1. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a field and consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 2 or 3 . Prove that $f(x)$ is irreducible over \mathbb{F} if and only if $f(x)$ has no root in \mathbb{F}. [Hint: Equivalently, prove that $f(x)$ if reducible if and only if has a root.]

Proof. We will show that $f(x)$ is reducible if and only if has a root in \mathbb{F}. First suppose that $f(\alpha)=0$ for some $\alpha \in \mathbb{F}$. Then from Descartes we have $f(x)=(x-\alpha) g(x)$ where $g(x) \in \mathbb{F}[x]$ and $\operatorname{deg}(g)=\operatorname{deg}(f)-1 \geq 1$, and it follows that $f(x)$ is reducible.

Conversely, suppose that $f(x)=g(x) h(x)$ for some non-constant $g(x), h(x) \in \mathbb{F}[x]$. Since $\operatorname{deg}(g), \operatorname{deg}(h) \geq 1$ and $\operatorname{deg}(g)+\operatorname{deg}(h)=\operatorname{deg}(f)=2$ or 3 this implies that one of $g(x), h(x)$ has degree 1. Say $\operatorname{deg}(g)=1$. This means that $g(x)=a x+b$ for some $a, b \in \mathbb{F}$ with $a \neq b$. But then $g(-b / a)=0$ implies

$$
f(-b / a)=g(-b / a) h(-b / a)=0 h(-b / a)=0,
$$

and hence $f(x)$ has a root $-b / a \in \mathbb{F}$.
2. Rational Roots. Consider a polynomial of degree $n \geq 1$ with integer coefficients:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{Z}[x] .
$$

If $f(a / b)=0$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, prove that we must have $a \mid c_{0}$ and $b \mid c_{n}$. Use this result and Problem 1 to prove that the polynomial $4 x^{3}+29 x-3$ is irreducible over \mathbb{Q}.

Proof. Suppose that $f(\alpha)=0$ for some $\alpha \in \mathbb{Q}$ and write $\alpha=a / b$ with $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$. Substitute and multiply both sides by b^{n} to obtain

$$
\begin{aligned}
f(a / b) & =0 \\
c_{0}+c_{1}(a / b)+\cdots+c_{n}(a / b)^{n} & =0 \\
c_{0} b^{n}+c_{1} a b^{n-1}+\cdots+c_{n} a^{n} & =0 .
\end{aligned}
$$

The equation $-c_{n} a^{n}=b\left(c_{0} b^{n-1}+c_{1} a b^{n-2}+\cdots+c_{n-1} a^{n-1}\right)$ implies that $b \mid c_{n} a^{n}$, which implies that $b \mid c_{n}$ because $\operatorname{gcd}(a, b)=1$. And the equation $-c_{0} b^{n}=a\left(c_{1} b^{n-1}+c_{2} a b^{n-2}+\cdots+c_{n} a^{n-1}\right)$ implies that $a \mid c_{0} b^{n}$, which implies that $a \mid c_{0}$ because $\operatorname{gcd}(a, b)=1$.

For example, if $f(x)=4 x^{3}+29 x-3$ has a rational root $a / b \in \mathbb{Q}$ written in lowest terms, then we must have $a \mid 3$ and $b \mid 4$, so that $a / b \in\{ \pm 1, \pm 1 / 2, \pm 1 / 4, \pm 3, \pm 3 / 2, \pm 3 / 4\}$. But none of these potential roots is actually a root:

$$
\begin{aligned}
f(1) & =30, \\
f(-1) & =-36, \\
f(1 / 2) & =12, \\
f(-1 / 2) & =-18, \\
f(1 / 4) & =69 / 16, \\
f(-1 / 4) & =-165 / 16, \\
f(3) & =34, \\
f(-3) & =-32,
\end{aligned}
$$

$$
\begin{aligned}
f(3 / 2) & =54 \\
f(-3 / 2) & =-60 \\
f(3 / 4) & =327 / 16 \\
f(-3 / 4) & =-423 / 16
\end{aligned}
$$

