- 1. A Field is a Ring with Exactly Two Ideals. Let R be a commutative ring.
 - (a) Let $I \subseteq R$ be an ideal. Show that I = R if and only if I contains a unit.
 - (b) If R is a field, use part (a) to show that $\{0\} \subsetneq I \subseteq R$ implies I = R.
 - (c) Conversely, suppose that R has exactly two ideals: $\{0\}$ and R. Use this to prove that R is a field. [Hint: For any non-zero element $0 \neq a \in R$, the ideal aR must equal R. Use this to prove that a^{-1} exists.]

(a): If I = R then I contains all the units, and there is always at least one of these; namely, 1. Conversely, suppose that $u \in I$ for some unit $u \in R^{\times}$. Then since $u^{-1} \in R$ and $u \in I$ we have $1 = u^{-1}u \in I$. Finally, for any $a \in R$ we have $a \in R$ and $1 \in I$ hence $a = 1a \in I$.

(b): Let R be a field and consider an ideal $\{0\} \subseteq I \subseteq R$. Since $I \neq \{0\}$ there exists a nonzero element $a \in I$, and since R is a field this element a is a unit. Hence I = R by part (a).

(c): Let R be a ring with exactly two ideals: $\{0\}$ and R. To show that R is a field, consider any nonzero element $a \in R$ and the corresponding ideal aR. Since $a \neq 0$ we have $aR \neq \{0\}$. Since $\{0\}$ and R are the only ideals of R, this implies that aR = R. Finally, since $1 \in R = aR$, there exists some $b \in R$ such that 1 = ab. Hence R is a field.

2. Quotients of Euclidean Domains. Let (R, N) be a Euclidean domain.

- (a) Show that every ideal $I \subseteq R$ has the form I = aR for some $a \in R$. [Hint: If $I = \{0\}$ then we have I = 0R. If $I \neq \{0\}$, choose some non-zero element $a \in I$ with minimum size N(a). Show that I = aR.]
- (b) Show that aR = bR if and only if a and b are associates.
- (c) Consider an ideal $pR \neq R$ (so that p is not a unit). If p is prime,¹ prove that R/pR is a field. [Hint: Consider a non-zero coset $a + pR \neq 0 + pR$. Show that we must have gcd(a, p) = 1, hence from Bézout's Identity we have ax + py = 1 for some $x, y \in R$.]

(a): Consider an ideal $I \subseteq R$. If $I = \{0\}$ then I = 0R is principal. Otherwise, consider a nonzero element $a \in I$ with minimum size N(a). I claim that I = aR. On the one hand, since $a \in I$ we have for all $r \in R$ that $ar \in I$, and hence $aR \subseteq I$. On the other hand, consider any element $b \in I$ and divide by a to obtain $q, r \in R$ such that

$$\left\{ \begin{array}{l} b = aq + r, \\ r = 0 \text{ or } N(r) < N(a). \end{array} \right.$$

Since $a, b \in I$ and $q \in R$ we have $r = b - aq \in I$. If $r \neq 0$ then r is a nonzero element of I that is smaller than a. Contradiction. Hence we must have r = 0 and hence $b = aq \in aR$. Since this holds for all $b \in I$ we have shown that $I \subseteq aR$ as desired.

(b): First suppose that $a \sim b$, so that a = bu and $b = au^{-1}$ for some unit $u \in R^{\times}$. Then for all $r \in R$ we have $ar = b(ur) \in bR$, so that $aR \subseteq bR$. And for all $r \in R$ we have $br = a(u^{-1}r) \in aR$, so that bR = aR. It follows that aR = bR.

Conversely, suppose that aR = bR. If one of a or b is zero, then so is the other, hence $a \sim b$. So let us suppose that a, b are both nonzero. Since $a \in bR$ we have a = bu for some $u \in R$

¹Recall: We say that $p \in R$ is prime when p is non-zero, non-unit, and p = ab implies that a or b is a unit.

and since $b \in aR$ we have b = av for some $v \in R$. Since R is an integral domain, we see that u and v are both units, hence $a \sim b$:

$$b = av$$

$$b = buv$$

$$b(1 - uv) = 0$$

$$1 - uv = 0$$

$$b \neq 0$$

$$1 = uv.$$

(c): Let $p \in R$ be prime and consider the ideal $pR \neq R$. I claim that the quotient ring R/pR is a field. To see this, consider any nonzero coset $a + pR \neq 0 + pR$, so that $a \notin pR$. In other words, we have $p \nmid a$. Since p is prime and $p \nmid a$ we must have gcd(a, p) = 1, hence we can find some $b, c \in R$ satisfying ab + pc = 1. It follows ab + pR = 1 + pR, so that

$$(a + pR)(b + pR) = ab + pR = 1 + pR.$$

We have shown that any nonzero element of R/pR has a multiplicative inverse.

