
(1770). He suggested that the general quintic is likely unsolvable but he could not find a way
to prove it. In fact, he suggested that the subject of algebra had become too complicated to
be interesting.

85We have not yet explained where this formula comes from. We will do this in Chapter 9.
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Two more generations later, Niels Henrik Abel gave the first proof of impossibility, which
was extremely complicated, as expected by Lagrange. At the same time, Evariste Galois
approached the problem from a completely different point of view. His idea was to ignore
the details and to concentrate on the “symmetries” of the roots. Here is Galois’ fundamental
theorem, written in modern language.

é )
Galois’ Solvability Theorem

The general polynomial equation of degree n is solvable by radicals if and only if there
exists a chain of subgroups in the symmetric group

Sn=Gy2G 2G22---2G, = {id},

satisfying the following two properties:
e For each i, G;11 is a normal subgroup of Gj;.

e Each quotient group G;/G;1 is abelian.
\ J

Abel died in 1829 at age 26 from tuberculosis and Galois died in 1831 at age 21 in a duel.
After this the chain of transmission was broken and it took several decades for others to pick
up on Galois’ fundamental ideas. The details of algebraic computations slowly faded away
and were replaced by the theory of permutations (called “substitutions”). The next major
progress came with Camille Jordan’s Treatise on permutations (1870). After this, even the
concept of permutations slowly faded away and was replaced by abstract “group theory”.

I will give an introduction to Galois theory in Chapter 9, but we do not have time in this
course to present a full proof of Galois’ theorem.

7.5 The First Isomorphism Theorem

This section is the most abstract one in the course. Here we will learn the modern language
that is used to discuss normal subgroups and quotient groups. The key is to focus on the “maps
between groups” instead of just the groups in themselves. This point of view was advocated
by Emmy Noether in the 1920s and became standard when her ideas were published in the
textbook Modern Algebra (1930) by van der Waerden.

(Concept of Group Homomorphism ]

| Consider two groups (G, *,¢) and (G’,e,0). A function ¢ : G — G’ is called a group
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homomorphism when the following property is satisfied for all a,b € G:
p(axb) = p(a) e p(b).

This definition satisfies the following basic properties:

(1) p(e) =0
(2) p(a™!) = ¢(a)~! for all a € G.

(3) If the inverse function ¢! : G’ — G exists then it is a group homomorphism.

\.

Proof. (1): First we observe that

ExeE =¢€
p(exe) = p(e)
p(e) o p(e) = (o)
p(e) " e p(e) e p(e) = p(e) " o p(e)
p(e) = 6.

(2): Then for any element a € G we observe that

1

axa ~ =¢
plaxat) =)
o(a)ep(a™t) =46 from (1)
pla) e p(a)epla™) = pla)" o d
pla™) =wp@)™

(3): Finally, we observe for all a’,b' € G’ that

o (7 Ha) =7 (V) = (¢ (a) e @ (¢ (V))

=ad el
Then applying ¢! to both sides gives the desired result:

e d b)) =7 (o (M) = (V) = o () x0T (V).

Concept of Group Isomorphism

By an isomorphism of groups we mean a bijective group homomorphism ¢ : G — G’
whose inverse function ¢! : G/ — G is also a group homomorphism. As we saw in the
previous proof, this second condition is redundant.
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When such an isomorphism existf0 we say that G and G’ are isomorphid] and we write
G=>G'.

We can think of an isomorphism ¢ : G — G’ are a “relabeling” of the elements of a
group, leaving the relationships between these elements the same.
\_ J

For example, we observed in the previous chapter that the groups (Z/3Z, +,0) and (43, o,id)
have the same group table, up to relabeling:

+]10 1 2 o ‘ id  (123) (132)
00 1 2 id id  (123) (132)
111 20 (123) | (123) (132) id
212 0 1 (132) | (132) id  (123)

In other words, the function ¢ : Z/3Z — As defined by ¢(0) = id, ¢(1) = (123) and ¢(2) =
(132) is a group isomorphism@

In general, we need a between way to construct isomorphisms beyond just staring at the
group tables. The following theorem can be viewed as the “fundamental theorem of group
isomorphisms”.

( )
The First Isomorphism Theorem (FIT)

Let ¢ : (G,*,e) — (G',e,0) be a group homomorphism. The kernel and image of ¢ are
the following subsets of G and G’, respectively:

kerp:={aeG:pa) =0} <G,
imp:={ae€G :3a€G,pla)=d}cqG.

I claim that im¢ = G’ is a subgroup and that ker ¢ © G is a normal subgroup. Fur-
thermore, I claim that the following is a well-defined group isomorphism:

@: G/kerp — imy
axkero — (a).
\. J

86T his isomorphism need not be unique. In general, a given pair of isomorphic groups will have many different
isomorphisms between them.

8"The word “isomorphism” is also used for other algebraic structures, such as rings and vector spaces. If the
distinction needs to be made we will say that G and G’ are isomorphic as groups.

88But it is not unique because the function w(0) = id, u(1) = (132) and u(2) = (123) is also a group
isomorphism.
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Our proof uses properties (1) and (2) of homomorphisms from the previous theorem.

Proof. First we show that ker ¢ < G is a subgroup:
e Identity. By (1) we have ¢(e) = § and hence ¢ € ker ¢.

e Inversion. Suppose that a € ker ¢, so that ¢(a) = §. Then from (2) we have

pla™) =pla)™ =071 =4,
so that a™! € ker ¢.

e Closure under group operation. Suppose that a,b € ker ¢ so that p(a) = 0 and
©(b) = 4. Then from the definition of group homomorphism we have

plaxb) =p(a)ep(b) =0ded =14,
so that a = b € ker ¢.

Next we show that ker ¢ € G is normal. To do this, consider any g € G and h € ker ¢, so that
@(h) = 6. Then from the definition of homomorphism and property (2) we have

-1

©(g) ® p(h) e ©(g)
p(g)edep(g)

o(g) e o(g)"
.

e(gxh+gt)

It follows that g * h * g~! € ker ¢, hence ker ¢ is normal by property (N1).

Next we verify that im ¢ € G’ satisfies the subgroup axioms:
e Identity. By (1) we have 6 = ¢(¢) € im .

e Inversion. Let o’ € im ¢, so that a’ = p(a) for some a € G. Then from (2) we have
() =p(a) " =p(a™!) eimep.

e Closure under group operation. Suppose that a/,0’ € im ¢ so that a’ = p(a) and
b = p(b) for some a,b € G. Then from the definition of group homomorphism we have

a et = p(a)ep(b) =p(axb)eimp.
Finally, we show that ¢ is a well-defined group isomorphism. If the function ¢ is well-defined

then then it is certainly surjective. To see that it is well-defined and injective, we observe for
all a,b e G that

axkerp =bskerp < a txbekeryp
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The following condition (N3) can be taken as the modern definition of normal subgroups. I
believe this is the correct definition because the concept of homomorphism is so natural.

4 )
Modern Definition of Normal Subgroups

Let (G, *,¢) be a group and let H € G. Then I claim that the following two conditions
are equivalent:

(N1) Forall ge G and h e H we have gxh+g ' e H.
(N2) For all g € G the right and left cosets are equal: g« H = H = g.

(N3) There exists a group G’ and a group homomorphism ¢ : G — G’ such that

keryp = H.

Proof. We have already seen that (N1) and (N2) are equivalent. We will show that (N3) is
equivalent to both of these.

First suppose that we have a group homomorphism ¢ : G — G’. Then we saw in the proof of
the FIT that ker ¢ is a normal subgroup in the sense of (N1) and (N2). Conversely, let H < G
be a normal subgroup in the sense of (N1) and (N2). In this case, we showed in the previous
section that the set of cosets G/H is a group with operation

(axH)* (bx H) = (axb)* H.
In fact, this definition says that the following quotient map is a group homomorphism:

v: G - GJ/H

a — a=*H.
Finally, since H is the identity element of the group G/H, we observe that the kernel is H:

a€kerp << pla)=H
—axH=H

—a€ H.
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The First Isomorphism Theorem is the most abstract result that we will prove in this course.
The rest is applications and examples.

Some Examples.
e The Circle Group. Consider the multiplicative circle group
Ul)={aeC:|a| =1} = {?:0eR}.
We have the following natural homomorphism from the additive group of real numbers:

v: (R, +,00 —» (UQ),x,1)

t — 627rit.
Check that this is a homomorphism:
30(751 + tg) _ e27ri(t1+t2) _ 627rit1627rit2 _ (P(tl)SO(t2)-

It is clearly surjective and its kernel is the additive group of integers:

tekerp < p(t) =1
627rit =1
= teZ.
Hence we have an isomorphism:
R/Z = R/ker p = im¢ = U(1).
The operation on the left is “addition of real numbers, modulo whole numbers”. This is

supposed to represent the set of angles under additionﬁ

e Roots of Unity. Let w = 2™/ and let Q,, denote the nth roots of unity:
Q= {1l,w,w?, ..., w1}

This is a group under multiplication: (£2,, x,1). Now consider the following surjective group
homomorphism from the additive group of integers:

v:(Z,+,0) (Q, x,1)

k — wh.
The kernel is the subgroup nZ < Z:

kekerp «— wh=1 <«— nlk

89We could also have defined o(t) = e'* with kernel 2nZ = {27k : k € Z} € R, so that U(1) = R/27xZ. 1 chose
to put the 27 in the homomorphism rather than in the kernel.
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Hence we obtain a group isomorphism:
Z/nZ = Z/ker p = im ¢ = Q.

Let me emphasize the special case n = 2. Here, the additive group consisting of {0,1} is
isomorphic to the multiplicative group consisting of {1, —1}:

({0,1}, + mod 2,0) =~ ({1,—1},x,1)
— 1
1 — —1.

e The Alternating Group. In the section on the Orbit-Stabilizer Theorem we studied the
action of the symmetric group S, on the Vandermonde polynomial

01, xy) = H (@i — xj).

1<i<j<n
Let us define the sign of the permutation o € S, as the number sgn(o) € {+1} such that
o -9 =sgn(o)d.

Since the action of S, on polynomials is “linear” (i.e., respects addition and scalar multipli-
cation) we observe that

sgn(coT1)d = (0coT)-0
)

[o-0] scalar comes outside

and hence sgn(o o 7) = sgn(o)sgn(7). In other words, the sign of a permutation is a group
homomorphism:
sgn : S, — ({£1}, x,1).

The kernel of this homomorphism is the same as the stabilizer of §, hence it follows from our
result in the Orbit-Stabilizer section that

ker(sgn) = A,.

This implies that A, < S, is a normal subgroup, and its quotient group is given by the First
Isomorphism Theorem:

Sn/An = Sp/ker(sgn) = im (sgn) = {+1}.

160



e Euler’s Isomorphism. Recall Euler’s formula:

0

e = cosf +isind.

From a more abstract point of view we can see this as a group isomorphism:
U(1) = SO(2).

To explain the notation, we define the orthogonal groups O(n) and the unitary groups U(n).
These consist of invertible n x n matrices with real (resp. complex) entries whose inverse is
equal to its transpose (resp. conjugate transpose):

O(n) = {A € Matx,(R) : ATA =T},
U(n) = {A € Mat,«,(C) : A*A = TI}.
These are complicated infinite groups. However, they can be described explicitly for small

values of n. Note that the group O(1) consists of invertible 1 x 1 matrices with real entries

(i.e., just nonzero real numbers «) whose inverse is equal to their transpose (i.e., such that

a? = aar = 1). Hence this group only has two elements:

O(1)={aeR:a?=1} = {+1}.

The group U(1) consists of invertible 1 x 1 matrices with complex entries (i.e., just nonzero
complex numbers) whose inverse is equal to their conjugate transpose (i.e., just their complex
conjugate). In other words, U(1) is just the circle group

U(l)={aeC:la] =a*a=1}.

