1. A Field is a Ring with Exactly Two Ideals. Let R be a commutative ring.
(a) Let $I \subseteq R$ be an ideal. Show that $I=R$ if and only if I contains a unit.
(b) If R is a field, use part (a) to show that $\{0\} \subsetneq I \subseteq R$ implies $I=R$.
(c) Conversely, suppose that R has exactly two ideals: $\{0\}$ and R. Use this to prove that R is a field. [Hint: For any non-zero element $0 \neq a \in R$, the ideal $a R$ must equal R. Use this to prove that a^{-1} exists.]
(a): If $I=R$ then I contains all the units, and there is always at least one of these; namely, 1. Conversely, suppose that $u \in I$ for some unit $u \in R^{\times}$. Then since $u^{-1} \in R$ and $u \in I$ we have $1=u^{-1} u \in I$. Finally, for any $a \in R$ we have $a \in R$ and $1 \in I$ hence $a=1 a \in I$.
(b): Let R be a field and consider an ideal $\{0\} \subsetneq I \subseteq R$. Since $I \neq\{0\}$ there exists a nonzero element $a \in I$, and since R is a field this element a is a unit. Hence $I=R$ by part (a).
(c): Let R be a ring with exactly two ideals: $\{0\}$ and R. To show that R is a field, consider any nonzero element $a \in R$ and the corresponding ideal $a R$. Since $a \neq 0$ we have $a R \neq\{0\}$. Since $\{0\}$ and R are the only ideals of R, this implies that $a R=R$. Finally, since $1 \in R=a R$, there exists some $b \in R$ such that $1=a b$. Hence R is a field.
2. Quotients of Euclidean Domains. Let (R, N) be a Euclidean domain.
(a) Show that every ideal $I \subseteq R$ has the form $I=a R$ for some $a \in R$. [Hint: If $I=\{0\}$ then we have $I=0 R$. If $I \neq\{0\}$, choose some non-zero element $a \in I$ with minimum size $N(a)$. Show that $I=a R$.]
(b) Show that $a R=b R$ if and only if a and b are associates.
(c) Consider an ideal $p R \neq R$ (so that p is not a unit). If p is prime prove that $R / p R$ is a field. [Hint: Consider a non-zero coset $a+p R \neq 0+p R$. Show that we must have $\operatorname{gcd}(a, p)=1$, hence from Bézout's Identity we have $a x+p y=1$ for some $x, y \in R$.]
(a): Consider an ideal $I \subseteq R$. If $I=\{0\}$ then $I=0 R$ is principal. Otherwise, consider a nonzero element $a \in I$ with minimum size $N(a)$. I claim that $I=a R$. On the one hand, since $a \in I$ we have for all $r \in R$ that $a r \in I$, and hence $a R \subseteq I$. On the other hand, consider any element $b \in I$ and divide by a to obtain $q, r \in R$ such that

$$
\left\{\begin{array}{l}
b=a q+r, \\
r=0 \text { or } N(r)<N(a) .
\end{array}\right.
$$

Since $a, b \in I$ and $q \in R$ we have $r=b-a q \in I$. If $r \neq 0$ then r is a nonzero element of I that is smaller than a. Contradiction. Hence we must have $r=0$ and hence $b=a q \in a R$. Since this holds for all $b \in I$ we have shown that $I \subseteq a R$ as desired.
(b): First suppose that $a \sim b$, so that $a=b u$ and $b=a u^{-1}$ for some unit $u \in R^{\times}$. Then for all $r \in R$ we have $a r=b(u r) \in b R$, so that $a R \subseteq b R$. And for all $r \in R$ we have $b r=a\left(u^{-1} r\right) \in a R$, so that $b R=a R$. It follows that $a R=b R$.