3. The Minimal Polynomial Theorem. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$. Then for any element $\alpha \in \mathbb{E}$ we have an *evaluation homomorphism*:

$$\begin{array}{rcl} \varphi_{\alpha} : & \mathbb{F}[x] & \to & \mathbb{E} \\ & f(x) & \mapsto & f(\alpha) \end{array}$$

- (a) Prove that $\mathbb{F}[\alpha] := \operatorname{im} \varphi_{\alpha}$ is the smallest subring of \mathbb{E} that contains \mathbb{F} and α .
- (b) Let α be algebraic over \mathbb{F} , so that ker $\varphi_{\alpha} \neq \{0\}$. In this case, prove that there exists a unique monic² polynomial $m(x) \in \mathbb{F}[x]$ such that ker $\varphi_{\alpha} = m(x)\mathbb{F}[x]$. [Hint: Use Problem 2(a,b).] This m(x) is called the minimal polynomial of α over \mathbb{F} .
- (c) Let $d = \deg(m)$. Prove that every element $\beta \in \mathbb{F}[\alpha]$ can be expressed **uniquely** as

$$\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_{d-1} \alpha^{d-1} \quad \text{for some } b_0, b_1, \dots, b_{d-1} \in \mathbb{F}.$$

[Hint: By definition of $\mathbb{F}[\alpha]$ we have $\beta = f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x) by the minimal polynomial m(x) to get f(x) = m(x)q(x) + r(x).]

- (d) Prove that m(x) is irreducible over \mathbb{F} . [Hint: Suppose that m(x) = f(x)g(x). Since m(x) is in the kernel of φ_{α} we have $f(\alpha)g(\alpha) = m(\alpha) = 0$, and hence $f(\alpha) = 0$ or $g(\alpha) = 0$. If $f(\alpha) = 0$ then f(x) is in the kernel of φ_{α} which implies that m(x)|f(x)|.]
- (e) Continuing from part (d), use the First Isomorphism Theorem and Problem 2(b) to show that $\mathbb{F}[\alpha]$ is a field.
- (a): Let R be a ring satisfying $\mathbb{F} \subseteq R \subseteq \mathbb{F}[\alpha]$ and $\alpha \in R$. A general element of $\mathbb{F}[\alpha]$ looks like $\beta = a_0 + a_1 \alpha + \cdots + a_n \alpha^n$,

for some $a_0, \ldots, a_n \in \mathbb{F}$. Then since $a_0, \ldots, a_n, \alpha \in R$ and since R is closed under addition and multiplication, we must have $\beta \in R$. Hence $R = \mathbb{F}[\alpha]$ as desired.

(b): If ker $\varphi_{\alpha} = \{0\}$ then since $\mathbb{F}[x]$ is a PID we must have ker $\varphi_{\alpha} = f(x)\mathbb{F}[x]$ for some $f(x) \in \mathbb{F}[x]$. Furthermore, if $f(x)\mathbb{F}[x] = g(x)\mathbb{F}[x]$ then from Problem 2(b) we must have $f(x) = \lambda g(x)$ for some nonzero constant $\lambda \in \mathbb{F}[x]$. It follows that there exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that ker $\varphi_{\alpha} = m(x)\mathbb{F}[x]$. Indeed, we can take $m(x) = f(x)/\lambda$, where λ is the leading coefficient of f(x). Then for any other monic polynomial m'(x) satisfying

 $^{^{2}}$ The leading coefficient is 1.

 $m(x)\mathbb{F}[x] = m'(x)\mathbb{F}[x]$ we must have $m(x) = \mu m'(x)$ for some constant μ . But since m(x) and m'(x) have the same leading coefficient, we must have $\mu = 1$ and hence m(x) = m'(x).

(c): Let m(x) be a generator of ker φ_{α} and let $d = \deg(m)$. I claim that for any element $\beta \in \mathbb{F}[\alpha]$ there exist unique $b_0, \ldots, b_{d-1} \in \mathbb{F}$ such that

$$\beta = b_0 + b_1 \alpha + \dots + b_{d-1} \alpha^{d-1}$$

Existence: By definition, any element of $\mathbb{F}[\alpha]$ looks like $\beta = f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x) by the nonzero polynomial m(x) to obtain

$$\begin{cases} f(x) = m(x)q(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < \deg(m). \end{cases}$$

Since r(x) = 0 or $\deg(r) < \deg(m) = d$, we can write $r(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$ for some elements $b_0, \dots, b_{d-1} \in \mathbb{F}$ (possibly all zero). Then since $m(\alpha) = 0$ we have

$$\beta = f(\alpha)$$

= $m(\alpha)q(\alpha) + r(\alpha)$
= $r(\alpha)$
= $b_0 + b_1\alpha + \dots + b_{d-1}\alpha^{d-1}$.