The group O(2) is more interesting. Consider any 2 x 2 matrix A with real entries. We can
write this as o

A=|u v,
|

for some 2 x 1 column vectors u, v e R%, If A € O(2) they we must have

ATA =1
! L— . 1 0
Co )6
ulu ulv (1 0
viu viv) \0 1
lu?> uev) (1 0
wev v[2) "0 1)

which implies that u and v are perpendicular unit vectors. If we let u = (cos#,sin€) then
this gives two possible choices for v:

9 And this is the explanation for the notation U(1). The U stands for “unitary group”.
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—sinf
cos
cos
sin 0

sin 0
—cosf
In other words, every element of the group O(2) looks like one of the following matrices:
cosf —sinf cosf sinf
B = <sin6 cos 6 > or Fy= <sin9 — cos 9)

If we view these as linear functions R? — R? then the following diagram shows that Ry is
the rotation by angle 6 and Fj is the reflection across the line having angle /2 from the

positive z-axis
0
1

()

0

Observe that rotations have determinant 1 while reflections have determinant —1:

det Rp = cos?0 +sin®?0  and  det Fy = —cos? 0 —sin? 0 = —1.
Furthermore, one can check the following identities:
e RoRs = Raip,
o [\WIF3 =R, g,

IR is for Rotation and F is for reFlection (or Flip).
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e RyFs=F3R o = Foyp.

These identities show that the set of rotation matrices is a subgroup of O(2), while the set
of reflection matrices is not a subgroup. Indeed, the second identity above shows that the
composition of two reflections is a rotation. We use the following notation for the group of
rotations{??]

SO(2) ={Ry:0 R}

Finally, the classical Fuler’s formula implies that the following function is a group isomor-

phism@
p: UQ1) — SO(2)
e?  — Ry

e “Special” Matrix Groups. You have probably seen a non-rigorous treatment of matrix
determinants, including the fact that

det(AB) = det(A) det(B).

From a higher point of view we can see the determinant as a group homomorphism from the
general linear group GL,,(C) to the group of nonzero complex numbers

det : GL,(C) — (C*, x,1).
The kernel of this homomorphism is the special linear group:
SL,(C) ={A e GL,(C) : det(A) = 1}.

There is also a real version SL,(R) € GL,(R), corresponding to real invertible matrices with
determinant 1.

Since the determinant of a transpose satisfies det(AT) = det(A), we observe that the determi-
nant of an orthogonal matrix can only be 1 or —1. Indeed, if A is a real matrix then det(A)
is real, and we must have
ATA=1
det(AT) det(A) = det()
det(A)det(A) =1
det(A)? = 1.

Hence we obtain a group homomorphism:

det : O(n) — O(1) = {£1}.

92Gee the next bullet point for an explanation of this notation.

93This is closely related to the results of Section 1.5.

941t would take us too far afield to give a rigorous definition and proof. The determinant is powerful precisely
because it is hard to study.
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The kernel is called the special orthogonal group:

SO(n) ={AeO(n):det(A) =1}.

*

Finally, since the determinant of a conjugate transpose satisfies det(A*) = det(A)*, we find

that the determinant of a unitary matrix has length 1:

A*A=1
det(A*)det(A) = det(I)
det(A)* det(A) =1

|det(A)] = 1.

Hence we obtain a group homomorphism:
det : U(n) - U(1).
The kernel is called the special unitary group:
SU(n)={AeU(n):det(A) = 1}.

These groups are important in quantum physics. For example, there is a certain group homo-
morphism from SU(2) to SO(3) that is responsible for quantum spin:

spin : SU(2) — SO(3).

e The Alternating Group Again. There is an important relationship between groups of
permutations and groups of matrices. For any permutation o € S,, we let [o] denote the n x n
matrix whose 4, j entry is 1 if i = 0(j) and 0 otherwise. Essentially, the matrix [o] is obtained
from the identity matrix by permuting its columns. For example, in the group S3 we have

010 010
[(12)]={1 0 0] and [(123)]=[0 0 1
001 100

One can check that this assignment sends composition of permutations to multiplication of

matrices:
[0 o7] = [o][7].
Furthermore, it sends the inverse to the transpose and the sign to the determinant:
[c71] = [¢]" and [sgn(o)] = det[o].

The first of these identities shows that permutation matrices are orthogonal. In other words,
the function o — [o] is an injective group homomorphism from S,, to O(n):

[=]: S. — On)

o — o]
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The second identity says that this homomorphism restricts to a homomorphism from the
alternating group A, into the special orthogonal group SO(n):

[-]: A, — SO(n)

o — o]

In this sense, the alternating group is the “special” subgroup of permutations.

I included these examples of matrix groups for context and cultural exposure. You will not
be tested on this material because there is simply no time to treat it in detail.

7.6 Cyclic Groups
The concept of isomorphism is an equivalence relation on the “set of all groups”ﬁ
e Reflexive. The identity function G — G is an isomorphism.

e Symmetric. The inverse of an isomorphism G — H is an isomorphism H — G.

e Transitive. The composition of two homomorphisms is a homomorphism and the com-
position of two bijections is a bijection.

This leads to the following problem.

(The Problem of Classification ]

LFor any n = 1, describe all groups of size n up to isomorphism. J

There is always at least one group of size n; namely, (Z/nZ, +,0). And if p is prime then we
will show that (Z/pZ,+,0) is the only group of size p. However, there are many groups of
size 2F and it is impossible to describe them in any coherent way. Here is a list showing the
number of groups of small order, up to isomorphism:

n ‘1234567891011121314151617
#ofgroupsofsizen‘l112121522 1 5 1 2 1 14 1

Actually, we have seen most of these groups already. The two groups of size 4 are Z/47 and
Z7,)27. x 7/27, where the direct product is defined as the set of ordered pairs

7)27, x 7,)27. = {(a,b) : a € /27, b € 7./]27.},

9 There are some logical difficulties in thinking of the collection of all groups as a set. Similarly, Russell
showed that there can be no such thing as the “set of all sets”. If there were then we would could define

S = the set of all sets that are not members of themselves.

But this definition leads to a logical contradiction because S € S if and only if S ¢ S.
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with the componentwise group operation
(a,b) + (a’, V') = (a + a’ mod 2,b+ b mod 2).

This group is not isomorphic to Z/47Z because, for example, every element of Z/27 x Z/2Z
when added to itself gives the identity element{g_gl

(a,b) + (a,b) = (2a mod 2,2b mod 2) = (0,0).
But the elements 1 and 3 in Z/4Z do not have this property:

1+1#0mod4 and 3+3z#0mod4

The problem of classification is deep and challenging. In this course we will only take the first
step: the classification of “cyclic groups”. This study begins with the concept of the order of
an element.

The Order of an Element

Consider a group (G, *,e) and an arbitrary element a € G. Then for any integer k we
define the exponential notation

k times
f_/% .
axaq#*---%a if k>1,
ab=<e if k=0,
a_l*a_l*--.*a_i if k< -—1.
h
—k times

By a tedious case-by-case check[””] one can show that

a*tt = aF x a’.

In other words, the function ¢ : (Z,+,0) — (G, *,¢) defined by (k) = a* is a group
homomorphism. It follows from this that the set of all powers of a is a subgroup of G,
called the cyclic subgroup generated by a. We use the notation

{ay={a": keZ} =impcG.

The kernel of this homomorphism is a subgroup of (Z, +,0), hence it must have the form
nZ for some n > 0, and it follows from the FIT that

{ay =imp = Z/ker p = Z/nZ.

961f m and n are coprime then we recall from the Chinese Remainder Theorem that the group Z/mZ X Z/nZ
is isomorphic to Z/mnZ.
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To be explicit, this isomorphism says that
" =a* < k=/¢modn.

We define the order of a as an element of G as follows:

n ifn>1,
ordg(a) = #{ay = #(Z/nZ) = {

o ifn=0.
In the case of finite order we have
2 -1
(@y = fe,a,0%,...,a" 1)

and in the case of infinite order there is no repetition among the powers of a:

@={..a%a e a0, )

As a corollary we obtain a generalization of the Euler-Fermat Theorem from Chapter 4.

2
Generalized Euler-Fermat Theorem
Let G be a finite group. Then for any element a € G we have
a? = ¢
\_ J

In Chapter 4 we presented a proof due to Euler that holds for abelian groups. Now we give
the proof for non-abelian groups.

Proof. Let n = ordg(a) = #<{a). Since G is finite we must have n < o0, and by Lagrange’s
Theorem we must have

n = #{a) | #G,
so that #G = nk for some k € Z. It follows that

a?C = g™ = (a")F = F = e

Here are some more examples.

97There are 9 cases.
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Examples.

e A Matrix of Infinite Order. Let F be any field and consider the matrix
11
A= <O 1> € GLQ(F)
I claim that this matrix has infinite order. In fact, I claim that for any integer k € Z we have

w (1 k
(o))

from which it follows that A* is the identity if and only if & = 0. To prove this, we first note
that A° = I by definition. Now assume for induction that the statement is true for A*. In
this case the statement is also true for k + 1 because

1 1\ /1 k 1 k+1
k+1 _ k _ —
AT =44 _<0 1>(0 1)‘(0 1 >
Finally, we observe that

1 k\ (1 —k\ (10

0o 1/\0o 1) \0o 1)’

A7F = (AR = <é ]’“) .

e Rotation Matrices. Recall the rotation matrix

_ [cosf) —sind
= \sin® cosd

which implies that

) € GLy(R),

and recall the identities
(a) RoRg = Ryyp for all o, 5 e R.
(b) Rn = Rg if and only if a — 8 = 27k for some k € Z.
If = 2wk/n for some k,n € Z with n > 1 then it follows from (a) and (b) that
Rg = Rn0 = R27rk = Ia

so that Ry has order dividing n. The precise order is n/ged(k, n), which we will prove below.

If 6 is an irrational multiple of 27, say 8 = 27, then I claim that Ry has infinite order. To
see this, suppose for contradiction that Ry = I for some n > 1. Then from (a) we have

R, =Ry =1,
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and from (b) we conclude that nf = 27« is an integer multiple of 27, say nf = 27k. But then
we have

n2ra = 27k
a=k/n,

which contradicts the fact that « is irrational.

e Primitive nth Roots of Unity. Consider the group (C*, x,1) and let ( € C* be an
element of finite order n so that ¢ has n distinct powers:

<€> = {17 ¢ C27 ce 7Cn71}'

Since (" = 1 we see that ¢ is an nth root of unity. Furthermore, we observe that every power
of ¢ is an nth root of unity:

("= (¢ =1
It follows that (¢) is the full group of nth roots of unity:

Q, = ={1,¢,¢3,..., ¢

Any element ¢ € C* of finite order n is called a primitive nth root of unity. For example, the
usual w = e2™/" is a primitive nth root or unity. But there are others.

Below we will prove that there are exactly ¢(n) primitive nth roots of unity, where ¢(n) is
Fuler’s totient function

¢(n)={keZ:1<k<nand ged(k,n) =1}

In fact, if  is any primitive nth root of unity then we will prove that the full set of primitive
roots is {¢* : 1 < k < n and ged(k,n) = 1}. For example, consider the primitive 12th root
w = €2™/12 The numbers below 12 that are coprime to 12 are 1,5,7,11. Hence there are
exactly four primitive 12th roots of unity:

wh W Wl Wl

Here is a picture showing the primitive roots:
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To verify that ¢ = w? is a primitive root, the following diagram shows that the every 12th root
of unity is a power of (. Note that multiplying by ¢ moves 5 steps counterclockwise around

the circle:

Moreover, this picture shows that the 1,5,7,11th powers of ( are the full set of primitive
roots, as expected. From an algebraic point of view the primitive 12th roots of unity are
indistinguishable, i.e., they satisfy all of the same algebraic identities{g_g]

Messing around with intricate computations such as these eventually gave rise to the abstract
definition of a cyclic group.

é )
Concept of a Cyclic Group

We say that a group (G, #,¢) is cyclic if there exists an element a € G such that
G = {a) = {d*: ke Z}.

In this case we say that a is a generator for G. If G is cyclic then it follows from the
above discussion that

G=7Z or G=Z/nZ for somen > 1.

In particular, this implies that any two cyclic groups of the same size are isomorphic.
. J

It turns out that any group of prime size is cyclic, which implies that there is only one group
of size p up to isomorphism.

