
Math 562/662 Spring 2022
Homework 6 Drew Armstrong

1. Irreducible Polynomials of Small Degree. Let F be a field and consider a polynomial
f(x) ∈ F[x] of degree 2 or 3. Prove that f(x) is irreducible over F if and only if f(x) has no
root in F. [Hint: Equivalently, prove that f(x) if reducible if and only if has a root.]

Proof. We will show that f(x) is reducible if and only if has a root in F. First suppose that
f(α) = 0 for some α ∈ F. Then from Descartes we have f(x) = (x−α)g(x) where g(x) ∈ F[x]
and deg(g) = deg(f)− 1 ≥ 1, and it follows that f(x) is reducible.

Conversely, suppose that f(x) = g(x)h(x) for some non-constant g(x), h(x) ∈ F[x]. Since
deg(g), deg(h) ≥ 1 and deg(g) + deg(h) = deg(f) = 2 or 3 this implies that one of g(x), h(x)
has degree 1. Say deg(g) = 1. This means that g(x) = ax + b for some a, b ∈ F with a 6= b.
But then g(−b/a) = 0 implies

f(−b/a) = g(−b/a)h(−b/a) = 0h(−b/a) = 0,

and hence f(x) has a root −b/a ∈ F.

2. Rational Roots. Consider a polynomial of degree n ≥ 1 with integer coefficients:

f(x) = c0 + c1x+ · · ·+ cnx
n ∈ Z[x].

If f(a/b) = 0 for some a, b ∈ Z with gcd(a, b) = 1, prove that we must have a|c0 and b|cn. Use
this result and Problem 1 to prove that the polynomial 4x3 + 29x− 3 is irreducible over Q.

Proof. Suppose that f(α) = 0 for some α ∈ Q and write α = a/b with a, b ∈ Z and
gcd(a, b) = 1. Substitute and multiply both sides by bn to obtain

f(a/b) = 0

c0 + c1(a/b) + · · ·+ cn(a/b)n = 0

c0b
n + c1ab

n−1 + · · ·+ cna
n = 0.

The equation −cnan = b(c0b
n−1 + c1ab

n−2 + · · ·+ cn−1a
n−1) implies that b|cnan, which implies

that b|cn because gcd(a, b) = 1. And the equation −c0bn = a(c1b
n−1 + c2ab

n−2 + · · ·+ cna
n−1)

implies that a|c0bn, which implies that a|c0 because gcd(a, b) = 1. �

For example, if f(x) = 4x3 + 29x − 3 has a rational root a/b ∈ Q written in lowest terms,
then we must have a|3 and b|4, so that a/b ∈ {±1,±1/2,±1/4,±3,±3/2,±3/4}. But none of
these potential roots is actually a root:

f(1) = 30,

f(−1) = −36,

f(1/2) = 12,

f(−1/2) = −18,

f(1/4) = 69/16,

f(−1/4) = −165/16,

f(3) = 34,

f(−3) = −32,



f(3/2) = 54,

f(−3/2) = −60,

f(3/4) = 327/16,

f(−3/4) = −423/16.

Hence f(x) has no rational root. Since deg(f) = 3 it follows from Problem 1 that f(x) is
irreducible over Q.

3. Repeated Roots. For any field F we define the function D : F[x]→ F[x] by1

D
(∑

akx
k
)

=
∑

k · akxk−1.

This formal derivative satisfies all the usual properties, such as the product rule. Now consider
a polynomial f(x) ∈ F[x] and an element of a field extension α ∈ E ⊇ F.

(a) If f(x) = (x− α)2g(x) for some g(x) ∈ E[x], prove that f(α) = 0 and Df(α) = 0.
(b) Conversely, suppose that f(α) = 0 and Df(α) = 0. In this case, prove that there exists

a polynomial g(x) ∈ E[x] such that f(x) = (x− α)2g(x). [Hint: Use Descartes’ Factor
Theorem twice.]

(a): Consider an element of a field extension, α ∈ E ⊇ F, and suppose that f(x) = (x−α)2g(x)
for some polynomials f(x), g(x) ∈ F[x]. First we observe that

f(α) = (α− α)2g(α) = 0.