Uniqueness: Suppose that we have

$$b_0 + b_1 \alpha + \dots + b_{d-1} \alpha^{d-1} = c_0 + c_1 \alpha + \dots + c_{d-1} \alpha^{d-1}$$

for some $b_0, \ldots, b_{d-1}, c_0, \ldots, c_{d-1} \in \mathbb{F}$. We wish to show that $b_i = c_i$ for all *i*. To do this, we define the polynomials $r(x) = b_0 + b_1 x + b_{d-1} x^{d-1}$ and $s(x) = c_0 + c_1 x + \cdots + c_{d-1} x^{d-1}$. We will be done if we can show that r(x) - s(x) is the zero polynomial, since then the coefficients of r(x) and s(x) will be equal.

By assumption we have $r(\alpha) = s(\alpha)$ and hence $r(\alpha) - s(\alpha) = 0$. In other words, we have $r(x) - s(x) \in \ker \varphi_{\alpha}$, which implies that r(x) - s(x) is divisible by m(x). If $r(x) - s(x) \neq 0$ then this gives a contradiction:

 $d = \deg(m) \le \deg(r - s) \le \max\{\deg(r), \deg(s)\} < d.$

Hence r(x) - s(x) = 0 as desired.

(d): Let m(x) be a generator of ker φ_{α} . To prove that m(x) is irreducible over \mathbb{F} , suppose that we have m(x) = f(x)g(x) for some (nonzero) $f(x), g(x) \in \mathbb{F}[x]$. Evaluating at $x = \alpha$ gives

$$0 = m(\alpha) = f(\alpha)g(\alpha),$$

which implies that $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss of generality, suppose that $f(\alpha) = 0$. Then since $f(x) \in \ker \varphi_{\alpha}$ we must have m(x)|f(x). But since m(x) = f(x)g(x) we also have f(x)|m(x). It follows that $m(x) = \lambda f(x)$ for some constant $\lambda \in \mathbb{F}[x]$. Finally, since $f(x)g(x) = \lambda g(x)$, it follows that $g(x) = \lambda$ is constant. We have shown that

$$m(x) = f(x)g(x) \implies f(x) \text{ or } g(x) \text{ is constant}$$

In other words, m(x) is irreducible over \mathbb{F} .

(e): If ker $\varphi_{\alpha} = \{0\}$ then we have shown that ker $\varphi_{\alpha} = m(x)\mathbb{F}[x]$ for a unique, monic polynomial $m(x) \in \mathbb{F}[x]$, which is irreducible. From the First Isomorphism Theorem we have

$$\mathbb{F}[\alpha] = \operatorname{im} \varphi_{\alpha} \cong \frac{\mathbb{F}[x]}{\ker \varphi_{\alpha}} = \frac{\mathbb{F}[x]}{m(x)\mathbb{F}[x]}.$$

Finally, since m(x) is prime in $\mathbb{F}[x]$ we conclude from 2(c) that this quotient ring is a field.

Remark: This is a rather indirect way to prove that $\mathbb{F}[\alpha]$ is a field. In particular, it does not provide an algorithm to compute inverses in $\mathbb{F}[\alpha]$. The solution to this problem is to use 3(c) to express $\mathbb{F}[\alpha]$ as a vector space over \mathbb{F} with basis $1, \alpha, \ldots, \alpha^{d-1}$ and then use linear algebra.

- **4.** Cube Roots of 2. Let $\alpha \in \mathbb{C}$ be any root of the polynomial $x^3 2 \in \mathbb{Q}[x]$.
 - (a) Prove that $x^3 2$ is irreducible over \mathbb{Q} , hence it is the minimal polynomial for α over \mathbb{Q} . [Hint: If $x^3 2$ is not irreducible over \mathbb{Q} then it has a root $a/b \in \mathbb{Q}$ for some $a, b \in \mathbb{Z}$ with gcd(a, b) = 1. Use this to get a contradiction.]
 - (b) It follows from Problem 3 that the following set of numbers is a field:

$$\mathbb{Q}[\alpha] = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\} \subseteq \mathbb{C}.$$

Find the inverse of the number $1 + \alpha + \alpha^2$. [Hint: Let $(1 + \alpha + \alpha^2)(a + b\alpha + c\alpha^2) = 1 + 0\alpha + 0\alpha^2$. Expand the left side and equate coefficients. Use the fact that $\alpha^3 = 2$.]

