1. A Field is a Ring with Exactly Two Ideals. Let R be a commutative ring.
(a) Let $I \subseteq R$ be an ideal. Show that $I=R$ if and only if I contains a unit.
(b) If R is a field, use part (a) to show that $\{0\} \subsetneq I \subseteq R$ implies $I=R$.
(c) Conversely, suppose that R has exactly two ideals: $\{0\}$ and R. Use this to prove that R is a field. [Hint: For any non-zero element $0 \neq a \in R$, the ideal $a R$ must equal R. Use this to prove that a^{-1} exists.]
2. Quotients of Euclidean Domains. Let (R, N) be a Euclidean domain.
(a) Show that every ideal $I \subseteq R$ has the form $I=a R$ for some $a \in R$. [Hint: If $I=\{0\}$ then we have $I=0 R$. If $I \neq\{0\}$, choose some non-zero element $a \in I$ with minimum size $N(a)$. Show that $I=a R$.]
(b) Show that $a R=b R$ if and only if a and b are associates.
(c) Consider an ideal $p R \neq R$ (so that p is not a unit). If p is prime ${ }^{1}$ prove that $R / p R$ is a field. [Hint: Consider a non-zero coset $a+p R \neq 0+p R$. Show that we must have $\operatorname{gcd}(a, p)=1$, hence from Bézout's Identity we have $a x+p y=1$ for some $x, y \in R$.]
3. The Minimal Polynomial Theorem. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$. Then for any element $\alpha \in \mathbb{E}$ we have an evaluation homomorphism:

$$
\begin{array}{cccc}
\varphi_{\alpha}: & \mathbb{F}[x] & \rightarrow & \mathbb{E} \\
& f(x) & \mapsto & f(\alpha) .
\end{array}
$$

(a) Prove that $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}$ is the smallest subring of \mathbb{E} that contains \mathbb{F} and α.
(b) Let α be algebraic over \mathbb{F}, so that $\operatorname{ker} \varphi_{\alpha} \neq\{0\}$. In this case, prove that there exists a unique moni ${ }^{2}$ polynomial $m(x) \in \mathbb{F}[x]$ such that $\operatorname{ker} \varphi_{\alpha}=m(x) \mathbb{F}[x]$. [Hint: Use Problem 2(a,b).] This $m(x)$ is called the minimal polynomial of α over \mathbb{F}.
(c) Let $d=\operatorname{deg}(m)$. Prove that every element $\beta \in \mathbb{F}[\alpha]$ can be expressed uniquely as

$$
\beta=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\cdots+b_{d-1} \alpha^{d-1} \quad \text { for some } b_{0}, b_{1}, \ldots, b_{d-1} \in \mathbb{F} .
$$

[Hint: By definition of $\mathbb{F}[\alpha]$ we have $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by the minimal polynomial $m(x)$ to get $f(x)=m(x) q(x)+r(x)$.]
(d) Prove that $m(x)$ is irreducible over \mathbb{F}. [Hint: Suppose that $m(x)=f(x) g(x)$. Since $m(x)$ is in the kernel of φ_{α} we have $f(\alpha) g(\alpha)=m(\alpha)=0$, and hence $f(\alpha)=0$ or $g(\alpha)=0$. If $f(\alpha)=0$ then $f(x)$ is in the kernel of φ_{α} which implies that $m(x) \mid f(x)$.]
(e) Continuing from part (d), use the First Isomorphism Theorem and Problem 2(b) to show that $\mathbb{F}[\alpha]$ is a field.
4. Cube Roots of 2 . Let $\alpha \in \mathbb{C}$ be any root of the polynomial $x^{3}-2 \in \mathbb{Q}[x]$.
(a) Prove that $x^{3}-2$ is irreducible over \mathbb{Q}, hence it is the minimal polynomial for α over \mathbb{Q}. [Hint: If $x^{3}-2$ is not irreducible over \mathbb{Q} then it has a root $a / b \in \mathbb{Q}$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Use this to get a contradiction.]
(b) It follows from Problem 3 that the following set of numbers is a field:

$$
\mathbb{Q}[\alpha]=\left\{a+b \alpha+c \alpha^{2}: a, b, c \in \mathbb{Q}\right\} \subseteq \mathbb{C} .
$$

Find the inverse of the number $1+\alpha+\alpha^{2}$. [Hint: Let $\left(1+\alpha+\alpha^{2}\right)\left(a+b \alpha+c \alpha^{2}\right)=$ $1+0 \alpha+0 \alpha^{2}$. Expand the left side and equate coefficients. Use the fact that $\alpha^{3}=2$.]

[^0]
[^0]: ${ }^{1}$ Recall: We say that $p \in R$ is prime when p is non-zero, non-unit, and $p=a b$ implies that a or b is a unit.
 ${ }^{2}$ The leading coefficient is 1 .