Conversely, suppose that $a R=b R$. If one of a or b is zero, then so is the other, hence $a \sim b$. So let us suppose that a, b are both nonzero. Since $a \in b R$ we have $a=b u$ for some $u \in R$

[^0]and since $b \in a R$ we have $b=a v$ for some $v \in R$. Since R is an integral domain, we see that u and v are both units, hence $a \sim b$:
\[

$$
\begin{aligned}
b & =a v \\
b & =b u v \\
b(1-u v) & =0 \\
1-u v & =0 \\
1 & =u v .
\end{aligned}
$$ \quad b \neq 0
\]

(c): Let $p \in R$ be prime and consider the ideal $p R \neq R$. I claim that the quotient ring $R / p R$ is a field. To see this, consider any nonzero coset $a+p R \neq 0+p R$, so that $a \notin p R$. In other words, we have $p \nmid a$. Since p is prime and $p \nmid a$ we must have $\operatorname{gcd}(a, p)=1$, hence we can find some $b, c \in R$ satisfying $a b+p c=1$. It follows $a b+p R=1+p R$, so that

$$
(a+p R)(b+p R)=a b+p R=1+p R .
$$

We have shown that any nonzero element of $R / p R$ has a multiplicative inverse.
3. The Minimal Polynomial Theorem. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$. Then for any element $\alpha \in \mathbb{E}$ we have an evaluation homomorphism:

$$
\begin{array}{cccc}
\varphi_{\alpha}: & \mathbb{F}[x] & \rightarrow & \mathbb{E} \\
& f(x) & \mapsto & f(\alpha) .
\end{array}
$$

(a) Prove that $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}$ is the smallest subring of \mathbb{E} that contains \mathbb{F} and α.
(b) Let α be algebraic over \mathbb{F}, so that $\operatorname{ker} \varphi_{\alpha} \neq\{0\}$. In this case, prove that there exists a unique moni 4^{2} polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker} \varphi_{\alpha}=m(x) \mathbb{F}[x]$. [Hint: Use Problem 2(a,b).] This $m(x)$ is called the minimal polynomial of α over \mathbb{F}.
(c) Let $d=\operatorname{deg}(m)$. Prove that every element $\beta \in \mathbb{F}[\alpha]$ can be expressed uniquely as

$$
\beta=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\cdots+b_{d-1} \alpha^{d-1} \quad \text { for some } b_{0}, b_{1}, \ldots, b_{d-1} \in \mathbb{F} .
$$

[Hint: By definition of $\mathbb{F}[\alpha]$ we have $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by the minimal polynomial $m(x)$ to get $f(x)=m(x) q(x)+r(x)$.]
(d) Prove that $m(x)$ is irreducible over \mathbb{F}. [Hint: Suppose that $m(x)=f(x) g(x)$. Since $m(x)$ is in the kernel of φ_{α} we have $f(\alpha) g(\alpha)=m(\alpha)=0$, and hence $f(\alpha)=0$ or $g(\alpha)=0$. If $f(\alpha)=0$ then $f(x)$ is in the kernel of φ_{α} which implies that $m(x) \mid f(x)$.]
(e) Continuing from part (d), use the First Isomorphism Theorem and Problem 2(b) to show that $\mathbb{F}[\alpha]$ is a field.
(a): Let R be a ring satisfying $\mathbb{F} \subseteq R \subseteq \mathbb{F}[\alpha]$ and $\alpha \in R$. A general element of $\mathbb{F}[\alpha]$ looks like

$$
\beta=a_{0}+a_{1} \alpha+\cdots a_{n} \alpha^{n},
$$

for some $a_{0}, \ldots, a_{n} \in \mathbb{F}$. Then since $a_{0}, \ldots, a_{n}, \alpha \in R$ and since R is closed under addition and multiplication, we must have $\beta \in R$. Hence $R=\mathbb{F}[\alpha]$ as desired.
(b): If $\operatorname{ker} \varphi_{\alpha}=\{0\}$ then since $\mathbb{F}[x]$ is a PID we must have $\operatorname{ker} \varphi_{\alpha}=f(x) \mathbb{F}[x]$ for some $f(x) \in \mathbb{F}[x]$. Furthermore, if $f(x) \mathbb{F}[x]=g(x) \mathbb{F}[x]$ then from Problem 2(b) we must have $f(x)=\lambda g(x)$ for some nonzero constant $\lambda \in \mathbb{F}[x]$. It follows that there exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker} \varphi_{\alpha}=m(x) \mathbb{F}[x]$. Indeed, we can take $m(x)=f(x) / \lambda$, where λ is the leading coefficient of $f(x)$. Then for any other monic polynomial $m^{\prime}(x)$ satisfying