98This comment will be made precise later. It follows from the fact that the primitive nth roots of unity are
the roots of an irreducible polynomial ®,,(x) over Q, called the nth cyclotomic polynomial.
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(Groups of Prime Order ]

LLet p = 2 be prime. Then any group of size p is isomorphic to Z/pZ. J

Proof. Let G be a group of prime size p > 2 and let @ € G be a non-identity element, so
that #{a) # 1. By Lagrange’s Theorem we must have #{a)|p. However, since p is prime and
#{ay # 1 this implies that #{a) = p, and hence G = {(a). Finally, the group homomorphism
¢ : Z — G defined by (k) = a” is surjective with kernel pZ, hence

G ={ay=imp = Z/kerp = Z/pZ.

As I said at the beginning of this section, the structure of theory of groups is deep and
challenging. In this course we will only consider the structure theory of cyclic groups. If
a group G has size n then Lagrange’s Theorem says that any subgroup has size d for some
positive divisor d|n. However, for a given divisor d|n we are not guaranteed that a subgroup
of size d exists. For example, the alternating group A4 has size 12 but one can check that it
does not have a subgroup of size 6. It is also possible that for a given divisor d|n there exist
many subgroups of size d.

The following theorem says that cyclic groups satisfy a sort of converse to Lagrange’s Theorem.
We will state and prove the theorem in its abstract form, and then we will apply it to the
original example, which is the group of nth roots of unity.

The Fundamental Theorem of Cyclic Groups (FTCG)

Let G = {(a) be a cyclic group of finite size n. Then for any divisor d|n there exists a
unique subgroup of size d; namely,

" < G.

In particular, this says that every subgroup of a cyclic group is itself cyclic.
\. Y,

The proof will require the following lemma.
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Lemma: The Order of a Power

Let (G, #,¢e) be a group and let a € G be an element of finite order n. Then
(i) For any k € Z we have (a*) = (agcd(F:n)),
(ii) For any positive divisor d|n we have #{(a?) = n/d.

(i) For any k € Z we have #{a*) = n/gcd(k,n).
\_ J

Proof of the Lemma. (i): Let d = ged(k,n) with & = dk’. Our goal is to show that
(a*y = (a®). To prove {a*) < (a?), consider any power of a*, say (a¥)™ = a*™. Then we have

akm _ adk’m _ (ad)kz’m c <ad>_

To prove (a?) < (a*), consider any power of a?, say (a?)™ = a®. Since d = ged(k,n) we
know from Bézout’s Identity that d = kx + ny for some z,y € Z. Hence we have

adm _ a(kx+ny)m _ (ak)xm " (an)ym _ (ak)a:m " (g)ym _ (ak)xm c <ak>
(ii): Let d|n with n = dd’. Our goal is to prove that the first d’ powers of a? are distinct:
e,a?, (a2, ..., (ah)? 1.

Suppose for contradiction that we have 0 < k < £ < d’ with (a?)* = (a?), so that

adﬁ adk

QA=)

(ad)é _ ad)k

=E£.

Since 0 < k < ¢ < d we have 0 < { — k < d’ and hence 0 < d(¢{ — k) < dd’ = n. But since a
has order n, the identity a®*—9 = ¢ implies that d(k — {) is a multiple of n. Contradiction.

(iii): Since ged(k, n) is a divisor of n, it follows from (i) and (ii) that

#(a") = #a* 1) = n/ ged(k, n).

Proof of the FTCG. Let G = {(a) be cyclic of size n and consider a divisor d|n with n = dd'.
We will prove that <ad,> C @G is the unique subgroup of size d, in three steps:

(a) The subgroup (a®) has size d.

(b) Any cyclic subgroup H < G of size d is equal to (a® ).
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(¢) Any subgroup of G is cyclic.

(a): From the Lemma (ii) we have
#a?y = n/d = d.

(b): Consider any cyclic subgroup H = (b) < G of size d. Since G = {(a) we know that b = a*
for some k € Z. From the Lemma (i) and (ii) we have

H = <ak> _ <agcd(k,n)>

and
#H = #(a* ")) = n/ged(k, n).

Since we have assumed that #H = d this implies that gcd(k,n) = d’ and hence H = (a®).

(c): Consider any subgroup H < G. If H has size 1 then it is cyclic: H = {¢). So assume that
#H > 2, which means that a* € H for some 0 < k < n. Let m > 0 be the smallest positive
integer such that ™ € H. In this case we will show that H = (a™), and hence H is cyclic.

To prove this, we first observe that any power of a™ is in H because H is a subgroup. Hence
{@™) < H. On the other hand, we will show that any element of H is a power of a™. So
consider any element b € H. Since G = {a) we can write b = a* for some k € Z. Divide k by
m to obtain

{k =mq+ T,

0<r<m.

We observe that a” € H because a~™ € H and hence
a" =a"m™ = a*a™) e H.

But if » # 0 then this contradicts the definition of m. It follows that » = 0 and hence
b=a" =a™ = (a™)?is a power of a™, as desired. o

Remark: The proof of part (c) recalls our proof that every subgroup of (Z,+,0) has the
form nZ. In fact, there is a way to prove the FTCG by comparing subgroups of Z/nZ
with subgroups of Z. To be specific, one can show that any homomorphism ¢ : G — G’
induces a bijection between subgroups of im ¢ and subgroups of G that contain ker . This is
called the correspondence theorem. Then one can prove the FTCG by considering a surjective
homomorphism ¢ : Z — Z/nZ with ker ¢ = nZ. This proof is more conceptual, but ultimately
it would have taken longer to write out all of the details.

Now we discuss the application of the FTCG to roots of unity. At the end of Chapter 3 we
discussed the problem of factoring the polynomial 2™ — 1 in the ring Z[z] and we observed
some strange behavior. Now we are able to discuss this factorization in full detail. First we
prove a theorem on roots of unity. This was first worked out by Gauss in the final chapter of
his Disquisitiones Arithmeticae (1798), written when he was just 21 years old.

173



4 )
Primitive nth Roots of Unity

For all n > 1 let (€, x, 1) denote the group of nth roots of unity. Recall that €,, = (w)
for w = €2™/" More generally, we say that ¢ € Q, is a primitive nth root of unity if it
generates the whole group. We denote the set?] of primitive roots by

O = {CeQ,: (0=l

Then we have the following:
(1) The subgroups of €, are just Qg for positive divisors d|n.

(2) For any fixed primitive root ¢ € 2/, I claim that we have
Q) ={¢*:1<k<nand ged(k,n) = 1},

and hence the number of primitive roots is given by Euler’s totient function ¢(n).

(3) The set of nth roots of unity can be expressed as the disjoint union of primitive
dth roots of unity for positive divisors d|n:

0, = [

din

Then it follows from part (2) that

n=#0 = Y #U = > ¢(d).

dln dln

(4) More precisely, for any fixed primitive root ¢ € ], I claim that

h={¢*: 1<k <nand ged(k,n) = n/d}.

Proof. (1): For each divisor d|n we recall from the FTCG that €2, = (w) has a unique
subgroup of size d; namely (w™%). T claim that

Wy = Qq.

Indeed, we know that #(w™/%) = d, so we will be done if we can show that (W"%) < Q4. In
other words, we want to show that every power of w™ is a dth root of unity. And this is

straightforward:
o\ d
<<w”/d> ) =w™ = (W =1F = 1.

99This is not a subgroup of §,,.
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(2): Fix some primitive root ¢ € Q so that Q, = {1,¢,¢2,...,¢"'}. I claim that ¢ is a
primitive root if and only if ged(k,n) = 1. To see this, we recall from Lemma (iii) that
#(¢*) = n/ ged(k, n).
It follows that
(=% < #FH=n < ged(kn)=1.

(3): Every nth root of unity ¢ € €2, generates a cyclic subgroup ({) < ,, which from part
(1) must be {¢) = Qg for some divisor d|n. Thus we can express {2, as a disjoint union:

Q= [{Ce: =04} =][%

dn dln

(4): Finally, let ¢ € Q), so that (¢) = Q,. Then for any 1 < k < n we have
" e Qg = (M) =
= #(") =d
<= n/ged(k,n) =d
<= ged(k,n) = n/d.

We can see the identity €2, = Hd|n ¥, more clearly by reducing each of the fractions {k/n :
1 < k < n} to lowest terms. If the reduced form of the fraction k/n has denominator d then
w” is a primitive dth root of unity. For example, we have

12345 6) reduce (111251
666666 632361

If w = €*™/% (or any primitive 6th root of unity) then the primitive dth roots are
Q/1 = {wﬁ}v
3
/2 = {w }7

5= {w’ W',
6= {wh o}
Somewhat miraculously, this decomposition of the 6th roots of unity tells us how to factor the
polynomial 2% — 1 over the integers:
2% —1=(z—wh)(z—w?)(z—-uw)(z—-w)(z-uw)(z-ub
= [ =] [z = )] [(@ =)@ — )] [(@ — )@ — )]
=[z—1z+1][2* +z+1][2* -2z +1].

Here is the general theorem.

100For example, we could take ¢ = w = e2mi/n
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Cyclotomic Polynomials

For all n > 1, we define the nth cyclotomic polynomial ®,(x), whose roots are the
primitive nth roots of unity:

Op(x) = [ (@—¢)eCla].

Ceqy,

From the definition we see that the coefficients of @, (x) are in C, but I claim that in fact
the coefficients are in Z. Furthermore, I claim that the prime factorization of 2™ — 1 in
the ring Z[z] is given by the product of cyclotomic polynomials over the divisors of n:

" —1= Hi;[)d(x),
din

Note that the polynomial ®,,(x) has degree ¢(n). Thus taking degrees on both sides gives

n=> é(d).

\. J

Partial Proof. From the identity 2, = Hdln Y, we have

[Tou@) =[] [[@-0O=][[@-¢)=a"~1.

dln d|n (e, CeQn

Now we will use this to prove by induction that ®,(z) € Z[z] for all n = 1. The base case is
true because ®1(x) = = — 1 has integer coefficients. Now suppose for induction that n > 2
and that ®j(x) has integer coefficients for all 1 < k < n. From the previous identity we have

" —1=,(x)f(z),

where f(x) is the product of ®4(z) over all divisors d|n except d = n. By induction, this f(x)
is a product of polynomials with integer coefficients, hence f(x) itself has integer coefficients.

Next we observe that f(x) has leading coefficient 1 since it is a product of polynomials ®4(x),
each with leading coefficient 1. This means that we can perform long divisior@ in the ring
Z|x] to obtain polynomials ¢(z),r(z) € Z[z] satisfying

{xn —1=q(@)f(x) +r(2),
r(z) = 0 or deg(r) < deg(f).

1011y Chapter 2 we only discussed long division over a field. It turns out that long division can be performed
over any ring, as long as the leading coefficient of the divisor is a unit. Since 1 is a unit and Z, we can divide
by any polynomial with leading coefficient 1.
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On the other hand, we have the identity ™ — 1 = ®,,(x)f(z) + 0 in the ring C[z]. It follows
from uniqueness of quotients in C[z] that

D, (z) = q(x) € Z|x].

The only thing remaining is to prove that each cyclotomic polynomial is irreducible over the
ring ZFT_YZI This is quite tricky. Gauss gave a complicated proof that ®,(z) is irreducible for
prime p, and this proof was later simplified by Gotthold Eisenstein@ As far as I am aware,
Gauss did not prove that &, (z) is irreducible for all n. The first proofs were given 50 years
later by Kronecker and Dedekind, and they are too complicated for us.