Hence $f(x)$ has no rational root. Since $\operatorname{deg}(f)=3$ it follows from Problem 1 that $f(x)$ is irreducible over \mathbb{Q}.
3. Repeated Roots. For any field \mathbb{F} we define the function $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by ${ }^{1}$

$$
D\left(\sum a_{k} x^{k}\right)=\sum k \cdot a_{k} x^{k-1}
$$

This formal derivative satisfies all the usual properties, such as the product rule. Now consider a polynomial $f(x) \in \mathbb{F}[x]$ and an element of a field extension $\alpha \in \mathbb{E} \supseteq \mathbb{F}$.
(a) If $f(x)=(x-\alpha)^{2} g(x)$ for some $g(x) \in \mathbb{E}[x]$, prove that $f(\alpha)=0$ and $D f(\alpha)=0$.
(b) Conversely, suppose that $f(\alpha)=0$ and $D f(\alpha)=0$. In this case, prove that there exists a polynomial $g(x) \in \mathbb{E}[x]$ such that $f(x)=(x-\alpha)^{2} g(x)$. [Hint: Use Descartes' Factor Theorem twice.]
(a): Consider an element of a field extension, $\alpha \in \mathbb{E} \supseteq \mathbb{F}$, and suppose that $f(x)=(x-\alpha)^{2} g(x)$ for some polynomials $f(x), g(x) \in \mathbb{F}[x]$. First we observe that

$$
f(\alpha)=(\alpha-\alpha)^{2} g(\alpha)=0
$$

Next we take the derivative of $f(x)$:

$$
D f(x)=2(x-\alpha) g(x)+(x-\alpha)^{2} D g(x)
$$

It follows that

$$
D f(\alpha)=2(\alpha-\alpha) g(\alpha)+(\alpha-\alpha)^{2} D g(\alpha)=0
$$

(b): Consider an element of a field extension, $\alpha \in \mathbb{E} \supseteq \mathbb{F}$, and consider a polynomial $f(x) \in \mathbb{F}[x]$ such that $f(\alpha)=0$ and $D f(\alpha)=0$. Since $f(\alpha)=0$ Descartes' Factor Theorem tells us that

$$
f(x)=(x-\alpha) g(x) \text { for some } g(x) \in \mathbb{F}[x]
$$

Now take the derivative to obtain

$$
D f(x)=g(x)+(x-\alpha) D g(x)
$$

Then since $D f(\alpha)=0$ we have

$$
0=D f(\alpha)=g(\alpha)+(\alpha-\alpha) D g(\alpha)=g(\alpha)
$$

Finally, since $g(\alpha)=0$, Descartes tells us that $g(x)=(x-\alpha) h(x)$ for some $h(x) \in \mathbb{F}[x]$, hence

$$
f(x)=(x-\alpha) g(x)=(x-\alpha)(x-\alpha) h(x)=(x-\alpha)^{2} h(x)
$$

[^0]4. Characteristic of a Field. For any field \mathbb{F}, we have seen that there exists a unique group homomorphism $\varphi:(\mathbb{Z},+, 0) \rightarrow(\mathbb{F},+, 0)$ sending 1 to 1 . Namely $]^{2}$
\[

\varphi(k)=k \cdot 1:= $$
\begin{cases}\overbrace{1+1+\cdots+1}^{k \text { times }} & \text { if } k \geq 1, \\ 0 & \text { if } k=0, \\ \underbrace{-1-1-\cdots-1}_{-k \text { times }} & \text { if } k \leq-1 .\end{cases}
$$
\]

