1. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a field and consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 2 or 3. Prove that f(x) is irreducible over \mathbb{F} if and only if f(x) has no root in \mathbb{F} . [Hint: Equivalently, prove that f(x) if reducible if and only if has a root.]

2. Rational Roots. Consider a polynomial of degree $n \ge 1$ with integer coefficients:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n \in \mathbb{Z}[x].$$

If f(a/b) = 0 for some $a, b \in \mathbb{Z}$ with gcd(a, b) = 1, prove that we must have $a|c_0$ and $b|c_n$. Use this result and Problem 1 to prove that the polynomial $4x^3 + 29x - 3$ is irreducible over \mathbb{Q} .

3. Repeated Roots. For any field \mathbb{F} we define the function $D: \mathbb{F}[x] \to \mathbb{F}[x]$ by¹

$$D\left(\sum a_k x^k\right) = \sum k \cdot a_k x^{k-1}.$$

This formal derivative satisfies all the usual properties, such as the product rule. Now consider a polynomial $f(x) \in \mathbb{F}[x]$ and an element of a field extension $\alpha \in \mathbb{E} \supseteq \mathbb{F}$.

- (a) If $f(x) = (x \alpha)^2 g(x)$ for some $g(x) \in \mathbb{E}[x]$, prove that $f(\alpha) = 0$ and $Df(\alpha) = 0$.
- (b) Conversely, suppose that $f(\alpha) = 0$ and $Df(\alpha) = 0$. In this case, prove that there exists a polynomial $g(x) \in \mathbb{E}[x]$ such that $f(x) = (x \alpha)^2 g(x)$. [Hint: Use Descartes' Factor Theorem twice.]

4. Characteristic of a Field. For any field \mathbb{F} , we have seen that there exists a unique group homomorphism $\varphi : (\mathbb{Z}, +, 0) \to (\mathbb{F}, +, 0)$ sending 1 to 1. Namely,²

$$\varphi(k) = k \cdot 1 := \begin{cases} \frac{k \text{ times}}{1+1+\dots+1} & \text{if } k \ge 1, \\ 0 & \text{if } k = 0, \\ \underbrace{-1-1-\dots-1}_{-k \text{ times}} & \text{if } k \le -1. \end{cases}$$

One can check that this function $\varphi : \mathbb{Z} \to \mathbb{F}$ is also a ring homomorphism. If ker $\varphi = n\mathbb{Z}$ then we say that $\operatorname{char}(\mathbb{F}) := n$ is the *characteristic of the field* \mathbb{F} .

- (a) If \mathbb{F} is finite, show that $\operatorname{char}(\mathbb{F}) \neq 0$. [Hint: The First Isomorphism Theorem says that $\mathbb{Z}/\ker \varphi \cong \operatorname{im} \varphi$, where $\operatorname{im} \varphi$ is a subring of \mathbb{F} . But \mathbb{Z}/\mathbb{Z} is infinite.]
- (b) If $n \ge 1$ is not prime, show that $\mathbb{Z}/n\mathbb{Z}$ is not a domain.
- (c) If \mathbb{F} is finite, combine (a) and (b) to show that the characteristic char(\mathbb{F}) is prime. [Hint: A subring of a field is necessarily a domain.]

¹Given $k \in \mathbb{Z}$ and $a_k \in \mathbb{F}$, the element $k \cdot a_k \in \mathbb{F}$ is defined repeated addition or subtraction. See Problem 4. ²Previously we used the multiplicative notation $\varphi(a) = a^k$ but the concept is the same.