The polynomials ®,,(z) have surprisingly random behavior. There is no closed formula for
their coefficients, but they can be computed recursively using the identity " —1 = [ | din D, ().
Here are the first twelve:

D, (z)

r—1

r+1

2 +r+1

22 +1

D+ttt +a+1
22—z +1
P+ttt 4+ +1
zt+1

20+ a3+ 1

-t —r+1
204294+ "+ a4+ P+t 3+l 4+ 1
=22+ 1

CE oo otk w3

—_
[\]

You might see some patterns here. For example, for any prime p we observe that
Op(r)=aP 2P+t L

This is easy to prove. Since the only divisors of p are 1 and p we must have

O (2)Pp(x) = 2P —1
(= 1)Pp(z) = 2" -1
Pp(z) = (2 —1)/(z — 1)
Pp(r) =aP L +aP 2+ a1

102This is equivalent to being irreducible over the field Q. The equivalence is called Gauss’ Lemma. It is not
that tricky to prove but we have run out of time.
1031t uses the so-called Eisenstein criterion for irreducibility.
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Another pattern you might observe is that the nonzero coefficients are all either 1 or —1,
and you might conjecture that this is always the case. But actually this is false. The first
cyclotomic polynomial with a coefficient larger than 1 is

Bros(x) = 228 1217 4216 413 412 _9pAl A0 39 | 36 | 35, 34, 83, 82, 31 28

—x26—x24—a:22—x20+m17+x16+az15+xl4+x13+x12—xg—x8—2x7—x6—x5+x2+x+1.

And it is known that arbitrarily large coefficients can occur.
We end this chapter by completing our discussion of the 12th roots of unity.

Example: 12th Roots of Unity. Let w = ¢2™/12 50 that

1 2 3 4 5 6 7 8 9 10 11 12
Qo = {w",w,w’,w*,w’,w,w W w W w W}

The subgroups of 219 are

O = W' = {1},
Qy = (W% = {° w'?} = {-1,1},
Q3 = W = [t Wb, w2} = {(—1 +iv3)/2, (—1 — iv/3)/2, 1},
Q= <w3> = {w?’,wﬁ,wg,wm} = {i,—1,—i, 1},
Qe = <w2>
_ {w2’w4’w6’w87w107w12}

and Qo = (w') itself. The sets of primitive roots are

0 = {w',
@ = {°},
Q% = {w',w,
Q) = {0},
Q% = {w27w10}a

/12 _ {w7w57w77w11}’

which correspond to the cyclotomic polynomials

Oy(z) = (z—w®) =2 -1,

Py(z) = (z —wb) =2 +1,

P3(z) = (z —wH)(z—w®) =2+ 241,
Py(z) = (2 — ) (z — ) = 2% +1,



Dg(z) = (2 — ) (z —w®) =22 —z +1,

Do) = (2 —w)(z — ) (z —w)(z —wl) =2 — 2 + 1.
Finally, we obtain the irreducible factorization of the polynomial 22 — 1 over the integers:

(z — )( —wh) (@ - wh?)

[(z = )] [(z =] [(z — w)(@ - )z —w )z —w!)]
Oy (2 ) 2(90) 3(2) P4 () B (2) P12z

=z-DE+)@?+z+ D)+ D@ -z + 1)zt —22 +1).

~—

8 Field Extensions

8.1 Some Ring Theory

Ring theory is dangerous. Like group theory, the abstract theory of rings is extremely deep.
With groups it was easy for me to omit various definitions without telling you because the
whole concept of groups seems unfamiliar. Rings seem superficially familiar because they are
based on “numbers” and “polynomials”. However, the abstract theory is quite wild and leads
quickly away from intuition. My goal in this section is to say just enough, without veering
into unnecessary abstraction

We are guided by the example of modular arithmetic. In the previous chapter we showed that
the subgroups of (Z, +0) are precisely nZ for integers n = 0. We constructed the set of cosets

Z/nZ = {a+ nZ: a € L},
and defined on this the following group operation:
(a+nZ)+ (b+nZ)= (a+b)+ nZ.
We called (Z/nZ, +,0+nZ) a quotient group. Furthermore, we had a quotient homomorphism

v: Z — Z/nZ
a — a+nZ,

with kernel nZ. But we saw in Chapter 4 that Z/nZ is not just an additive group; it also has
a multiplication operation, making it into a ring. This multiplication is defined on cosets as
follows:

(a + nZ)(b+ nZ) = (ab) + nZ.

If we can show that this is well-defined then the ring properties will follow immediately. So let
me recall the proof that it is well-defined. Assume that a +nZ = a’ +nZ and b+nZ =V +nZ

104This was also a challenge in Chapter 3 on Unique Prime Factorization. In some sense it would be more
efficient to prove the unique factorization theorem in the context of Principal Ideal Domains. On the other
hand, I believe that approach is too abstract for students learning the material for the first time.
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so that a —a’ € nZ and b — b’ € nZ. In this case we wish to show that ab — o’/ € nZ, so that
(ab) +nZ = (a'V’) + nZ as sets. In Chapter 4 we did this by first naming integers k, ¢ € Z such
that @ —a’ = nk and b — b’ = ¢nl, and then we expressed ab — a’b’ as n(something). Today I
will avoid doing this because this method doesn’t lend itself to generalization. Instead I will
refer to the following abstract properties of the set nZ:

e For all ¢, d € nZ we have ¢ + d € nZ.
e For all ce Z and d € nZ we have cd € nZ.
Then since a — a’ and b — V' are in nZ we immediately have

ab—ad't' =ab—db+db—dt =(a—d)+d((b-V)enZ

This example inspires the following definition.

Ideals and Quotient Rings

Consider a ring (R, +,-,0,1) and a subset I € R. We say that I is an ideal of R when
the following two properties are satisfied:

e For all ¢,d € I we have ¢ + d € I. Equivalently, (I,+,0) is a subgroup of (R, +,0).
e For all ce R and d e I we have cd € I.

Since (I, +,0) is a subgroup of (R, +,0) we may construct the quotient group R/I with
operation
(a+I)+(b+1)=(a+b)+1I.

The second property of ideals guarantees that the following multiplication operation is
also well-defined:
(a+I)(b+1I)=(ab) + 1.

Then it is an easy and boring exercise to check that R/I is a ring with additive identity
0 + I and multiplicative identity 1 + I.
\ J

Proof. Suppose that a+ I =a+Tandb+1 =¥ +1,s0thata—a’ €I and b—b € I. Then
since [ is closed under multiplication by elements of R we have

ab—ad'b =ab—adb+adb—adt =(a—d)b+db-V)el,

and hence (ab) + I = (a’t') + 1. o

The general theory of ideals is quite elaborate. In this class we are only interested in the
following special cases.
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r
A Field is a Ring With Exactly Two Ideals

Every ring R has a zero ideal {0} € R and a unit ideal R < RI'%] We call it the “unit
ideal” because of the following fact: For any ideal I € R we have

I=R <— I contains a unit.

It follows from this that R is a field if and only if it has exactly two ideals.
\_ J

Proof. First suppose that I = R. In this case I contains every unit of R. In particular, 1 € I.
Conversely, suppose that I contains a unit, say v € I. Since [ is and ideal with u € I and
u~! € R this implies that 1 = wu~' € I. Finally, for any a € R we have a = la € I, which
implies that I = R.

Now we will show that R is a field if and only if it has exactly two ideals. For one direction,
suppose that R is a field. Then any nonzero ideal I contains a nonzero element of R. Since
every nonzero element of a field is a unit, this implies that I contains a unit, hence I = R.
For the other direction, suppose that R has exactly two ideals {0} and R. For any element
a € R, the following set is an ideal:

aR = {ab:be R}.

Indeed, for any ab,ac € aR and d € R we have ab+ac = a(b+¢) € aR and (ab)d = a(bc) € aR.
If a # 0 then we have aR # {0} and hence aR = R, since R has only two ideals. It follows
that 1 € aR and hence 1 = ab for some b € R. In other words, R is a field. o

Thus fields are the “simplest” rings from the point of view of ideal theory. The next simplest
kind of rings are the the so-called “principal ideal domains”. The most important class of
these are the Fuclidean domains, which we studied in Chapter 3.

( )

Quotients of Euclidean Domains

Let (R, N) be a Euclidean domain. Then:

(i) Every ideal has the form aR < R for some element a € R. An ideal of the form
aR < R is called the principal ideal generated by a and any domain having only
principal ideals is called a principal ideal domain (PID).

(ii) There is a bijection between ideals and association classes of elements:

aR=bR <= a~0.

105 Technically: We do allow the case where {0} = R. This is called the zero ring. However, it is an axiom of
fields that 0 # 1, so there is no such thing as the zero field.
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L (iii) R/pR is a field if and only if p € R is prime[l9] J

Proof. (i): Let I € R be an ideal. The zero ideal is principal: {0} = OR. So let us assume
that I # {0} and let a € I be a nonzero element with smallest possible size N(a). In this case
I claim that I = aR. Indeed, since [ is an ideal we have ab € I for any b € R, hence aR < I.
On the other hand we may divide any element ¢ € I by a to obtain

c=aq+r,
r=0or N(r) < N(a).

Since a, c € I we note that r = ¢ —aqg € I. If r # 0 then r is a nonzero element of I with size
strictly smaller than a, which a contradiction. It follows that » = 0 and hence ¢ = aq € aR.
Since this holds for any ¢ € I we have shown that I < aR as desired.

(ii): Next we show that aR = bR if and only if a ~ b. If one of a or b is zero then so is the
other. So let us assume that a and b are both nonzero. For one direction, suppose that a ~ b
so that a = bu and b = au~! for some unit u € R. For all € R it follows that ar = b(ur) € bR
and br = a(u~1r) € aR. Hence we have aR < bR and bR < aR. For the other direction,
suppose that aR = bR. Since a € aR this implies that a € bR and hence a = bu for some
u € R. Similarly, since b € bR = aR we have b = av for some v € R. Then since R is a domain
and b # 0 we find that v and v are units:

b=av
b = buv

b(1 —uv) =0
1—uv=0.

Hence a ~ b.

(iii): Let p € R be prime and consider the quotient ring R/pR. We will use the Extended
Euclidean Algorithm from Chapter 3 to prove that R/pR is a field. This is the same proof
that we used to show that Z/pZ is a field. So consider any nonzero element of the quotient
ring: a + pR # 0+ pR. By definition this means that p{ a. Since p is prime this implies that
ged(a,p) = 1, hence from the Extended Euclidean Algorithm we can find b,c¢ € R such that
ab + pc = 1. Finally, we conclude that

(a+pR)(b+pR) =ab+pR = (1—pc)+pR=1+pR,

so that a + pR has a multiplicative inverse.

Conversely, suppose that p € R is not prime. That is, suppose that we have p = ab for some
a,b € R both non-associate to p. In particular, this implies that p { a since p|a and a|p would

1061 R itself is a field then we can also allow p = 0, since R/OR = R.
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imply p ~ a. Similarly, we have p {b. But then we have two nonzero cosets a + pR # 0 + pR
and b+ pR # 0 + pR whose product in R/pR zero:

(a+pR)(b+pR)=ab+pR=p+pR=0+pR.

Hence R/pR is not a domain. o

Note that a field is trivially a PID since the zero and unit ideals are principal:
{0} =0R and R=1R.
More interesting examples come from our favorite Euclidean domains Z and F[x]:
e Every ideal of Z has the form nZ for some n € Z. Recall that Z* = {£1}, hence we have
ml =nZ <= m=1n.

It follows that each ideal can be expressed uniquely in the form nZ for some n = 0.

e Every ideal of F[z] has the form f(z)F[z] for some f(x) € F[z]. Recall that the units of
F[x] are the non-zero constants F*. Thus we have

f(@)F[z] = g(2)F[z] <= f(x)= Ag(z) for some \ € F*.
It follows that every non-zero ideal of F[z] can be expressed uniquely in the form
m(z)F[x] for some monic polynomial m(x) € F[z] (i.e., with leading coefficient 1).
Just for context, let me briefly mention the two simplest examplesfrirl of non-PIDs:
Z|x] and F[z,y].
Indeed, one can check that the following sets are non-principal ideals of Z[x] and F[z, y]:

2Z[x] + xZ[z] = {2f(2) + 2g(2) : f(2),g(x) € Z[x]},
eFlz,y] + yFlz,y] = {=f(2,y) +yg(z,y) : f(x,y),9(x,y) € Flz,y]}.

It is much harder to classify the ideals of these rings, so we won’t even try.

As with groups, the modern study of rings is expressed in terms of homomorphism and isomor-
phism. These concepts are packaged together in the First Isomorphism Theorem for Rings.
Most of this follows from the First Isomorphism Theorem for (Abelian) Groups. We just need
to include the multiplicative structure.

