1. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a field and consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 2 or 3 . Prove that $f(x)$ is irreducible over \mathbb{F} if and only if $f(x)$ has no root in \mathbb{F}. [Hint: Equivalently, prove that $f(x)$ if reducible if and only if has a root.]
2. Rational Roots. Consider a polynomial of degree $n \geq 1$ with integer coefficients:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{Z}[x] .
$$

If $f(a / b)=0$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, prove that we must have $a \mid c_{0}$ and $b \mid c_{n}$. Use this result and Problem 1 to prove that the polynomial $4 x^{3}+29 x-3$ is irreducible over \mathbb{Q}.
3. Repeated Roots. For any field \mathbb{F} we define the function $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by ${ }^{1}$

$$
D\left(\sum a_{k} x^{k}\right)=\sum k \cdot a_{k} x^{k-1} .
$$

This formal derivative satisfies all the usual properties, such as the product rule. Now consider a polynomial $f(x) \in \mathbb{F}[x]$ and an element of a field extension $\alpha \in \mathbb{E} \supseteq \mathbb{F}$.
(a) If $f(x)=(x-\alpha)^{2} g(x)$ for some $g(x) \in \mathbb{E}[x]$, prove that $f(\alpha)=0$ and $D f(\alpha)=0$.
(b) Conversely, suppose that $f(\alpha)=0$ and $D f(\alpha)=0$. In this case, prove that there exists a polynomial $g(x) \in \mathbb{E}[x]$ such that $f(x)=(x-\alpha)^{2} g(x)$. [Hint: Use Descartes' Factor Theorem twice.]
4. Characteristic of a Field. For any field \mathbb{F}, we have seen that there exists a unique group homomorphism $\varphi:(\mathbb{Z},+, 0) \rightarrow(\mathbb{F},+, 0)$ sending 1 to 1 . Namely $:^{2}$

$$
\varphi(k)=k \cdot 1:= \begin{cases}\overbrace{1+1+\cdots+1}^{k \text { times }} & \text { if } k \geq 1 \\ 0 & \text { if } k=0 \\ \underbrace{-1-1-\cdots-1}_{-k \text { times }} & \text { if } k \leq-1\end{cases}
$$

One can check that this function $\varphi: \mathbb{Z} \rightarrow \mathbb{F}$ is also a ring homomorphism. If $\operatorname{ker} \varphi=n \mathbb{Z}$ then we say that $\operatorname{char}(\mathbb{F}):=n$ is the characteristic of the field \mathbb{F}.
(a) If \mathbb{F} is finite, show that $\operatorname{char}(\mathbb{F}) \neq 0$. [Hint: The First Isomorphism Theorem says that $\mathbb{Z} / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$, where $\operatorname{im} \varphi$ is a subring of \mathbb{F}. But $\mathbb{Z} / 0 \mathbb{Z}$ is infinite.]
(b) If $n \geq 1$ is not prime, show that $\mathbb{Z} / n \mathbb{Z}$ is not a domain.
(c) If \mathbb{F} is finite, combine (a) and (b) to show that the characteristic char (\mathbb{F}) is prime. [Hint: A subring of a field is necessarily a domain.]

[^0]
[^0]: ${ }^{1}$ Given $k \in \mathbb{Z}$ and $a_{k} \in \mathbb{F}$, the element $k \cdot a_{k} \in \mathbb{F}$ is defined repeated addition or subtraction. See Problem 4.
 ${ }^{2}$ Previously we used the multiplicative notation $\varphi(a)=a^{k}$ but the concept is the same.

