1. The Fundamental Theorem of Cyclic Groups. Let $G$ be a finite cyclic group of size $n$ and pick a generator $a \in G$ so that $G=\langle a\rangle=\left\{\varepsilon, a, a^{2}, \ldots, a^{n-1}\right\}$. By Lagrange's Theorem, the size of any subgroup divides $n$. Conversely, we will show that for any positive divisor $d \mid n$
there exists a unique subgroup of size $d$. Let $n=d d^{\prime}$ for some integers $d, d^{\prime} \geq 1$.
(a) Prove that the cyclic subgroup $\left\langle a^{d^{\prime}}\right\rangle \subseteq G$ has size $d$.
(b) Let $H \subseteq G$ be any cyclic subgroup of size $d$. Prove that $H=\left\langle a^{d^{\prime}}\right\rangle$. [Hint: For any $a^{k} \in G$ we know from HW3 that $\#\left\langle a^{k}\right\rangle=n / \operatorname{gcd}(k, n)$ and $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(k, n)}\right\rangle$.]
(c) Let $H \subseteq G$ be any subgroup of size $d$. Prove that $H=\left\langle a^{d^{\prime}}\right\rangle$. [Hint: If $d=1$ then there is nothing to show, so let $d \geq 2$. Let $m$ be the smallest integer $m>0$ such that $a^{m} \in H$ and let $b \in H$ be an arbitrary element. We can write $b=a^{k}$ for some $k$. Divide $k$ by $m$ to obtain $k=m q+r$ with $0 \leq r<m$. Show that our assumptions imply $r=0$. It follows that $b$ is a power of $a^{m}$ and hence $H=\left\langle a^{m}\right\rangle$.]
(a): We showed in the previous homework that $\#\left\langle a^{k}\right\rangle=n / \operatorname{gcd}(k, n)$ for any integer $k \in \mathbb{Z}$. In this case since $d^{\prime} \mid n$ we have $\operatorname{gcd}\left(d^{\prime}, n\right)=d^{\prime}$ and hence

$$
\#\left\langle a^{d^{\prime}}\right\rangle=n / \operatorname{gcd}\left(d^{\prime}, n\right)=n / d^{\prime}=d
$$

(b): Any cyclic subgroup $H \subseteq G$ has the form $H=\langle b\rangle$ for some $b \in G$. But any element of $G$ has the form $b=a^{k}$. Recall from the previous homework that
(i) $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(k, n)}\right.$,
(ii) $\#\left\langle a^{k}\right\rangle=n / \operatorname{gcd}(k, n)$.

Now suppose that $\# H=d$. It follows from (ii) that

$$
d=n / \operatorname{gcd}(k, n)
$$

and hence $\operatorname{gcd}(k, n)=n / d=d^{\prime}$. Then it follows from (i) that

$$
H=\left\langle a^{k}\right\rangle=\left\langle a^{d^{\prime}}\right\rangle
$$

(c): Let $H \subseteq G$ be any subgroup of size $d$. We will show that $H$ is cyclic and then it will follow from (b) that $H=\left\langle a^{d^{\prime}}\right\rangle$. If $d=1$ then there is nothing to show, so suppose that $d \geq 2$ and let $m>0$ be the smallest positive integer such that $a^{m} \in H \|$ On the one hand, since $a^{m} \in H$ and since $H$ is a subgroup we know that any power of $a^{m}$ is in $H$, hence $\left\langle a^{m}\right\rangle \subseteq H$. On the other hand, we will show that any element $b \in H$ is a power of $a^{m}$ and hence $H \subseteq\left\langle a^{m}\right\rangle$. It will follow that $H=\left\langle a^{m}\right\rangle$ and hence $H$ is cyclic.

