1. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a field and consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 2 or 3. Prove that f(x) is irreducible over \mathbb{F} if and only if f(x) has no root in \mathbb{F} . [Hint: Equivalently, prove that f(x) if reducible if and only if has a root.]

Proof. We will show that f(x) is reducible if and only if has a root in \mathbb{F} . First suppose that $f(\alpha) = 0$ for some $\alpha \in \mathbb{F}$. Then from Descartes we have $f(x) = (x - \alpha)g(x)$ where $g(x) \in \mathbb{F}[x]$ and $\deg(g) = \deg(f) - 1 \ge 1$, and it follows that f(x) is reducible.

Conversely, suppose that f(x) = g(x)h(x) for some non-constant $g(x), h(x) \in \mathbb{F}[x]$. Since $\deg(g), \deg(h) \ge 1$ and $\deg(g) + \deg(h) = \deg(f) = 2$ or 3 this implies that one of g(x), h(x) has degree 1. Say $\deg(g) = 1$. This means that g(x) = ax + b for some $a, b \in \mathbb{F}$ with $a \ne b$. But then g(-b/a) = 0 implies

$$f(-b/a) = g(-b/a)h(-b/a) = 0h(-b/a) = 0,$$

and hence f(x) has a root $-b/a \in \mathbb{F}$.

2. Rational Roots. Consider a polynomial of degree $n \ge 1$ with integer coefficients:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n \in \mathbb{Z}[x].$$

If f(a/b) = 0 for some $a, b \in \mathbb{Z}$ with gcd(a, b) = 1, prove that we must have $a|c_0$ and $b|c_n$. Use this result and Problem 1 to prove that the polynomial $4x^3 + 29x - 3$ is irreducible over \mathbb{Q} .

Proof. Suppose that $f(\alpha) = 0$ for some $\alpha \in \mathbb{Q}$ and write $\alpha = a/b$ with $a, b \in \mathbb{Z}$ and gcd(a, b) = 1. Substitute and multiply both sides by b^n to obtain

$$f(a/b) = 0$$

$$c_0 + c_1(a/b) + \dots + c_n(a/b)^n = 0$$

$$c_0 b^n + c_1 a b^{n-1} + \dots + c_n a^n = 0.$$

The equation $-c_n a^n = b(c_0 b^{n-1} + c_1 a b^{n-2} + \dots + c_{n-1} a^{n-1})$ implies that $b|c_n a^n$, which implies that $b|c_n$ because gcd(a, b) = 1. And the equation $-c_0 b^n = a(c_1 b^{n-1} + c_2 a b^{n-2} + \dots + c_n a^{n-1})$ implies that $a|c_0 b^n$, which implies that $a|c_0$ because gcd(a, b) = 1.

For example, if $f(x) = 4x^3 + 29x - 3$ has a rational root $a/b \in \mathbb{Q}$ written in lowest terms, then we must have a|3 and b|4, so that $a/b \in \{\pm 1, \pm 1/2, \pm 1/4, \pm 3, \pm 3/2, \pm 3/4\}$. But none of these potential roots is actually a root:

$$f(1) = 30,$$

$$f(-1) = -36,$$

$$f(1/2) = 12,$$

$$f(-1/2) = -18,$$

$$f(1/4) = 69/16,$$

$$f(-1/4) = -165/16,$$

$$f(3) = 34,$$

$$f(-3) = -32,$$

$$f(3/2) = 54,$$

$$f(-3/2) = -60,$$

$$f(3/4) = 327/16,$$

$$f(-3/4) = -423/16.$$

Hence f(x) has no rational root. Since $\deg(f) = 3$ it follows from Problem 1 that f(x) is irreducible over \mathbb{Q} .

3. Repeated Roots. For any field \mathbb{F} we define the function $D: \mathbb{F}[x] \to \mathbb{F}[x]$ by¹

$$D\left(\sum a_k x^k\right) = \sum k \cdot a_k x^{k-1}.$$

This formal derivative satisfies all the usual properties, such as the product rule. Now consider a polynomial $f(x) \in \mathbb{F}[x]$ and an element of a field extension $\alpha \in \mathbb{E} \supseteq \mathbb{F}$.

- (a) If $f(x) = (x \alpha)^2 g(x)$ for some $g(x) \in \mathbb{E}[x]$, prove that $f(\alpha) = 0$ and $Df(\alpha) = 0$.
- (b) Conversely, suppose that $f(\alpha) = 0$ and $Df(\alpha) = 0$. In this case, prove that there exists a polynomial $g(x) \in \mathbb{E}[x]$ such that $f(x) = (x \alpha)^2 g(x)$. [Hint: Use Descartes' Factor Theorem twice.]

(a): Consider an element of a field extension, $\alpha \in \mathbb{E} \supseteq \mathbb{F}$, and suppose that $f(x) = (x-\alpha)^2 g(x)$ for some polynomials $f(x), g(x) \in \mathbb{F}[x]$. First we observe that

$$f(\alpha) = (\alpha - \alpha)^2 g(\alpha) = 0.$$

Next we take the derivative of f(x):

$$Df(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 Dg(x).$$

It follows that

$$Df(\alpha) = 2(\alpha - \alpha)g(\alpha) + (\alpha - \alpha)^2 Dg(\alpha) = 0.$$

(b): Consider an element of a field extension, $\alpha \in \mathbb{E} \supseteq \mathbb{F}$, and consider a polynomial $f(x) \in \mathbb{F}[x]$ such that $f(\alpha) = 0$ and $Df(\alpha) = 0$. Since $f(\alpha) = 0$ Descartes' Factor Theorem tells us that

$$f(x) = (x - \alpha)g(x)$$
 for some $g(x) \in \mathbb{F}[x]$.