107The original example of a ring that is not a PID is the ring Z[v/-5] = {a + by/—5}. The lack of unique
prime factorization in rings such as these frustrated early attempts to prove Fermat’s Last Theorem.
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Definition of Ring Homomorphism

Consider rings (R, +,-,0,1) and (R, +,-,0',1") and a function ¢ : R — R’. We say that
@ is a ring homomorphism when

(i) w(a+0b) = p(a) + ¢(b),
(i) p(ab) = p(a)p(b),
(iii) (1) = 1",

The first axiom says that ¢ : (R,+,0) — (R’,+,0) is a group homomorphism, which
implies that ¢(0) = 0" as follows:

0+0=0
¢(0+0) = ¢(0)
©(0) + ©(0) = »(0)
©(0) + ¢(0) — »(0) = ¢(0) — ¢(0)
¢(0) =0".

However, the second axiom ¢(ab) = ¢(a)p(b) does not imply that p(1) = 1, because we
are not necessarily allowed to divide in a ring. Indeed, if we try to use the same proof
idea then we get stuck:

1.
p(1-1
p(L)e(1

Now we cannot conclude that ¢(1) = 1’ because we are not allowed to “divide both sides
by ¢(1)”. Hence we must include ¢(1) = 1’ as an axiom.

I
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We should think of a ring (R, +,-,0,1) as an abelian group (R, +,0) with some extra decora-
tions. Thus the kernel of a ring homomorphism ¢ : R — R’ is defined as the set of a € R such
that ¢(a) = 0'. The First Isomorphism Theorem confirms that this is the correct definition.

The First Isomorphism Theorem for Rings

N

Consider a ring homomorphism ¢ : (R, +,-,0,1) — (R, +,-,0',1"). We define the image
and kernel as follows:

imp={a € R :3ae R,p(a) =d},
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kerp = {a€ R:p(a) =0}.

I claim that imp < R’ is a subring and ker ¢ < R is an ideal[l%8] Furthermore, I claim
that the following map is a well-defined ring isomorphism:

@: R/kerp — imy
a+kerp — p(a).
\_ J

Proof. A subring S € R is a subset that is closed under the ring operations +, - and contains
the special elements 0,1. Consider any two elements of the image: @’ = ¢(a) and b’ = p(b).
Since a’ + V' = ¢(a) + ¢(b) = p(a + b) and d'b/ = p(a)p(b) = p(ab), we see that a’ + b" and
a’'t’ are also in the image. And since ¢(0) = 0" and p(1) = 1/, we see that 0’ and 1’ are in the
image. Hence im ¢ € R’ is a subring.

Next we show that kerp < R is an ideal. Since ker ¢ was defined in terms of the additive
structure (R, +,0) we already know from the previous chapter that ker ¢ is an additive sub-
grouplrig] Thus we only need to check the second axioms for ideals. Suppose that a € R and
b € ker ¢, so that ¢(b) = 0/. Then we have p(ab) = p(a)p(b) = p(a)-0' = 0/, so that ab € ker .

Finally, we check that @(a+ker ¢) = ¢(a) is a well-defined ring isomorphism. We already know
from the previous chapter that this is a well-defined isomorphism of additive groups. Hence
we only need to check that ¢ is a ring homomorphism. Indeed, it preserves multiplication
because

&((a + ker o) (b + ker p)) ab + ker )

(

(ab)
(a)p(b)
P

a + ker p)@(b + ker ¢).

¢
@
@

And it preserves the unit element because

P(1+kerg) = p(1) =1".

8.2 The Minimal Polynomial Theorem

In Chapter 4 we developed the theory of “modular arithmetic” in the ring Z. Now we pursue
the analogous theory in the ring of polynomials F[z] over a field F. Even though the two
theories are analogous, they are still very different. The ideal theory of F[z] is encoded via
“evaluation homomorphisms”.

108 The image is almost never an ideal and the kernel is almost never a subring.
109Tt’s easy enough to check it again. Given a,b € ker ¢ we have ¢(a — b) = ¢(a) — () = 0' — 0’ = 0’ and
hence a — b € ker .
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Evaluation Homomorphisms

Let E < F be a field extension. Then for any element « € E we have a ring homomorphism
F[x] — E defined by evaluating polynomials at x = «:

Pa/F * IF[‘T] -
—
We can view this as the unique ring homomorphism F[z] — E that fixes elements of F and
sends x to a. We include F in the notation “p, " to indicate that this homomorphism
fixes elements of F. The symbol “/” here is not mathematical; it is an abbreviation for

the English word “over”. The symbol “a/F” indicates that we are thinking of « as an
element of a field extension of F.

The unique ring homomorphism ¢, : F[z] — E is analogous to the unique group homomor-
phism ¢, : (Z,+,0) — G that sends an integer k € Z to the power a® € G. Just as the image
{ay = im @, S G is the subgroup generated by a (i.e., the smallest subgroup of G that contains
a), the image of ¢, r is the “subring of E generated by a over F”.

Adjoining an Element to a Field

Consider an element of a field extension a € E € F with corresponding evaluation homo-
morphism ¢, r : F[z] — E. We denote the image by

Fla] :=im e p = {f(a) : f(x) € Flz]}.

Being the image of a ring homomorphism, F[«] is necessarily a subring of E. I claim that
it is the smallest subring of E that contains o and F. Based on this idea, we refer
to the rind™1Y F[a] as “F adjoin o”.

\ J

Proof. Let R € E be any subring containing F and «, and consider an arbitrary polynomial
f(z) =ap+ai+ -+ apz" € Flz].
Since ag, ..., an,« € R and since R is closed under addition and multiplication, we see that

fla) =a9+a1a+ -+ ana™ € R.

HOTf v is a root of some polynomial over F then we will prove below in the Minimal Polynomial Theorem that
F[«] is actually a field. This is surprising.
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Since this holds for any f(z) € F[x] we conclude that F[a] € R as desired. o

Now we discuss the kernel of ¢, /p. There are two essentially different cases.

Algebraic vs Transcendental Elements over a Field

Consider an element o € E 2 F with evaluation homomorphism ¢, : F[z] — E. Since
F[z] is a PID we know that the kernel of ¢, p is a principal ideal. There are two essentially
different cases:

o If ker p,/p = {0} then we say that « is transcendental over F. For example, Lin-
demann proved in 1882 that = = 3.14--- is transcendental over Q. It is generally
quite difficult to prove that a given complex number is transcendental over Q]

o If ker ¢, p # {0} then since F[x] is a PID there exists a unique monic polynomial
mq k() € F[z] such that

ker o5 = map(2)Flz] = {mam(z)g(z) - g(z) € Flz]}.
Equivalently, for all f(z) € F[z] we have
fla)=0 <= myr() ’ f(z) in the ring F[z].

In this case we say that « is algebraic over F and we call ma/F(x) the minimal

polynomzial for o over F.
\. Y,

The concept of a minimal polynomial is a direct generalization of Descartes’ Factor Theorem.
Indeed, for any element « € F and for any polynomial f(x) € F[x], Descartes says that

fl@)=0 <= (z—a)|f(z)in the ring F[z].
In other words, if a € F then the minimal polynomial of o over F is ma/F(x) =r—aqQ.
We also saw a slightly more general example last semester. For any real polynomial f(x) € R[z]
and for a fixed square root ¢ = 4/—1, we showed that

fi)=0 — (2°+1) | f(z) in the ring R[z],

110One can show that the algebraic numbers over Q are countable, but the complex numbers are uncountable.
The most famous transcendental number that cannot be proved to be so is the Fuler-Mascheroni constant:

. B!
v = nh_r)lgo (logn + kZ::l k) ~ 0.577.

In fact, no one even knows how to prove that - is irrational.
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so that m;g(z) = x? 4+ 1 is the minimal polynomial of i over R. On the other hand, the
minimal polynomial of i over C is m;,c(r) = x —i. This is why we include the field in the
notation for minimal polynomials.

Since the evaluation homomorphism ;g : R[z] — C is surjective, it follows from the First
Isomorphism Theorem that
Rlz] — _ Rlz]
(22 + 1)R[z]  ker ©i/R

=~ im ;g = R[i] = C.

This is Cauchy’s construction of the complex numbers, which we discussed in section 6.8.
Recall that we did a lot of work in Chapter 1 to construct the complex numbers and to prove
their basic properties. The following theorem is a generalization of this construction. We will
apply it in the next two sections when we construct finite fields.

(" )

The Minimal Polynomial Theorem

Consider an element a € E 2 F with evaluation homomorphism ¢, : Flz] — E. Let «
be algebraic over F with minimal polynomial m,, r(7) € F[z]. Then we have the following:

(1) The minimal polynomial m, () is irreducible over F. Furthermore, if f(a) =0
for some irreducible monic polynomial f(z) € F[z] then f(z) = m,r(z).

(2) The subring F[a] < E is actually a field.
(3) If d = deg(mq/r) then every element 3 € F[a] has a unique expression of the form

B =by+bia+ba®+ -+ bg_1a%,

for some elements by, by, ...,b4_1.

Proof. (1): Let myp(v) = g(x)h(z) for some g(x), h(z) € F[x]. Substituting a gives

0 = mqm(a) = g(@)h(a),

which implies that g(a) = 0 or h(a) = 0 since we are working in a domain. Without loss,
suppose that g(a) = 0. By definition of m p(x) this means that m,r(x)|g(x). On the other
hand we have g(x)|mq/r(7) by assumption. Since we are working in a domain this implies
that mqr(z) ~ g(z). Hence m,p() is irreducible over F.

Now let f(x) € F[z] be monic and irreducible over F, with f(a) = 0. By definition of the
minimal polynomial we have m p(7)|f(x). Then since f(z) is irreducible we have m r(r) =
Af(x) for some A € F. Finally, since m,/r(r) and f(x) are both monic we have A = 1.
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(2): The The First Isomorphism Theorem for Rings tells us that
Fle] _ Fla]
ker Pa/F ma/F(x)F[x] .

Fla] = im ¢, r =

Then since m,p(x) € F[z] is a prime element of a Euclidean domain, it follows from the
previous section that this quotient ring is a field.

(3): Let d = deg(mqr) and consider an arbitrary element 3 € F[a]. By definition, we can
write 8 = f(«) for some polynomial f(z) € F[x]. Divide this f(z) by the minimal polynomial
mqr(7) to obtain polynomials ¢(x),r(z) € F[z] satisfying

{ f(@) = moe(2)q(x) + (),
r(x) =0 or deg(r) < deg(mq/r)-

Since r(x) = 0 or deg(r) < deg(mq/r) = d, we can write

r(x) =by +brx+--- bg_1z% 1,
for some elements by, ...,bg—1 € F. Then substitute x = « to obtain
8= fla)

= mqr(a)q(a) +r(a)
=0-q(a) +r(a)
=r(a)

=by+baa+---+ bd_lad_l.

To prove uniqueness of this expression, suppose that we have

d—1 d—1

bo+bia+ -+ by 1 =ct+ca+---+cg 1"

for some by, ...,bq_1,¢co,...,cq—1 € F. We wish to show that b; = ¢; for all 7. To do this, we
define polynomials r(x) = by + bz + bg_12% ! and s(x) = co + c1z + - -+ + cq_1297 1. We will
be done if we can show that r(x) — s(z) is the zero polynomial, since then the coefficients of
r(z) and s(x) will be equal.

By assumption we have r(a) = s(a) and hence r(a) — s(a) = 0. In other words, we have
r(z)—s(x) € ker ¢, /r, which implies that r(x) —s(z) is divisible by m (). If 7(z) —s(x) # 0
then this gives a contradiction:

d = deg(mqr) < deg(r — s) < max{deg(r),deg(s)} < d.

Hence r(z) — s(z) = 0 as desired. o

To end this section we will discuss a few examples. Each example will require us to prove that
a certain polynomial is irreducible over @, and each time we will use the following trick.
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r
The Rational Root Test

For any polynomial f(z) € Z[a:]@] there is a finite algorithm to determine all of the
rational or roots of f(x), or to prove that no such roots exist. Suppose that

f(x) =co+ciz+ -+ cpa" € Zz],

with ¢, # 0. If f(a/b) = 0 for some integers a,b € Z with ged(a,b) = 1 then we must
have alcy and b|c,,. This gives a finite list of possible roots a/b € Q.

