- 1. A Field is a Ring with Exactly Two Ideals. Let R be a commutative ring.
 - (a) Let $I \subseteq R$ be an ideal. Show that I = R if and only if I contains a unit.
 - (b) If R is a field, use part (a) to show that $\{0\} \subsetneq I \subseteq R$ implies I = R.
 - (c) Conversely, suppose that R has exactly two ideals: $\{0\}$ and R. Use this to prove that R is a field. [Hint: For any non-zero element $0 \neq a \in R$, the ideal aR must equal R. Use this to prove that a^{-1} exists.]
- **2.** Quotients of Euclidean Domains. Let (R, N) be a Euclidean domain.
 - (a) Show that every ideal $I \subseteq R$ has the form I = aR for some $a \in R$. [Hint: If $I = \{0\}$ then we have I = 0R. If $I \neq \{0\}$, choose some non-zero element $a \in I$ with minimum size N(a). Show that I = aR.]
 - (b) Show that aR = bR if and only if a and b are associates.
 - (c) Consider an ideal $pR \neq R$ (so that p is not a unit). If p is prime,¹ prove that R/pR is a field. [Hint: Consider a non-zero coset $a + pR \neq 0 + pR$. Show that we must have gcd(a, p) = 1, hence from Bézout's Identity we have ax + py = 1 for some $x, y \in R$.]

3. The Minimal Polynomial Theorem. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$. Then for any element $\alpha \in \mathbb{E}$ we have an *evaluation homomorphism*:

$$\varphi_{\alpha}: \quad \mathbb{F}[x] \quad \to \quad \mathbb{E} \\
f(x) \quad \mapsto \quad f(\alpha).$$

- (a) Prove that $\mathbb{F}[\alpha] := \operatorname{im} \varphi_{\alpha}$ is the smallest subring of \mathbb{E} that contains \mathbb{F} and α .
- (b) Let α be algebraic over \mathbb{F} , so that ker $\varphi_{\alpha} \neq \{0\}$. In this case, prove that there exists a unique monic² polynomial $m(x) \in \mathbb{F}[x]$ such that ker $\varphi_{\alpha} = m(x)\mathbb{F}[x]$. [Hint: Use Problem 2(a,b).] This m(x) is called the minimal polynomial of α over \mathbb{F} .
- (c) Let $d = \deg(m)$. Prove that every element $\beta \in \mathbb{F}[\alpha]$ can be expressed **uniquely** as

$$\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_{d-1} \alpha^{d-1} \quad \text{for some } b_0, b_1, \dots, b_{d-1} \in \mathbb{F}$$

[Hint: By definition of $\mathbb{F}[\alpha]$ we have $\beta = f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x) by the minimal polynomial m(x) to get f(x) = m(x)q(x) + r(x).]

- (d) Prove that m(x) is irreducible over \mathbb{F} . [Hint: Suppose that m(x) = f(x)g(x). Since m(x) is in the kernel of φ_{α} we have $f(\alpha)g(\alpha) = m(\alpha) = 0$, and hence $f(\alpha) = 0$ or $g(\alpha) = 0$. If $f(\alpha) = 0$ then f(x) is in the kernel of φ_{α} which implies that m(x)|f(x)|.]
- (e) Continuing from part (d), use the First Isomorphism Theorem and Problem 2(b) to show that $\mathbb{F}[\alpha]$ is a field.
- 4. Cube Roots of 2. Let $\alpha \in \mathbb{C}$ be any root of the polynomial $x^3 2 \in \mathbb{Q}[x]$.
 - (a) Prove that $x^3 2$ is irreducible over \mathbb{Q} , hence it is the minimal polynomial for α over \mathbb{Q} . [Hint: If $x^3 2$ is not irreducible over \mathbb{Q} then it has a root $a/b \in \mathbb{Q}$ for some $a, b \in \mathbb{Z}$ with gcd(a, b) = 1. Use this to get a contradiction.]
 - (b) It follows from Problem 3 that the following set of numbers is a field:

$$\mathbb{Q}[\alpha] = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\} \subseteq \mathbb{C}.$$

Find the inverse of the number $1 + \alpha + \alpha^2$. [Hint: Let $(1 + \alpha + \alpha^2)(a + b\alpha + c\alpha^2) = 1 + 0\alpha + 0\alpha^2$. Expand the left side and equate coefficients. Use the fact that $\alpha^3 = 2$.]

¹Recall: We say that $p \in R$ is prime when p is non-zero, non-unit, and p = ab implies that a or b is a unit. ²The leading coefficient is 1.