Math 562/662 Spring 2022
Homework 6 Drew Armstrong

1. Irreducible Polynomials of Small Degree. Let F be a field and consider a polynomial
f(z) € Flz] of degree 2 or 3. Prove that f(z) is irreducible over F if and only if f(x) has no
root in [F. [Hint: Equivalently, prove that f(z) if reducible if and only if has a root.]

Proof. We will show that f(x) is reducible if and only if has a root in F. First suppose that
f(a) =0 for some « € F. Then from Descartes we have f(z) = (x — a)g(x) where g(x) € F[z]
and deg(g) = deg(f) —1 > 1, and it follows that f(z) is reducible.

Conversely, suppose that f(x) = g(x)h(z) for some non-constant g(z),h(z) € Flz]. Since
deg(g),deg(h) > 1 and deg(g) + deg(h) = deg(f) = 2 or 3 this implies that one of g(x), h(x)
has degree 1. Say deg(g) = 1. This means that g(x) = ax + b for some a,b € F with a # b.
But then g(—b/a) = 0 implies

f(=b/a) = g(=b/a)h(=b/a) = Oh(=b/a) = 0,

and hence f(z) has a root —b/a € F.

2. Rational Roots. Consider a polynomial of degree n > 1 with integer coefficients:
fl@)=co+caz+---+cpa” € Zz].

If f(a/b) = 0 for some a,b € Z with ged(a, b) = 1, prove that we must have a|cy and b|c,,. Use

this result and Problem 1 to prove that the polynomial 423 4+ 29z — 3 is irreducible over Q.

Proof. Suppose that f(a) = 0 for some o € Q and write « = a/b with a,b € Z and
ged(a, b) = 1. Substitute and multiply both sides by "™ to obtain
fla/b) =0
co+ci(a/b)+ -+ cp(a/b)" =
cob” + crab” t + -+ cpa™ = 0.
The equation —c,a™ = b(cob™ ! +crab™ 2 +---+c,_1a" 1) implies that b|c,a™, which implies

that b|c, because ged(a,b) = 1. And the equation —cob™ = a(c1b™ L+ coab™ 2 +- - -+ cpa™ 1)
implies that a|cob™, which implies that a|cy because ged(a,b) = 1. O

For example, if f(x) = 423 + 292 — 3 has a rational root a/b € Q written in lowest terms,
then we must have a|3 and b|4, so that a/b € {£+1,4+1/2,4+1/4,4+3,+3/2,+3/4}. But none of
these potential roots is actually a root:

f(1) =

f(=1) =
(1/2)_12
f(=1/2) =
(1/4)_69/16
f(=1/4) = —165/16,

(3)—34
f(=3) =



f(3/2) = 54,
f(=3/2) = —60,

f(3/4) = 327/16,
f(—=3/4) = —423/16.

Hence f(z) has no rational root. Since deg(f) = 3 it follows from Problem 1 that f(x) is
irreducible over Q.

3. Repeated Roots. For any field F we define the function D : F[z] — F[z] byE|

D (Z aka:k> = Z k - akxkfl.

This formal derivative satisfies all the usual properties, such as the product rule. Now consider
a polynomial f(z) € Flz] and an element of a field extension a« € E D F.

(a) If f(x) = (z — a)?g(z) for some g(x) € E[z], prove that f(a) =0 and Df(a) = 0.

(b) Conversely, suppose that f(a) = 0 and D f(«) = 0. In this case, prove that there exists
a polynomial g(z) € E[z] such that f(z) = (z — «)?g(x). [Hint: Use Descartes’ Factor
Theorem twice.]

(a): Consider an element of a field extension, o € E D FF, and suppose that f(z) = (z—a)?g(z)
for some polynomials f(x), g(x) € Flz]. First we observe that

f(a) = (a — a)’g(a) = 0.
Next we take the derivative of f(x):
Df(x) = 2(z — a)g(x) + (z — a)*Dy().

It follows that
Df(a) = 2(a — a)g(a) + (@ — @)*Dg(a) = 0.

(b): Consider an element of a field extension, & € E D F, and consider a polynomial f(z) € Flx]
such that f(a) =0 and Df(a) = 0. Since f(a) = 0 Descartes’ Factor Theorem tells us that
f(z) = (z — a)g(z) for some g(x) € Flz].

Now take the derivative to obtain
Df(x) = g(x) + (z — @) Dg(x).
Then since D f(a) = 0 we have
0=Df(e) = g(a) + (a — a) Dg(a) = g().
Finally, since g(«) = 0, Descartes tells us that g(x) = (z — a)h(x) for some h(z) € F[z], hence

f(@) = (z - a)g(z) = (z — a)(z — a)h(z) = (z — @)’ h(z).

lGiven k € Z and ar € F, the element k- ar € F is defined repeated addition or subtraction. See Problem 4.



4. Characteristic of a Field. For any field IF, we have seen that there exists a unique group
homomorphism ¢ : (Z,+,0) — (F,+,0) sending 1 to 1. Namelyﬂ

k times
e e
Tr1+---+1 ifk>1,
k) =Fk-1:=40 if k=0,
“1—1—---—1 ifk<—1.

—k times

One can check that this function ¢ : Z — F is also a ring homomorphism. If ker ¢ = nZ then
we say that char(F) := n is the characteristic of the field F.
(a) If F is finite, show that char(F) # 0. [Hint: The First Isomorphism Theorem says that
Z] ker ¢ = im ¢, where im ¢ is a subring of F. But Z/0Z is infinite.]
(b) If n > 1 is not prime, show that Z/nZ is not a domain.
(c) If F is finite, combine (a) and (b) to show that the characteristic char(F) is prime.
[Hint: A subring of a field is necessarily a domain.]

(a): The hint says it all.

(b): Suppose that n > 1 is not prime; say n = ab where 1 < a,b < n. Then in Z/nZ we have
(a+nZ)(b+nZ)=ab+nZ =n+nZ =0+ nZ.
But since 1 < a,b < n we have a + nZ # 0+ nZ and b+ nZ # 0 4+ nZ.

(c): Let F be a finite field and consider the unique ring homomorphism ¢ : Z — F. The kernel
of ¢, being an ideal of Z, must be nZ for some n > 0. Then from the First Isomorphism
Theorem we have

Z/nZ = 7] ker p = ime CF.

Since F is finite we see that im ¢ and hence Z/nZ is finite, which implies that n > 1. Then
since [ is a field, the subring im ¢ must be a domain. Indeed, suppose that we have ab = 0
for some a,b € im . If a = 0 then we are done, so suppose that @ # 0. Then since the inverse
a1 € TF exists we have

ab=0
aa” ' =a"10
b=0.

Finally, since Z/nZ = im ¢ is a domain, it follows from part (b) that n is prime.

Remark: It follows that any finite field E contains a subfield isomorphic to F, for some prime
p. Then since E is a vector space over F, it follows from linear algebraﬁ that there exists a
(non-unique) finite basis aq,...,a; € E so that every 8 € E has a unique expression

8= b1a1+b2a2—|—--'+bkak,

2Previously we used the multiplicative notation ¢(a) = a* but the concept is the same.

3Start with the whole field S = E. If any element of S is expressible as an Fp-linear combination of the
other elements of S, throw it away. Continue until no element of S is expressible as an Fjp-linear combination
of the others. The result will be the desired basis.



with by,...,b, € IF,. In other words, we have a bijection between E and the set of k-tuples of
elements from [F,. It follows that

#E = (#F,)" = p*.
In class we proved that a field of size p* exists for every prime power p* and that any two

finite fields of size pF are isomorphic. But these existence and uniqueness results are not on
the exam.