\. J

Proof. Suppose that f(a) = 0 for some o € Q and write @ = a/b with a,b € Z and
ged(a, b) = 1. Substitute a/b into the expression for f(x) and multiply both sides by n:

f(a/b) =0
co+ci1(a/b) + -+ ep(a/b)” =0

cob” + crab™ L+ -+ cpa™ = 0.
We find that b divides ¢,a™ because

cob” + crab™ t+ -+ ep_1a™ b = —cpa®

blcob" ' 4 c1ab™ 2 4 -+ 10 = —cpa”.

Then since b|c,a™ and ged(a,b) = 1 we must have b|c, [T A similar proof shows that a|co. o

Furthermore, we recall the following result from Chapter 3.

~
Irreducible Polynomials of Small Degree
Let f(x) € F[z] have degree 2 or 3. Then
f(z) is irreducible over F <= f(x) has no root in F.
\. J
Examples.

H2We can also allow f(z) € Q[z] since the roots of f(x) are the same as the roots of m - f(z) € Z[x] where

m € Z is least common multiple of the denominators of the coefficients of f(z).
"3Recall: If b|ca and ged(a,b) = 1 then we can write 1 = ax + by for some z,y € Z and then multiply both

sides by ¢ to get ¢ = caz + cby = b(something), hence blc.
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e Square Roots of Integers. Consider any integer d € Z and a fixed square root v/d € C.
Suppose that v/d ¢ Z, so that v/d ¢ Q. In other words, assume that the polynomial 22 — d €
Q[z] has no roots in Q. From the above result this implies that 22 — d is irreducible over Q,
hence it is the minimal polynomial for v/d over Q:

m. /zo(@) = 2% — d e Q[z].
Thus from the Minimal Polynomial Theorem we obtain a field by adjoining v/d to Q:
Q[Vd] = {a + bVd : for unique a,b € Q}.

In this case, division is achieved by “rationalizing the denominator”:

3 o () () 2

a+b\/3:a+b\/&.a—b\/ﬁ: a? — b%d a? — b%d

e Cube Roots of 1. Let w € C be any primitive 3rd root of unity, for example w = e7/3,

Recall™] that w is a root of the cyclotomic polynomial
®3(z) =22+ + 1.

I claim that ®3(z) is the minimal polynomial of w over Q. Since the degree is 2 we only need
to show that ®3(z) has no root in Q and for this we use the Rational Root Test. Suppose
that ®3(a/b) = 0 for some a,b € Z with ged(a,b) = 1. Then we must have a|l and b|1, hence
a/b = +1. But we see that +1 and —1 are not roots of 22 + z + 1. We conclude that ®3(z) is
irreducibld'™], and hence

my,g(z) = P3(x) = 2 o+ 1

Thus from the MPT we obtain the following field by adjoining w to Q:
Q[w] = {a + bw : for unique a,b € Q}.

This time it is not so clear how to perform division, since we don’t know how to define
“conjugation”. Instead we pursue a brute force approach. Suppose that elements a + bw and
¢ + dw satisfy

(@ +bw)(c+ dw) = 1 + Ow.

We assume that a,b € Q are known and we try to solve for ¢,d € Q. Expand the left hand
side and use the identity w? + w + 1 = 0 to obtain
(a + bw)(c + dw) = ac + (ad + be)w + bdw?
= ac+ (ad + be)w + bd(—1 — w)
= (ac — bd) + (ad + bc — bd)w.

MiGince 0 =w® — 1= (w—1)(w? + w+1) and w — 1 # 0 we must have w? + w+1 = 0.
15\ ore generally, it is true that any cyclotomic polynomial @, (z) is irreducible over Q, and hence is the
minimal polynomial of any primitive nth root of unity over Q.
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Since the coefficients are unique, comparing with the right hand side gives the following system
of two linear equations in the two unknowns ¢, d € Q:

ac — bd = 1,
be + (a—b)d

This can be solved by inverting the coefficient matrix:
a —b (1
b a—0» ~—\0
b a— b 0
c\ a—b b\ (1
"~ ala — b +b62\ =b a)\O
a—b
T a2+ b2 —ab b2 ab \ —b )’

1 B a—>b N —b "
a+bw \a2+b2—ab a? 4+ b2 —ab

In retrospect, we see that the map a + bw — (a — b) — bw plays the role of “conjugation” in
the field Q[w]. In the next example it will not be so easy to find a “conjugation” map.

We conclude that

e Cube Roots of 2. Let w € C be any fixed cube root of 2, so that w3 = 2. One can see
using the Rational Root Test that any root a/b € Q (in lowest terms) of the polynomial 23 — 2
must satisfy a|2 and b|1, hence a/b = +£1 or +2. But none of these is a root of #3 — 2. Thus
23 — 2 is irreducible over Q and must be the minimal polynomial of « over Q:

mqg(r) = z3 — 2.
It follows that we obtain a field by adjoining « to Q:
Q[a] = {a + ba + ca? : for unique a, b, c € Q}.

To practice computations in this field, let’s compute the inverse of 1 + a + o?. From the
Minimal Polynomial Theorem we know that there exist unique a, b, c € Q satisfying

(1+a+a?)(a+ba+ca?) =1+ 0a+ 0a
In order to solve for a, b, ¢, we expand the left hand side and use the fact that o = 2:

(1+a+a?)(a+ba+ca?) =a+ba+ ca®
+ aa + ba? + ca’®
+ ac® + bad + cat
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— a+ ba + co?
+ aa + ba? + 2¢
+ aa® 4 2b + 2ca
= (a+2b+2¢) + (a+b+2c)a+ (a+b+c)

Since the coefficients are unique, comparing coefficients with the right hand side gives a system
of three linear equations in the three unknowns a, b, c € Q:

a + 20 + 2¢ = 1,
a + b + 2¢ = 0,
a + b + ¢ = 0.

After a bit of work, one sees that (a,b,c) = (—1,1,0), so that

1

More generally, the equation (r + sa + ta?)(a + ba + ca?) = 1 + 0a + 0a? leads the following
system of linear equations in the unknowns a, b, c:

ra + 2tb + 2sc¢ = 1,
sa + rb + 2tc = 0,
ta + sb + rc = 0.

My computer says that the solution is

(a,b,¢) — r2 —2st 22 —rs s*—rt
» Yy - A 9 A 9 A 9

where A = r3 + 253 4+ 4¢3 — 6rst is the determinant of the coefficient matrix. Clearly it is not
worthwhile to do these calculations by hand.

Remark on “rationalizing the denominator”: This time each element of the field Q[«] will have
two conjugates, obtained by replacing a with one of the other two roots of 2% — 2; namely,
wa or w?a, where w is a primitive 3rd root of unity. Denote these “conjugation maps”

together with the identity map, by
o1(r + sa + ta?) := 1 + s(wa) + t(wa)?

)
oo (r + sa + ta?) 1= r + s(w?a) + t(w?a)?.

For a given element 3 = r + sa + ta? € F[a], one can check that

o1(B)o2(B) = (r2 — 2st) + (2752 —rs)a+ (82 — Tt)a2,
Bo1(B)o2(B) = (13 + 25 + 4t3 — 6rst) + 0a + 0a’.

"6For a given 8 € Fa] the complex numbers o1(8) and a2(8) do not live in F[a], but this doesn’t matter.
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So the rationalization of the denominator of 1/ is achieved by multiplying the numerator and
the denominator by both of the conjugates o(5) and o9(5):
1 1 o1(B)a2(B) 1

B~ B o1(B)oa(B) 3+ 255 + 43 — 6rst ((r% = 2st) + 215 = rs)a+ (% = rt)a?).

Further investigations of this kind lead to the subject of Galois theory, which we will study in
the next chapter["]

8.3 The Classification of Finite Fields

Given a field extension E 2 F and an element o € E that is algebraic over F, the Minimal
Polynomial Theorem tells us that the subring Fla] = {f(«) : f(z) € F[z]} < E generated by
« is actually a field. To be precise, we have

Flz]

Kol = o OFal

where m, p(7) is the unique monic irreducible polynomial in F[z] having « as a root. This
quotient ring is a field since R/pR is a field for any prime element p € R of a Euclidean domain.

In the next two sections, we will turn this construction around. That is, instead of starting
with an element of a field extension @ € E 2 F and ending with an irreducible polynomial
mer(z) € Flx], we will start with an irreducible polynomial m(z) € F[z] and end up with a
field extension E 2 F containing some element o € E 2 F such that m(«) = 0.

Why would we do this? There are two reasons:

e We know that any non-constant polynomial f(x) € Q[z] has a root (in fact, all of
its roots) in the field C of complex numbers. This is the content of the Fundamental
Theorem of Algebra. However, our proof of the FTA was based on the assumption that
the roots already exist in some field extension E 2 C, and proceeded to show that the
roots must actually be in C. We did not yet verify this assumption, which is called
Kronecker’s Theorem.

e The same idea should work for polynomials over the finite field I, = Z/pZ. That is,
given some non-constant polynomial f(x) € Fp[z], Kronecker’s Theorem will tell us that
there exists some field E 2 [F,, where f(z) has all of its roots. The construction of E is
analogous to the construction of the complex numbers, since it involves the adjunction
of some “imaginary elements”. But it does not directly involve the complex numbers
because C does not contain a subfield isomorphic to I,.

Our main application of these ideas will be to construct all possible finite fields.

Example: A Field of Size Four. Consider the field of two elements, Fo = {0,1}. I claim
that the polynomial 22 + 2 + 1 € Fy[z] is irreducible over F. Since this polynomial has degree

117No we won’t, because we don’t have time.
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2, we only have to show that it has no roots in Fo. And this is easy because there are only

two elements to check:
x ‘ 0 ‘ 1

2ta+1[1]1
Then since 22 + x + 1 is a prime element of the Euclidean domain Fa[z], it follows that the
quotient ring is a field. Let’s call it
_ Fa[x]
(22 4+ z + 1)Fa[z]’

I claim that this field has four elements. To prove this we first consider the quotient ho-
momorphism, sending a polynomial f(x) € Fo[z] to the coset of (2% + z + 1)Fa[x] that it
generates:
p: Folz] — E
fx) — f(z)+ (2?+ 2+ 1)Fy[x].

Recall that we can view Fy € Fa[x] as the subring of constant polynomials. Similarly, we can
view o € E as the subring of cosets generated by constant polynomials. To be precise, the
homomorphism ¢ restricted to Fq is injective:

[T ]F2 — E
a — a+(@?+z+1)Fz].

Indeed, if (a) = ¢(b) then the constant polynomial a—b € Fa[x] is in the coset (z2+z+1)Fa[z],
which implies that a — b is divisible by 22 + = + 1. For reasons of degree this is only possible
if a — b =0, and hence a = b.

Another way to say this is that the kernel of ¢ : Fo — E is the zero ideal. Then from the
First Isomorphism Theorem we have p(F2) = im¢ =~ Fo/{0} = Fy. We will identify Fy with
the subring ¢(F3) < E by writing “a” instead of a + (2% + x + 1)Fy [x]m

So we have constructed a field extension E © Fy. In fact, I claim that E = Fo[a] for some
special element a € E. Indeed, let a be the coset generated by x:

o=z + (2% + 2 + 1)Fa[z].

Note that any element of E looks like f(z)+ (22 +z+1)Fa[z] for some polynomial f(z) € Fa[z].
Let’s say f(x) = Y, axx®. Then from the ring operations in E we hav

fla) = Y (ar + (2% + 2 + DFalz]) (¢ + (2® + 2 + 1)Fa[])"

k
= O ara®) + (27 + 2 + 1)Fala]
k

118This is common practice in algebra. We do the same thing when we identify the integer a € Z with the
fraction a/1 € Q, or the real number a € R with the complex number a + 0i € C.
19T his is hard to process at first, but I assure you that there is nothing interesting going on here.
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= f(z) + (2® + = + 1)Fa[x].
Furthermore, we observe that this element « is a root of 2 + = + 1 because
Ata+l=2>+z+1+ 2% +z+1)Ffz] =0+ (22 +z + 1)Fafz].