[^1]$m(x) \mathbb{F}[x]=m^{\prime}(x) \mathbb{F}[x]$ we must have $m(x)=\mu m^{\prime}(x)$ for some constant μ. But since $m(x)$ and $m^{\prime}(x)$ have the same leading coefficient, we must have $\mu=1$ and hence $m(x)=m^{\prime}(x)$.
(c): Let $m(x)$ be a generator of $\operatorname{ker} \varphi_{\alpha}$ and let $d=\operatorname{deg}(m)$. I claim that for any element $\beta \in \mathbb{F}[\alpha]$ there exist unique $b_{0}, \ldots, b_{d-1} \in \mathbb{F}$ such that
$$
\beta=b_{0}+b_{1} \alpha+\cdots+b_{d-1} \alpha^{d-1} .
$$

Existence: By definition, any element of $\mathbb{F}[\alpha]$ looks like $\beta=f(\alpha)$ for some polynomial $f(x) \in$ $\mathbb{F}[x]$. Divide $f(x)$ by the nonzero polynomial $m(x)$ to obtain

$$
\left\{\begin{array}{l}
f(x)=m(x) q(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(m) .
\end{array}\right.
$$

Since $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(m)=d$, we can write $r(x)=b_{0}+b_{1} x+\cdots+b_{d-1} x^{d-1}$ for some elements $b_{0}, \ldots, b_{d-1} \in \mathbb{F}$ (possibly all zero). Then since $m(\alpha)=0$ we have

$$
\begin{aligned}
\beta & =f(\alpha) \\
& =m(\alpha) q(\alpha)+r(\alpha) \\
& =r(\alpha) \\
& =b_{0}+b_{1} \alpha+\cdots+b_{d-1} \alpha^{d-1} .
\end{aligned}
$$

Uniqueness: Suppose that we have

$$
b_{0}+b_{1} \alpha+\cdots+b_{d-1} \alpha^{d-1}=c_{0}+c_{1} \alpha+\cdots+c_{d-1} \alpha^{d-1}
$$

for some $b_{0}, \ldots, b_{d-1}, c_{0}, \ldots, c_{d-1} \in \mathbb{F}$. We wish to show that $b_{i}=c_{i}$ for all i. To do this, we define the polynomials $r(x)=b_{0}+b_{1} x+b_{d-1} x^{d-1}$ and $s(x)=c_{0}+c_{1} x+\cdots+c_{d-1} x^{d-1}$. We will be done if we can show that $r(x)-s(x)$ is the zero polynomial, since then the coefficients of $r(x)$ and $s(x)$ will be equal.

By assumption we have $r(\alpha)=s(\alpha)$ and hence $r(\alpha)-s(\alpha)=0$. In other words, we have $r(x)-s(x) \in \operatorname{ker} \varphi_{\alpha}$, which implies that $r(x)-s(x)$ is divisible by $m(x)$. If $r(x)-s(x) \neq 0$ then this gives a contradiction:

$$
d=\operatorname{deg}(m) \leq \operatorname{deg}(r-s) \leq \max \{\operatorname{deg}(r), \operatorname{deg}(s)\}<d
$$

Hence $r(x)-s(x)=0$ as desired.
(d): Let $m(x)$ be a generator of $\operatorname{ker} \varphi_{\alpha}$. To prove that $m(x)$ is irreducible over \mathbb{F}, suppose that we have $m(x)=f(x) g(x)$ for some (nonzero) $f(x), g(x) \in \mathbb{F}[x]$. Evaluating at $x=\alpha$ gives

$$
0=m(\alpha)=f(\alpha) g(\alpha)
$$

which implies that $f(\alpha)=0$ or $g(\alpha)=0$. Without loss of generality, suppose that $f(\alpha)=0$. Then since $f(x) \in \operatorname{ker} \varphi_{\alpha}$ we must have $m(x) \mid f(x)$. But since $m(x)=f(x) g(x)$ we also have $f(x) \mid m(x)$. It follows that $m(x)=\lambda f(x)$ for some constant $\lambda \in \mathbb{F}[x]$. Finally, since $f(x) g(x)=\lambda g(x)$, it follows that $g(x)=\lambda$ is constant. We have shown that

$$
m(x)=f(x) g(x) \quad \Longrightarrow \quad f(x) \text { or } g(x) \text { is constant. }
$$