So consider any element $b \in H$. Since $G=\langle a\rangle$ we can write $b=a^{k}$ for some $k \in \mathbb{Z}$. Divide $k$ by $m$ to obtain

$$
\left\{\begin{array}{l}
k=m q+r \\
0 \leq r<m
\end{array}\right.
$$

We observe that $a^{r} \in H$ because $a^{-m} \in H$ and hence

$$
a^{r}=a^{k-m q}=a^{k}\left(a^{-m}\right)^{q} \in H .
$$

[^0]If $r=0$ then this contradicts the definition of $m$. It follows that $r=0$ and hence $b=a^{k}=$ $a^{m q}=\left(a^{m}\right)^{q}$ is a power of $a^{m}$, as desired.
2. Cyclotomic Polynomials. Let $\left(\Omega_{n}, \times, 1\right)$ be the group of $n$th roots of unity and let $\omega=e^{2 \pi i / n}$. We know that $\Omega_{n}=\langle\omega\rangle$ is a cyclic group. Now consider the subset ${ }^{2}$ of primitive roots:

$$
\Omega_{n}^{\prime}=\left\{\omega^{k}: 1 \leq k \leq n \text { and } \operatorname{gcd}(k, n)=1\right\} .
$$

(a) Prove that the subgroups of $\Omega_{n}$ are just $\Omega_{d}$ for positive divisors $d \mid n$.
(b) Prove that $\Omega_{n}^{\prime}$ is the set of generators $\zeta \in \Omega_{n}$ such that $\langle\zeta\rangle=\Omega_{n}$. [Hint: We know from HW3 that the cyclic subgroup $\left\langle\omega^{k}\right\rangle \subseteq \Omega_{n}$ has size $n / \operatorname{gcd}(k, n)$.]
(c) Use (a) and (b) to express $\Omega_{n}$ as a disjoint union:

$$
\Omega_{n}=\coprod_{d \mid n} \Omega_{d}^{\prime} .
$$

[Hint: For any $\zeta \in \Omega_{n}$ we have $\zeta \in \Omega_{d}^{\prime}$ if and only if $\langle\zeta\rangle=\Omega_{d}$.]
(d) We define the $n$th cyclotomic polynomial as follows $3^{3}$

$$
\Phi_{n}(x):=\prod_{\zeta \in \Omega_{n}^{\prime}}(x-\zeta) \in \mathbb{C}[x] .
$$

Prove that $\Phi_{n}(x)$ actually has integer coefficients. [Hint: From part (c) we have

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Let $f(x)$ be the product of $\Phi_{d}(x)$ for all divisors $d \mid n$ except $d=n$, so that $x^{n}-1=$ $\Phi_{n}(x) f(x)$. By induction we may assume that $f(x)$ has integer coefficients. On the other hand, since $f(x) \in \mathbb{Z}[x]$ has leading coefficient 1 there exist $q(x), r(x) \in \mathbb{Z}[x]$ with $x^{n}-1=q(x) f(x)+r(x)$, such that $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(f)$. You don't need to prove this; it follows from the same proof as a the division algorithm over fields.]
(a): We know that $\Omega_{n}=\langle\omega\rangle$. Therefore from Problem 1 the subgroups of $\Omega_{n}$ are just $\left\langle\omega^{n / d}\right\rangle$ for positive divisors $d \mid n$. I claim that

$$
\left\langle\omega^{n / d}\right\rangle=\Omega_{d} .
$$

Indeed, we know that $\#\left\langle\omega^{n / d}\right\rangle=d$, so we will be done if we can show that $\left\langle\omega^{n / d}\right\rangle \subseteq \Omega_{d}$. In other words, we want to show that every power of $\omega^{n / d}$ is a $d$ th root of unity. And this is straightforward:

$$
\left(\left(\omega^{n / d}\right)^{k}\right)^{d}=\omega^{n k}=\left(\omega^{n}\right)^{k}=1^{k}=1
$$

(b): Let $\zeta=\omega^{k} \in \Omega_{n}$ be an arbitrary $n$th root of unity. Then we have

$$
\#\langle\zeta\rangle=\#\left\langle\omega^{k}\right\rangle=n / \operatorname{gcd}(k, n),
$$

so that

$$
\langle\zeta\rangle=\Omega_{n} \quad \Longleftrightarrow \quad \#\langle\zeta\rangle=n \quad \Longleftrightarrow \quad \operatorname{gcd}(k, n)=1
$$