Next we take the derivative of f(x):

Df(x) = 2(x− α)g(x) + (x− α)2Dg(x).

It follows that

Df(α) = 2(α− α)g(α) + (α− α)2Dg(α) = 0.

(b): Consider an element of a field extension, α ∈ E ⊇ F, and consider a polynomial f(x) ∈ F[x]
such that f(α) = 0 and Df(α) = 0. Since f(α) = 0 Descartes’ Factor Theorem tells us that

f(x) = (x− α)g(x) for some g(x) ∈ F[x].

Now take the derivative to obtain

Df(x) = g(x) + (x− α)Dg(x).

Then since Df(α) = 0 we have

0 = Df(α) = g(α) + (α− α)Dg(α) = g(α).

Finally, since g(α) = 0, Descartes tells us that g(x) = (x−α)h(x) for some h(x) ∈ F[x], hence

f(x) = (x− α)g(x) = (x− α)(x− α)h(x) = (x− α)2h(x).

1Given k ∈ Z and ak ∈ F, the element k · ak ∈ F is defined repeated addition or subtraction. See Problem 4.



4. Characteristic of a Field. For any field F, we have seen that there exists a unique group
homomorphism ϕ : (Z,+, 0)→ (F,+, 0) sending 1 to 1. Namely,2

ϕ(k) = k · 1 :=



k times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 if k ≥ 1,

0 if k = 0,

−1− 1− · · · − 1︸ ︷︷ ︸
−k times

if k ≤ −1.

One can check that this function ϕ : Z→ F is also a ring homomorphism. If kerϕ = nZ then
we say that char(F) := n is the characteristic of the field F.

(a) If F is finite, show that char(F) 6= 0. [Hint: The First Isomorphism Theorem says that
Z/ kerϕ ∼= imϕ, where imϕ is a subring of F. But Z/0Z is infinite.]

(b) If n ≥ 1 is not prime, show that Z/nZ is not a domain.
(c) If F is finite, combine (a) and (b) to show that the characteristic char(F) is prime.

[Hint: A subring of a field is necessarily a domain.]

(a): The hint says it all.

(b): Suppose that n ≥ 1 is not prime; say n = ab where 1 < a, b < n. Then in Z/nZ we have

(a+ nZ)(b+ nZ) = ab+ nZ = n+ nZ = 0 + nZ.

But since 1 < a, b < n we have a+ nZ 6= 0 + nZ and b+ nZ 6= 0 + nZ.

(c): Let F be a finite field and consider the unique ring homomorphism ϕ : Z→ F. The kernel
of ϕ, being an ideal of Z, must be nZ for some n ≥ 0. Then from the First Isomorphism
Theorem we have

Z/nZ = Z/ kerϕ ∼= imϕ ⊆ F.
Since F is finite we see that imϕ and hence Z/nZ is finite, which implies that n ≥ 1. Then
since F is a field, the subring imϕ must be a domain. Indeed, suppose that we have ab = 0
for some a, b ∈ imϕ. If a = 0 then we are done, so suppose that a 6= 0. Then since the inverse
a−1 ∈ F exists we have

ab = 0

aa−1 = a−10

b = 0.

Finally, since Z/nZ ∼= imϕ is a domain, it follows from part (b) that n is prime.

Remark: It follows that any finite field E contains a subfield isomorphic to Fp for some prime
p. Then since E is a vector space over Fp it follows from linear algebra3 that there exists a
(non-unique) finite basis α1, . . . , αk ∈ E so that every β ∈ E has a unique expression

β = b1α1 + b2α2 + · · ·+ bkα
k,

2Previously we used the multiplicative notation ϕ(a) = ak but the concept is the same.
3Start with the whole field S = E. If any element of S is expressible as an Fp-linear combination of the

other elements of S, throw it away. Continue until no element of S is expressible as an Fp-linear combination
of the others. The result will be the desired basis.



with b1, . . . , bk ∈ Fp. In other words, we have a bijection between E and the set of k-tuples of
elements from Fp. It follows that

#E = (#Fp)
k = pk.

In class we proved that a field of size pk exists for every prime power pk and that any two
finite fields of size pk are isomorphic. But these existence and uniqueness results are not on
the exam.