Now take the derivative to obtain

$$Df(x) = g(x) + (x - \alpha)Dg(x).$$

Then since $Df(\alpha) = 0$ we have

$$0 = Df(\alpha) = g(\alpha) + (\alpha - \alpha)Dg(\alpha) = g(\alpha).$$

Finally, since $g(\alpha) = 0$, Descartes tells us that $g(x) = (x - \alpha)h(x)$ for some $h(x) \in \mathbb{F}[x]$, hence

$$f(x) = (x - \alpha)g(x) = (x - \alpha)(x - \alpha)h(x) = (x - \alpha)^2h(x).$$

¹Given $k \in \mathbb{Z}$ and $a_k \in \mathbb{F}$, the element $k \cdot a_k \in \mathbb{F}$ is defined repeated addition or subtraction. See Problem 4.

4. Characteristic of a Field. For any field \mathbb{F} , we have seen that there exists a unique group homomorphism $\varphi : (\mathbb{Z}, +, 0) \to (\mathbb{F}, +, 0)$ sending 1 to 1. Namely,²

$$\varphi(k) = k \cdot 1 := \begin{cases} \overbrace{1+1+\dots+1}^{k \text{ times}} & \text{if } k \ge 1, \\ 0 & \text{if } k = 0, \\ \underbrace{-1-1-\dots-1}_{-k \text{ times}} & \text{if } k \le -1. \end{cases}$$

One can check that this function $\varphi : \mathbb{Z} \to \mathbb{F}$ is also a ring homomorphism. If ker $\varphi = n\mathbb{Z}$ then we say that $\operatorname{char}(\mathbb{F}) := n$ is the *characteristic of the field* \mathbb{F} .

- (a) If \mathbb{F} is finite, show that $\operatorname{char}(\mathbb{F}) \neq 0$. [Hint: The First Isomorphism Theorem says that $\mathbb{Z}/\ker \varphi \cong \operatorname{im} \varphi$, where $\operatorname{im} \varphi$ is a subring of \mathbb{F} . But $\mathbb{Z}/0\mathbb{Z}$ is infinite.]
- (b) If $n \ge 1$ is not prime, show that $\mathbb{Z}/n\mathbb{Z}$ is not a domain.
- (c) If 𝔅 is finite, combine (a) and (b) to show that the characteristic char(𝔅) is prime.
 [Hint: A subring of a field is necessarily a domain.]
- (a): The hint says it all.

(b): Suppose that $n \ge 1$ is not prime; say n = ab where 1 < a, b < n. Then in $\mathbb{Z}/n\mathbb{Z}$ we have

$$(a+n\mathbb{Z})(b+n\mathbb{Z}) = ab+n\mathbb{Z} = n+n\mathbb{Z} = 0+n\mathbb{Z}$$

But since 1 < a, b < n we have $a + n\mathbb{Z} \neq 0 + n\mathbb{Z}$ and $b + n\mathbb{Z} \neq 0 + n\mathbb{Z}$.

(c): Let \mathbb{F} be a finite field and consider the unique ring homomorphism $\varphi : \mathbb{Z} \to \mathbb{F}$. The kernel of φ , being an ideal of \mathbb{Z} , must be $n\mathbb{Z}$ for some $n \geq 0$. Then from the First Isomorphism Theorem we have

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\ker \varphi \cong \operatorname{im} \varphi \subseteq \mathbb{F}.$$

Since \mathbb{F} is finite we see that im φ and hence $\mathbb{Z}/n\mathbb{Z}$ is finite, which implies that $n \geq 1$. Then since \mathbb{F} is a field, the subring im φ must be a domain. Indeed, suppose that we have ab = 0for some $a, b \in \operatorname{im} \varphi$. If a = 0 then we are done, so suppose that $a \neq 0$. Then since the inverse $a^{-1} \in \mathbb{F}$ exists we have

$$ab = 0$$
$$aa^{-1} = a^{-1}0$$
$$b = 0.$$

Finally, since $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{im} \varphi$ is a domain, it follows from part (b) that n is prime.

Remark: It follows that any finite field \mathbb{E} contains a subfield isomorphic to \mathbb{F}_p for some prime p. Then since \mathbb{E} is a vector space over \mathbb{F}_p it follows from linear algebra³ that there exists a (non-unique) finite basis $\alpha_1, \ldots, \alpha_k \in \mathbb{E}$ so that every $\beta \in \mathbb{E}$ has a unique expression

$$\beta = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_k \alpha^k,$$

²Previously we used the multiplicative notation $\varphi(a) = a^k$ but the concept is the same.

³Start with the whole field $S = \mathbb{E}$. If any element of S is expressible as an \mathbb{F}_p -linear combination of the other elements of S, throw it away. Continue until no element of S is expressible as an \mathbb{F}_p -linear combination of the others. The result will be the desired basis.

with $b_1, \ldots, b_k \in \mathbb{F}_p$. In other words, we have a bijection between \mathbb{E} and the set of k-tuples of elements from \mathbb{F}_p . It follows that

$$\#\mathbb{E} = (\#\mathbb{F}_p)^k = p^k.$$

 $\#\mathbb{E} = (\#\mathbb{F}_p)^n = p^n$. In class we proved that a field of size p^k exists for every prime power p^k and that any two finite fields of size p^k are isomorphic. But these existence and uniqueness results are not on the exam.