In other words, $m(x)$ is irreducible over \mathbb{F}.
(e): If $\operatorname{ker} \varphi_{\alpha}=\{0\}$ then we have shown that $\operatorname{ker} \varphi_{\alpha}=m(x) \mathbb{F}[x]$ for a unique, monic polynomial $m(x) \in \mathbb{F}[x]$, which is irreducible. From the First Isomorphism Theorem we have

$$
\mathbb{F}[\alpha]=\operatorname{im} \varphi_{\alpha} \cong \frac{\mathbb{F}[x]}{\operatorname{ker} \varphi_{\alpha}}=\frac{\mathbb{F}[x]}{m(x) \mathbb{F}[x]}
$$

Finally, since $m(x)$ is prime in $\mathbb{F}[x]$ we conclude from 2(c) that this quotient ring is a field.
Remark: This is a rather indirect way to prove that $\mathbb{F}[\alpha]$ is a field. In particular, it does not provide an algorithm to compute inverses in $\mathbb{F}[\alpha]$. The solution to this problem is to use $3(\mathrm{c})$ to express $\mathbb{F}[\alpha]$ as a vector space over \mathbb{F} with basis $1, \alpha, \ldots, \alpha^{d-1}$ and then use linear algebra.
4. Cube Roots of 2 . Let $\alpha \in \mathbb{C}$ be any root of the polynomial $x^{3}-2 \in \mathbb{Q}[x]$.
(a) Prove that $x^{3}-2$ is irreducible over \mathbb{Q}, hence it is the minimal polynomial for α over \mathbb{Q}. [Hint: If $x^{3}-2$ is not irreducible over \mathbb{Q} then it has a root $a / b \in \mathbb{Q}$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Use this to get a contradiction.]
(b) It follows from Problem 3 that the following set of numbers is a field:

$$
\mathbb{Q}[\alpha]=\left\{a+b \alpha+c \alpha^{2}: a, b, c \in \mathbb{Q}\right\} \subseteq \mathbb{C} .
$$

Find the inverse of the number $1+\alpha+\alpha^{2}$. [Hint: Let $\left(1+\alpha+\alpha^{2}\right)\left(a+b \alpha+c \alpha^{2}\right)=$ $1+0 \alpha+0 \alpha^{2}$. Expand the left side and equate coefficients. Use the fact that $\alpha^{3}=2$.]
(a): Let $\alpha \in \mathbb{C}$ satisfy $\alpha^{3}-2=0$, let $f(x)=x^{3}-2 \in \mathbb{Q}[x]$ and let $m(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q}, so that $m(x) \mid f(x)$. I claim that in fact $m(x)=f(x)$.To show this, it is enough to prove that $f(x)$ is irreducible over \mathbb{Q}, since then $m(x) \mid f(x)$ implies $m(x)=\lambda f(x)$ and since $f(x), m(x)$ are both monic we must have $\lambda=1$.

So suppose for contradiction that $f(x)=g(x) h(x)$ for some $g(x), h(x) \in \mathbb{Q}[x]$, both nonconstant. By comparing degrees we must have $\operatorname{deg}(f)=1$ or $\operatorname{deg}(g)=1$. Without loss of generality, suppose that $\operatorname{deg}(f)=1$, so that $f(x)=\alpha x+\beta$ with $\alpha, \beta \in \mathbb{Q}$ and $\alpha \neq 0$. Write $-\beta / \alpha=a / b$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Then we have

$$
f(a / b)=g(a / b) h(a / b)=g(-\beta / \alpha) h(a / b)=0 h(a / b)=0,
$$

which implies that

$$
\begin{aligned}
(a / b)^{3}-2 & =0 \\
a^{3}-2 b^{3} & =0 \\
a^{3} & =2 b^{3} .
\end{aligned}
$$