(a): Let $\alpha \in \mathbb{C}$ satisfy $\alpha^3 - 2 = 0$, let $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ and let $m(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} , so that m(x)|f(x). I claim that in fact m(x) = f(x). To show this, it is enough to prove that f(x) is irreducible over \mathbb{Q} , since then m(x)|f(x) implies $m(x) = \lambda f(x)$ and since f(x), m(x) are both monic we must have $\lambda = 1$.

So suppose for contradiction that f(x) = g(x)h(x) for some $g(x), h(x) \in \mathbb{Q}[x]$, both nonconstant. By comparing degrees we must have $\deg(f) = 1$ or $\deg(g) = 1$. Without loss of generality, suppose that $\deg(f) = 1$, so that $f(x) = \alpha x + \beta$ with $\alpha, \beta \in \mathbb{Q}$ and $\alpha \neq 0$. Write $-\beta/\alpha = a/b$ for some $a, b \in \mathbb{Z}$ with $\gcd(a, b) = 1$. Then we have

$$f(a/b) = g(a/b)h(a/b) = g(-\beta/\alpha)h(a/b) = 0h(a/b) = 0,$$

which implies that

$$(a/b)^3 - 2 = 0$$

 $a^3 - 2b^3 = 0$
 $a^3 = 2b^3$

Since $a|2b^3$ and gcd(a,b) = 1 we must have a|2 and since $b|a^3$ we must have b|1. It follows that a/b is ± 1 or ± 2 .³ But none of these four numbers is a root of $x^3 - 2$. Contradiction.

(b): If $\alpha^3 - 2 = 0$ then we have shown that $x^3 - 2$ is the minimal polynomial of α over \mathbb{Q} . Since $\deg(x^3 - 2) = 3$ this implies that the field $\mathbb{Q}[\alpha] \subseteq \mathbb{C}$ can be expressed as a vector space over \mathbb{Q} with basis $1, \alpha, \alpha^2$:

$$\mathbb{Q}[\alpha] = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\}.$$

This representation allows us to do computations in $\mathbb{Q}[\alpha]$ via linear algebra. For example, we compute the inverse of the nonzero element $1 + \alpha + \alpha^2 \in \mathbb{Q}[\alpha]$. The inverse must have the form $a + b\alpha + c\alpha^2$ for some $a, b, c \in \mathbb{Q}$ where

$$(1 + \alpha + \alpha^2)(a + b\alpha + c\alpha^2) = 1 + 0\alpha + 0\alpha^2.$$

³We have just performed the "rational root test", to find a finite list of potential roots of $x^3 - 2$ in \mathbb{Q} .

Expanding the left hand side and using the fact that $\alpha^3 - 2 = 0$ gives

$$(1 + \alpha + \alpha^2)(a + b\alpha + c\alpha^2) = a + b\alpha + c\alpha^2$$
$$a\alpha + b\alpha^2 + c\alpha^3$$
$$a\alpha^2 + b\alpha^3 + c\alpha^4$$
$$= a + b\alpha + c\alpha^2$$
$$a\alpha + b\alpha^2 + 2c$$
$$a\alpha^2 + 2b + 2c\alpha$$
$$= (a + 2b + 2c) + (a + b + 2c)\alpha + (a + b + c)\alpha^2.$$

Then comparing coefficients⁴ gives a system of three linear equations in the unknowns a, b, c:

 $\begin{cases} a + 2b + 2c = 1, \\ a + b + 2c = 0, \\ a + b + c = 0. \end{cases}$ After a bit of work we find that (a, b, c) = (-1, 1, 0), so that $(1 + \alpha + \alpha^2)(-1 + \alpha) = 1.$

Remark: With a bit more work we can find a formula for the inverse of a general element $r + s\alpha + t\alpha^2$. By expanding $(r + s\alpha + t\alpha^2)(a + b\alpha + c\alpha^2) = 1 + 0\alpha + 0\alpha^2$ we obtain the following system of linear equations in a, b, c:

$$\begin{cases} ra + 2tb + 2sc = 1, \\ sa + rb + 2tc = 0, \\ ta + sb + rc = 0. \end{cases}$$

Then my computer gives the following solution:

$$(a,b,c) = \frac{1}{r^3 + 2s^3 + 4t^3 - 6rst} \left(r^2 - 2st, rs - 2t^2, rt - s^2\right).$$

That is, for any $r, s, t \in \mathbb{Q}$, not all zero, we have

$$\frac{1}{r+s\alpha+t\alpha^2} = \frac{1}{r^3+2s^3+4t^3-6rst} \left((r^2-2st) + (rs-2t^2)\alpha + (rt-s^2)\alpha^2 \right).$$

As an interesting consequence, if $r, s, t \in \mathbb{Q}$ are not all zero then we must have

$$r^3 + 2s^3 + 4t^3 - 6rst \neq 0.$$

I have no idea how I would prove this by other methods.

⁴We can do this because of uniqueness.