But we already know that 22 4+ 2 + 1 is irreducible over Fy and hence x? + z + 1 is the minimal
polynomial of o over Fa:
Mar, (T) = 22+ x4+ 1.

Finally, it follows from the Minimal Polynomial Theorem that
E = Fala] = {a + ba : for unique a,b € Fa}.
Since Fy consists of only two elements {0, 1} we conclude that E has four elements:
E={0+ 0,1+ 0a,0+1la,1 + la} ={0,1,,1 + a}.

The addition and multiplication tables for E are obtained by reducing the coefficients mod 2
and using the fact that o> = -1 —a =1+ a=

+ 0 1 « 1+« 0 1 a 1+«
0 0 1 o 1+« 0 0 0 0 0
1 1 0 1+« o 1 0 1 o 1+«
« o 1+« 0 1 « 0 « 1+« 1
l+a|l+a o 1 0 l1+a|0 1+« 1 o

The steps leading up to these tables were abstract, but once we have them it is easy to teach a
computer how to work with this field. In fact, such fields are used extensively in cryptography
and error correcting codes.

Example: A Field of Size Eight. If we can find an irreducible of polynomial of degree 3
in the ring Fa[x] then the same reasoning as in the previous example will yield a field of size
23 = 8. In fact, the ring Fy [z] contains exactly two irreducible polynomials of degree 3:

x 01

242 +11]1

4+l |11
Choosing the first of these gives the following field of size eight:

E = {a+ba+ ca? : for unique a,b, ¢ € Fy, where o + o +1 = 0}.
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Here is the multiplication table:

X 0 1 «@ 1+a a? 14 a? a+ o? 14+a+a?
0 0 0 0 0 0 0 0 0
1 0 1 «@ 1+« a? 1+ a? a+ o? 14+ a+a?
« 0 « a? a+ o? 14 a? 1+ a+a? 1 1+«
1+« 0 1+« a+ o? 1+ a? 1 « 1+a+a? a?
a? 0 a? 14 a? 1 14+a+a? l+a « a+ o?
1+ a? 0 1+ a? 14+a+a? « l+a a+o? a? 1
a+ o? 0 a+ o? 1 14+ a+a? « a? 1+« 1+ ao?
1+a+a?2|0 1+a+a? 1+« a? a+a? 1 14 a? «

You might think that the other polynomial 3 + x + 1 gives a different field of size eight, but
we will prove that any two finite fields of the same size must be isomorphic. More generally,
we have the following important theorem. It is remarkable that finite fields are completely
understood. This situation is much different, for example, from the theory of finite groups,
which can be arbitrarily complicated.

The Classification of Finite Fields

(1) Any finite field has size p* where p is prime and k > 1.
(2) There exists a field of size p* for any prime p and integer k > 0.
(3) Any two finite fields of the same size are isomorphic.

It is common to write ¢ = p* and to denote the unique field of size ¢ by
F, or GF(qg).

The notation GF stands for “Galois Field”, since the study of finite fields beyond Z/pZ
was initiated by Galois. However, he did not express his results in this language since the
concept of a “field” was not invented until the 1870s. Dedekind used the word Korper
(body) and Kronecker used the word Bereich (realm). The English translation “field”
was given by E.H. Moore (1896), who first proved this theorem in its modern form.

In the remainder of this section we will prove (1) and then in the next section we will use
the theory of splitting fields to prove (2) and (3). In order to prove (1) we need the following
concept.
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The Characteristic of a Field

For any ring R there exists a unique ring homomorphism ¢ : Z — R from the ring of
integers. The kernel of ¢, being an ideal of Z must have the form nZ for some unique
integer n = 0. We call this integer the characteristic of the ring:

char(R) := n.

If E is a field then we must have char(E) = 0 or char(E) = p with p prime. If E is a
finite field then we must have char(E) # 0. Hence there existd™| a prime p such that
[E contains a subring isomorphic to [F:

F, = Z/pZ = Z/ker ¢ = im ¢ < E.

Proof. Any ring homomorphism ¢ : Z — R must, in particular, be a group homomorphism
¢ : (Z,+,0) > (R, +,0) sending 1 to 1. We know from the previous chapter that a unique
such homomorphism exists and is given by the following deﬁnition{zf]

k times
1+14+---+1 ifk>1,
ok)=k-1:=<10 if k=0,
“1—-1—---—1 ifk<—1

~
—k times

One can check that this function also preserves multiplication, hence is a ring homomorphism.

Since the kernel of ¢ is an ideal of Z we have ker ¢ = nZ for some unique integer n > 0. Then
from the First Isomorphism Theorem we see that R contains a subring isomorphic to Z/nZ:

Z/nZ =7/ker p = imp < R.

If the ring R is finite, then we must have n > 1 because Z/0Z = Z is infinite.

Now suppose that E = R is a field with char(E) = n, and let S € E be any subring. Suppose
that we have a,b e S with ab = 0 and a # 0. Then since a~! exists in E we must have

ab=0
aa"'b = a0
b=0.

120We will see below that this prime is unique.

1211n the previous chapter we used multiplicative language. Recall: For any group element a € G there exists a
unique group homomorphism ¢ : (Z, +,0) — G sending k to “q*”. When the group structure on G is additive,
we will write “k - a” instead.
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Hence S is a domain. In particular, im ¢ € E must be a domain. Then since Z/nZ = im ¢,
the theorem on Quotients of Euclidean Domains implies that n = 0 or n = p is prime. And if
E is a finite field then the case n = 0 is impossible. o

From this and a bit of linear algebra we obtain part (1) of the Classification of Finite Fields.

Proof of (1). Let E be a finite field. From the previous theorem we have F, < E for
some prime p. Thus we can view [E as a vector space over F,, defining scalar multiplication
F, x E — [E via the field multiplication. Since E is a finite set, this must be a finite-dimensional
vector space. In other words, there exists a finite basis g, ..., a; € E such that every element
B € E can be expressed uniquely in the form

ﬁ =biag + boas + - -+ + bray,

for some by,...,b; € FPFEI This gives a bijection between elements of E and k-tuples of
elements of I, which implies that

#E = #F) = (#Fp)" = p".

Remark: It follows from this proof that if IF,, < [E and F,,, < E for primes p1, p2 then we must
have p; = ps. Indeed, this would imply that

k k
p11 = #E = p22

for some integers ki, ko = 1, which can only happen if p; = ps.

8.4 Existence and Uniqueness of Splitting Fields

In this section we complete the Classification of Finite Fields by proving (2) that finite fields
of sizes p¥ exist, and (3) that any two finite fields of the same size are isomorphic. We will
prove this in four steps:

e Any polynomial f(x) € F[x] over any field F has a splitting field.

e Any splitting field of 27" — z € Fp[z] has size p*.

e Any field of size p* is a splitting field for the polynomial 27" — z € Fplz].
e Any two splitting fields for the same polynomial are isomorphic.

The first step is called Kronecker’s Theorem. In addition to proving the existence of finite
fields, this result also completes our proof of the Fundamental Theorem of Algebra.

122Gtart with the whole field S = E. If any element of S is expressible as an F,-linear combination of the
other elements of S, throw it away. Continue until no element of S is expressible as an F,-linear combination
of the others. The result will be the desired basis.
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Kronecker’s Theorem

Consider a non-constant polynomial f(x) € F[z] of degree n over a field F. We say that
E 2 F is a splitting field for f(z) over F when the following two properties hold:

e There exist o, ..., a, € E such that f(z) = (x—a1) - - - (x — o, ) 22 In other words,
f(x) splits over E.

e For any field E 2 E' © F such that f(z) splits over E’, we must have E' = E.
Kronecker’s Theorem says that

splitting fields always exist.

The slogan of the proof is to “pretend hard enough and things will work out”.

Proof. Consider any irreducible factor m(z)|f(z) in F[z] and consider the field

Flx]

= @F]

As in the previous section, we will view F € F; as the subring of (cosets generated by) constant
polynomials. Now let a1 € F; denote the coset generated by z:

ag :=z + mq(x)F[z].

As in our discussion of fields of size four, it is a “trivial fact” that mj(a;) = 0 in the field Fy, the
only difficultly being that this notation hides all the details of the construction. Furthermore,
since mq(x) is irreducible over F the MPT implies that F; = F[oy].

Since mq(a1) = 0 and my(x)|f(x) we have f(a1) = 0, hence by Descartes’ Theorem we have

f(@) = (& — a1) fi(«) for some fi() € Fy[a].

If fi(z) is constant then we are done. Otherwise, let mo(z)|f1(z) be an irreducible factor in
the ring [Fq[x] and consider the field

Fy[z]

= @]

Think of F; < Fs as the subring of cosets generated by constant polynomials{ri—‘f] and let ag € Fy
be the coset generated by x:
ag = x + ma(x)F[x].

1231t does no harm to assume that f(x) is monic.
12476 be completely precise, these are cosets of cosets. Now you see why it is necessary to abuse the notation.
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As before, we have mo(ag) = 0, which since mgo(x) is irreducible over Fy implies that Fy =
Fi[azg] = Flag, ag]@ Also, since ma(z)|f1(x) we have fi(az) = 0 and hence

fi(x) = ma(z) fa(x) for some fao(z) € Falx].

If fo(x) is constant then we are done. Otherwise, we repeat the process to create a chain of
field extensions F € F; € ... € [F,, and elements «; € F; such that

f(@) = (. —a)(z —ag) - (2 — an).

In other words, f(x) splits over F,,. By construction we also have F,, = F[ay,...,a;,] which
means that [, itself is the smallest subring of I,, containing F and the elements asq, ..., ay,.

Finally, suppose that f(x) splits over a field E where F,, 2 E © F. In this case we will show
that E = F,, and hence that FF,, is a splitting field for f(z) over F. By assumption there exist
B1,...,0n € E such that

f(@) = (x = B1)(x = P2) - (x = Bn).
But then in the ring F, [z] we have

(z—a)(z—az) (v —an) = (x—p1)(@—P2) - (x— Bn).

Substituting x = «ay gives

0= (g —aq)(ar —az)- (a1 —ay) = (g — fr1)(a1 — B2) - -~ (1 — Bn),

which implies that a1 — §; = 0 (and hence a; = ;) for some j. Similarly, by substituting
z = «; we find that every «; is equal to some ; and hence is an element of E. We have shown
that the ring £ contains F and the elements ay, ..., a,, and it follows that E = [F,, as desired.

(]

What do you think of this proof? There is a reason that it didn’t get written down until the
1880s. We will use the existence of splitting fields to prove the existence of finite fields of
every possible size. But for this we need two more lemmas.

4 )
Repeated Roots

For any field F we define the formal derivative D : F[z] — F[z] byl>)

D (Z aka:k) = 2 k- apzt L.

This satisfies all of the usual algebraic properties of derivatives, such as the product rule.

Now consider any element of a field extension, « € E 2 F. We say that « is a repeated

root of f(z) wher"]

f(z) = (z — a)?g(z) for some g(z) € E[x].

125We use the notation F[a1, az] to denote the field F[a1][az].
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I claim that

« is a repeated root of f(z) <=  f(a)=0and Df(a) =0.

Proof. Consider an element of a field extension o € E 2 F and a polynomial f(z) € F[x]. First
we suppose that « is a repeated root of f(z). That is, we suppose that f(x) = (x — a)%g(z)
for some g(x) € E[z]. Then from the product rule we have

Df(z) = 2(x — a)g(z) + (z — a)*Dg(z),

and hence
Df(a) =2(a —a)g(a) + (o — a)Dg(a) = 0.