Since $a \mid 2 b^{3}$ and $\operatorname{gcd}(a, b)=1$ we must have $a \mid 2$ and since $b \mid a^{3}$ we must have $b \mid 1$. It follows that a / b is ± 1 or $\pm 2 \sqrt{3}^{3}$ But none of these four numbers is a root of $x^{3}-2$. Contradiction.
(b): If $\alpha^{3}-2=0$ then we have shown that $x^{3}-2$ is the minimal polynomial of α over \mathbb{Q}. Since $\operatorname{deg}\left(x^{3}-2\right)=3$ this implies that the field $\mathbb{Q}[\alpha] \subseteq \mathbb{C}$ can be expressed as a vector space over \mathbb{Q} with basis $1, \alpha, \alpha^{2}$:

$$
\mathbb{Q}[\alpha]=\left\{a+b \alpha+c \alpha^{2}: a, b, c \in \mathbb{Q}\right\} .
$$

This representation allows us to do computations in $\mathbb{Q}[\alpha]$ via linear algebra. For example, we compute the inverse of the nonzero element $1+\alpha+\alpha^{2} \in \mathbb{Q}[\alpha]$. The inverse must have the form $a+b \alpha+c \alpha^{2}$ for some $a, b, c \in \mathbb{Q}$ where

$$
\left(1+\alpha+\alpha^{2}\right)\left(a+b \alpha+c \alpha^{2}\right)=1+0 \alpha+0 \alpha^{2} .
$$

[^2]Expanding the left hand side and using the fact that $\alpha^{3}-2=0$ gives

$$
\begin{aligned}
\left(1+\alpha+\alpha^{2}\right)\left(a+b \alpha+c \alpha^{2}\right)= & a+b \alpha+c \alpha^{2} \\
& a \alpha+b \alpha^{2}+c \alpha^{3} \\
& a \alpha^{2}+b \alpha^{3}+c \alpha^{4} \\
= & a+b \alpha+c \alpha^{2} \\
& a \alpha+b \alpha^{2}+2 c \\
& a \alpha^{2}+2 b+2 c \alpha \\
= & (a+2 b+2 c)+(a+b+2 c) \alpha+(a+b+c) \alpha^{2} .
\end{aligned}
$$

Then comparing coefficient \sum^{4} gives a system of three linear equations in the unknowns a, b, c :

$$
\left\{\begin{array}{l}
a+2 b+2 c=1, \\
a+b+2 c=0, \\
a+b+c=0
\end{array}\right.
$$

After a bit of work we find that $(a, b, c)=(-1,1,0)$, so that

$$
\left(1+\alpha+\alpha^{2}\right)(-1+\alpha)=1
$$

Remark: With a bit more work we can find a formula for the inverse of a general element $r+s \alpha+t \alpha^{2}$. By expanding $\left(r+s \alpha+t \alpha^{2}\right)\left(a+b \alpha+c \alpha^{2}\right)=1+0 \alpha+0 \alpha^{2}$ we obtain the following system of linear equations in a, b, c :

$$
\left\{\begin{array}{l}
r a+2 t b+2 s c=1 \\
s a+r b+2 t c=0 \\
t a+s b+r c=0
\end{array}\right.
$$

Then my computer gives the following solution:

$$
(a, b, c)=\frac{1}{r^{3}+2 s^{3}+4 t^{3}-6 r s t}\left(r^{2}-2 s t, r s-2 t^{2}, r t-s^{2}\right) .
$$

That is, for any $r, s, t \in \mathbb{Q}$, not all zero, we have

$$
\frac{1}{r+s \alpha+t \alpha^{2}}=\frac{1}{r^{3}+2 s^{3}+4 t^{3}-6 r s t}\left(\left(r^{2}-2 s t\right)+\left(r s-2 t^{2}\right) \alpha+\left(r t-s^{2}\right) \alpha^{2}\right) .
$$

As an interesting consequence, if $r, s, t \in \mathbb{Q}$ are not all zero then we must have

$$
r^{3}+2 s^{3}+4 t^{3}-6 r s t \neq 0
$$

I have no idea how I would prove this by other methods.

[^3]
[^0]: ${ }^{1}$ Recall: We say that $p \in R$ is prime when p is non-zero, non-unit, and $p=a b$ implies that a or b is a unit.

[^1]: ${ }^{2}$ The leading coefficient is 1 .

[^2]: ${ }^{3}$ We have just performed the "rational root test", to find a finite list of potential roots of $x^{3}-2$ in \mathbb{Q}.

[^3]: ${ }^{4}$ We can do this because of uniqueness.