One can check that this function $\varphi: \mathbb{Z} \rightarrow \mathbb{F}$ is also a ring homomorphism. If $\operatorname{ker} \varphi=n \mathbb{Z}$ then we say that $\operatorname{char}(\mathbb{F}):=n$ is the characteristic of the field \mathbb{F}.
(a) If \mathbb{F} is finite, show that $\operatorname{char}(\mathbb{F}) \neq 0$. [Hint: The First Isomorphism Theorem says that $\mathbb{Z} / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$, where $\operatorname{im} \varphi$ is a subring of \mathbb{F}. But $\mathbb{Z} / 0 \mathbb{Z}$ is infinite.]
(b) If $n \geq 1$ is not prime, show that $\mathbb{Z} / n \mathbb{Z}$ is not a domain.
(c) If \mathbb{F} is finite, combine (a) and (b) to show that the characteristic char (\mathbb{F}) is prime. [Hint: A subring of a field is necessarily a domain.]
(a): The hint says it all.
(b): Suppose that $n \geq 1$ is not prime; say $n=a b$ where $1<a, b<n$. Then in $\mathbb{Z} / n \mathbb{Z}$ we have

$$
(a+n \mathbb{Z})(b+n \mathbb{Z})=a b+n \mathbb{Z}=n+n \mathbb{Z}=0+n \mathbb{Z}
$$

But since $1<a, b<n$ we have $a+n \mathbb{Z} \neq 0+n \mathbb{Z}$ and $b+n \mathbb{Z} \neq 0+n \mathbb{Z}$.
(c): Let \mathbb{F} be a finite field and consider the unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{F}$. The kernel of φ, being an ideal of \mathbb{Z}, must be $n \mathbb{Z}$ for some $n \geq 0$. Then from the First Isomorphism Theorem we have

$$
\mathbb{Z} / n \mathbb{Z}=\mathbb{Z} / \operatorname{ker} \varphi \cong \operatorname{im} \varphi \subseteq \mathbb{F}
$$

Since \mathbb{F} is finite we see that $\operatorname{im} \varphi$ and hence $\mathbb{Z} / n \mathbb{Z}$ is finite, which implies that $n \geq 1$. Then since \mathbb{F} is a field, the subring $\operatorname{im} \varphi$ must be a domain. Indeed, suppose that we have $a b=0$ for some $a, b \in \operatorname{im} \varphi$. If $a=0$ then we are done, so suppose that $a \neq 0$. Then since the inverse $a^{-1} \in \mathbb{F}$ exists we have

$$
\begin{aligned}
a b & =0 \\
a a^{-1} & =a^{-1} 0 \\
b & =0 .
\end{aligned}
$$

Finally, since $\mathbb{Z} / n \mathbb{Z} \cong \operatorname{im} \varphi$ is a domain, it follows from part (b) that n is prime.

Remark: It follows that any finite field \mathbb{E} contains a subfield isomorphic to \mathbb{F}_{p} for some prime p. Then since \mathbb{E} is a vector space over \mathbb{F}_{p} it follows from linear algebra $\left.{ }^{3}\right]$ that there exists a (non-unique) finite basis $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{E}$ so that every $\beta \in \mathbb{E}$ has a unique expression

$$
\beta=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\cdots+b_{k} \alpha^{k},
$$

[^1]with $b_{1}, \ldots, b_{k} \in \mathbb{F}_{p}$. In other words, we have a bijection between \mathbb{E} and the set of k-tuples of elements from \mathbb{F}_{p}. It follows that
$$
\# \mathbb{E}=\left(\# \mathbb{F}_{p}\right)^{k}=p^{k}
$$

In class we proved that a field of size p^{k} exists for every prime power p^{k} and that any two finite fields of size p^{k} are isomorphic. But these existence and uniqueness results are not on the exam.

[^0]: ${ }^{1}$ Given $k \in \mathbb{Z}$ and $a_{k} \in \mathbb{F}$, the element $k \cdot a_{k} \in \mathbb{F}$ is defined repeated addition or subtraction. See Problem 4.

[^1]: ${ }^{2}$ Previously we used the multiplicative notation $\varphi(a)=a^{k}$ but the concept is the same.
 ${ }^{3}$ Start with the whole field $S=\mathbb{E}$. If any element of S is expressible as an \mathbb{F}_{p}-linear combination of the other elements of S, throw it away. Continue until no element of S is expressible as an \mathbb{F}_{p}-linear combination of the others. The result will be the desired basis.