Conversely, consider any polynomial f(x) € F[x] such that f(«a) = 0 and D f(a) = 0. Since
f(a) = 0, Descartes’ Factor Theorem in the ring E[z] tells us that

F(#) = (= — a)g(x) for some g(x) € E[z].
Now we compute the derivative of f(x) using the product rule:
Df(z) = g(x) + (z — a)Dg(x).
Since D f(«) = 0 we must have
0=Df(e) = g(a) + (a — a)Dg(a) = g().
But then Descartes’ Factor Theorem in the ring E[z] says that
g(z) = (x — a)h(z) for some h(x) € E[z],

and hence « is a repeated root of f(z):

126Given k € Z and ay, € T, the element k - a € F is defined repeated addition or subtraction. More precisely,
we define k - ar, = p(k) where ¢ : (Z, +,0) — (F, +,0) is the unique group homomorphism sending 1 to ak.

127We do not exclude the possibility that g(«) = 0, in which case f(z) is disible by (z — «)® or some higher
power.
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Freshman’s Dream

Let R be a ring of prime characteristic p > 0. Then for any elements a,b € R we have
(a £b)P =aP £ VP,
and by induction we have
(a+ b)pk =" + 7" for any integer k > 0.

We will apply this in the special case when R = E 2 F, is a field extension of F,,.
. J

Proof. For any ring R and for any integer e > 0 we have the Binomial Theorem:

((1 + b)e — ae —+ <i> . ae_lb —+ (;) . a€—2b2 4+ e+ (e i 1> . abe—l + be.

Suppose that char(R) = n. That is, suppose that the unique ring homomorphism from the
integers, ¢ : Z — R, has kernel nZ. By definition, this means that for nonzero a € R and
k € Z we have k - a = 0 if and only if k is divisible by n.

If p € Z is prime and char(R) = p, our first goal is to show that
(a+b)P =aP + bP.

From the above remarks, it is enough to show that (f ) is divisible by p for all 1 <r < p—1.
Recall the formula for binomial coefficients:

<p>:r!(p! pp—D(p—2)--2-1

r

p—r) rr—1)---2-1-(p—r)p—r—1)---2-1

We know that this is an integer, hence every prime factor in the denominator must be canceled
by a prime factor in the numerator. Thus we need to show that the prime p occurs with higher
multiplicity in the numerator than it does in the denominator. In fact, I claim that p occurs
with multiplicity 1 in the numerator and with multiplicity 0 in the denominator. Indeed, we
clearly have p|p!. But p does not divide the product (p—1)(p—2) - - - 2-1 because if it did then by
Fuclid’s Lemma p would divide one of the factors, but each factor is smaller than p. Similarly,
if 1 < r < p—1 then p does not divide the product r!(p—7r)!r(r—1)---2-1-(p—r)(p—r—1) - -- 2-1
since each factor in this product is smaller than p.

Now I claim that we also have
(a —b)P =aP —bP.

If p = 2 then this follows from the previous because a = —a in a ring of characteristic 2. So
suppose that p > 2. Since p is prime this implies that p is odd, so that

(a—bP =aP — <719) aP b+ (g) AP - (,1)p—1< P 1> CabPl g (—1)P P
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Finally, we observe by induction that for any integer £ > 1 we have

(@+b)" = (@ ey ")’

Proof of (2). For any prime power p* we want to show that a field of size p* exists. The key
trick, used by Gauss and Galois, is to consider the following polynomial:

g(x) = o —pe Fp[z].

Let E © F,, be a splitting field for g(z) over I, which exists by Kronecker’s Theorem. Then
I claim that #E = p*. To prove this, we consider the set of roots of g(z) in the field E:

S:={aek:g(a)=0}
The proof will follow from two facts:
(i) #S =p",
(i) S =E.

To prove (i) we first observe that #S < p”* since a polynomial of degree p* can have at most
p* roots in any field. Now consider the formal derivative of g(z) in the ring Fp[z]:

Dg(x) = pra? "l —1 =02 —1=—1.

Since this polynomial is constant and nonzero it cannot have a root in any field extension. It
follows from the lemma that g(x) cannot have a repeated root in any field extension. Since
g(x) split in E this implies that g(z) has p* distinct roots in [, hence #S = p*.

To prove (ii) we will show that (surprisingly!) the subset S € E is actually a subfield. Then
since E is a splitting field for g(z) and since g(x) splits over S it will follow that S = E. There
are two things to check:

o Let a, B € S so that o? = a and 8*" = 8. Then
-1
(™" = o (#") " = ap™,

so that a1 € S.

128Tndeed, E is a splitting field for g(x).
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e Let a, 5 € S so that o?" = o and Bpk = (. Then from the Freshman’s Dream we have

k

(a =B =a” =" =a—p,
so that « — B € S.

This abstract existence proof is not particularly useful. For practical purposes it is better to
start with an irreducible polynomial in Fp[x] of degree k. The existence of finite fields of every
size is equivalent to the statement that there exist irreducible polynomials in F,[z] of every
degree. Apparently there exist fast algorithms for finding such polynomials

To complete the Classification of Finite Fields, it only remains to show that any two finite
fields of the same size are isomorphic. This is the hardest part, and the proof was apparently
not written down until 1896@ We will use the following theorem, which has applications
beyond finite fields.

(Uniqueness of Splitting Fields ]

Consider a non-constant polynomial f(x) € F[x] over a field F. Suppose that E 2 F and
E’ © F are splitting fields for f(z). Then there exists a ring isomorphism E ~ E’.

The proof will use induction on the degree of the polynomial. In order to facilitate the
induction step we will actually prove a more general statement.

( )
Uniqueness of Splitting Fields (General Statement)

Any isomorphism of fields ¢ : F — F induces an isomorphism of polynomial rings
¢ : F[z] — F'[z] by acting on coefficients:

¢:  Flz] - F'[z]
Zkakl‘k = chp(ak)xk.

We use the same symbol ¢ for both isomorphisms to save notation. We will also write
fe(z) = o(f(x)) to save notation[lT]

Now consider a non-constant polynomial f(z) € F[z] and its image polynomial f#(z) €
F'[z]. If E © F is a splitting field for f(z) and if E' © F’ is a splitting field for f¥(x) then
I claim that there exists an isomorphism ¢ : E — E’ with the property that ¢(a) = ¢(a)

129https://arxiv.org/abs/0905. 1642
139F H. Moore, A Doubly-Infinite System of Simple Groups, 1896.
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for all a € F. Here is a diagram:

The vertical arrows here are just the “inclusion homomorphisms”, sending elements of F
and F’ to themselves. The idea of this diagram is that the two composite functions from
F to E’ yield the same function[*%

J

The induction step is a bit complicated, so we isolate this as a separate lemma.

The Lifting Lemma

We are given the following data:
e An isomorphism of fields ¢ : F — F’.
e An irreducible polynomial m(z) € F[z].
e Some field extensions E 2 F and E' 2 F'.
e Elements a € E and 8 € E’ such that m(a) = 0 and m¥(8) = 0.

Since m(x) € F[z] is irreducible, the image polynomial m?(z) € F/[z] is also irreducible.
It follows from the Minimal Polynomial Theorem that m(z) and m?(z) are the minimal
polynomials of a/F and [/F’, respectively. Furthermore, the subrings Fla] € E and
F'[8] < E' are actually fields. Finally, we obtain an isomorphism of fields ¢ : F[a] — F'[§]
by composing the following three isomorphisms:

Flz] F'[x]

Flol = 2 orm] = memrag = F ok

The middle isomorphism is induced by . From the definitions, we observe that ¢(a) =
and that ¢(a) = ¢(a) for all a € F, where we think of F € F[«] and F' < F'[S] as subfields.

We can summarize all of this information with a commutative diagram:

131 Eyery author seems to invent their own notation for this operation, i.e., the operation of acting on coeffi-
cients by a ring homomorphism.

132\We say that the diagram “commutes”. Such “commutative diagrams” originated in the 1940s, which is
quite late. But they have recently taken over most branches of algebra.
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We call this the Lifting Lemma because it lifts the isomorphism ¢ : F — F’ to an isomorphism
of field extensions ¢ : F[a] — F'[3]. To prove the uniqueness of splitting fields we will adjoin
the roots of a polynomial one at a time, each time lifting the original isomorphism, until we
obtain an isomorphism between the splitting fields.

Proof of Uniqueness of Splitting Fields. Consider an isomorphism of fields ¢ : F — F’
and a non-constant polynomial f(x) € F[z]. Let E 2 F be a splitting field of f(x) and let
E’ 2 F be a splitting field of the image polynomial f#(z) € F/[x]. Our goal is to construct an
isomorphism ¢ : E — E'.

To begin, we consider any irreducible factor m(z)|f(x) in the ring F[x]. The image polynomial
m?(z) will be an irreducible factor of f#(z) in the ring F/[x]. Choose any element «; € E such
that m(c1) = 0, which must exist because E is a splitting field[? and define 31 := ¢(a1) so
that m®(51) = 0. From the conditions of the Lifting Lemma, we obtain an isomorphism of
fields ¢1 : Flay] — F/[$1], as in the following diagram:

Since m(a;) = 0 and m(z)|f(x) we must have f(a;) = 0. Hence from Descartes’ Factor
Theorem we obtain

f(@) = (2 — 1) fu() for some f1(z) € Flau][2]:

If fi(zx) is constant then we stop. Otherwise, we consider any irreducible factor m1(z)|fi(x) in
the ring F[aq][z]. Since f(x) splits in E and since my(x)|fi(z)|f(x), we can find some as € E

133Gince f(z) splits in E[z] and m(z)|f(x), the uniqueness of prime factorization in E[xz] implies that m(z)
also splits in E[z].
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such that mq(az) = 0. Define B2 := ¢1(ay) so that m{'(B1) = 0. Then we can apply the
Lifting Lemma again to obtain an isomorphism of fields ¢o : Flay, as] — F'[51, B2] making
the following diagram commute

E E’

Flay, as] === F'[1, Ba]

We repeat this process until we obtain complete factorization@

f(@) = (z—a)(z —az) - (z — an),
fP(x) = (x = Bi)(x — B2) -~ (x — Bn),

and an isomorphism of fields ¢, : Flaq,...,a,] — F[B1,...,Bn]. Since f(z) splits over

Flag,...,ay] and since E is a splitting field (i.e. is minimal with respect to splitting f) we
must have E = Flay,...,a,]. Similarly, we must have E' = F'[f1,...,3,]. Thus we have
produced the desired isomorphism E =~ E'. o

Remark: Our original goal was to prove that any two splitting fields E 2 F and E' © F for
the same polynomial f(x) € F[z] are isomorphic. We obtain this from the above result by
starting with the identity isomorphism ¢ : F' — F. Isomorphisms between splitting fields are
certainly not unique. For example, if E O F is a splitting field for f(x) € F[z] then there
might exist many automorphisms of E (i.e., self-isomorphisms ¢ : E — E) fixing the elements
of F. The collection of such automorphisms is called the Galois group of f(x) over F. This is
a fascinating topic, which we have no time to pursue.

Finally, we can complete our Classification of Finite Fields. The last step is to prove that any
two finite fields of the same size are isomorphic. We will do this by showing that any two
finite fields of the same size are splitting fields for the same polynomial.

Proof of (3). Let E and E be fields of size p*, with p prime. Then we must have char(E) =
char(E") = p. Indeed, suppose that char(E) = p’ for some prime p’. Then from the proof at
the end of the last section we must have

k
p" = #E = p}*

134We use the notation F[au, a2] to denote the field Flag |[z].
1351t does no harm to assume that f(z) is monic.
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for some integer ki, which can only happen if p; = p. Thus each of E and E’ contains a
field isomorphic to F,. I claim that each of E and E’ is a splitting field for the polynomial
gz) =2 —ze F,[z], from which it will follow that E =~ E’.

To prove this, I claim that every element of E is a root of g(z). Indeed, since E is a field
of size p¥, the group of units (E*, -, 1) has size p* — 1. Hence for any nonzero element a € E
the generalized Euler-Fermat theorem tells us that

o 1 = 1,
and multiplying both sides by a gives
o =a
o — o=
g(@) = 0.

This last equation also holds for o = 0, hence it holds for every element of E. In other words,

we can write
g(x) = [ [(z - o).
ack
It follows from this that E is a splitting field for g(x), since any subfield of E must necessarily
omit some of root of g(x). A parallel argument shows that E’ is a splitting field for g(z). o

THE END

9 Introduction to (Galois Theory

Nope, no time.
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