[^1](c): Every $n$th root of unity $\zeta \in \Omega_{n}$ generates a cyclic subgroup $\langle\zeta\rangle \subseteq \Omega_{n}$, which must equal $\Omega_{d}$ for some $d \mid n$. Therefore we have a disjoint union:
$$
\Omega_{n}=\coprod_{d \mid n}\left\{\zeta \in \Omega_{n}:\langle\zeta\rangle=\Omega_{d}\right\}=\coprod_{d \mid n} \Omega_{d}^{\prime} .
$$
(d): It follows from part (c) that
$$
\prod_{d \mid n} \Phi_{d}(x)=\prod_{d \mid n} \prod_{\zeta \in \Omega_{d}^{\prime}}(x-\zeta)=\prod_{\zeta \in \Omega_{n}}(x-\zeta)=x^{n}-1 .
$$

Let $f(x)$ be the product of $\Phi_{d}(x)$ over all divisors $d \mid n$ except $d=n$, so that

$$
x^{n}-1=\Phi_{n}(x) f(x) .
$$

Observe that the polynomial $f(x)$ has leading coefficient 1 because each $\Phi_{d}(x)$ has leading coefficient 1. Now let us assume for induction that $\Phi_{k}(x) \in \mathbb{Z}[x]$ for all $k<n$, which implies that $f(x) \in \mathbb{Z}[x]$. Since $f(x) \in \mathbb{Z}[x]$ has leading coefficient 1 there exist $q(x), r(x) \in \mathbb{Z}[x]$ with

$$
\left\{\begin{array}{l}
x^{n}-1=q(x) f(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(f) .
\end{array}\right.
$$

On the other hand, we have $x^{n}-1=\Phi_{n}(x) f(x)+0$ in the ring $\mathbb{C}[x]$. By uniqueness of quotient and remainder in $\mathbb{C}[x]$ it follows that $\Phi_{n}(x)=q(x)$ and hence $\Phi_{n}(x) \in \mathbb{Z}[x]$.

Remark: It is difficult to predict the coefficients of the polynomials $\Phi_{n}(x)$. However, part (d) gives a recursive algorithm to compute them. Here are the first few cyclotomic polynomials:

| $n$ | $\Phi_{n}(x)$ |
| :---: | :--- |
| 1 | $x-1$ |
| 2 | $x+1$ |
| 3 | $x^{2}+x+1$ |
| 4 | $x^{2}+1$ |
| 5 | $x^{5}+x^{4}+x^{3}+x^{2}+x+1$ |
| 6 | $x^{2}-x+1$ |
| 7 | $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ |
| 8 | $x^{4}+1$ |
| 9 | $x^{6}+x^{3}+1$ |
| 10 | $x^{4}-x^{3}+x^{2}-x+1$ |
| 11 | $x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ |
| 12 | $x^{4}-x^{2}+1$ |

See the course notes for more information.
In particular, this table tells us the factorization of $x^{12}-1$ over the integers ${ }^{4}$ Since the divisors of 12 are $1,2,3,4,6,12$ we obtain

$$
\begin{aligned}
x^{12}-1 & =\Phi_{1}(x) \Phi_{2}(x) \Phi_{3}(x) \Phi_{4}(x) \Phi_{6}(x) \Phi_{12}(x) \\
& =(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) .
\end{aligned}
$$

[^2]
[^0]:    ${ }^{1}$ Such an integer exists because $a^{n}=\varepsilon$.

[^1]:    ${ }^{2}$ It is not a subgroup.
    ${ }^{3}$ We use this notation because the degree of $\Phi_{n}$ is Euler's totient $\phi(n)$.

[^2]:    ${ }^{4}$ One can show that each cyclotomic polynomial is prime over $\mathbb{Z}$, so this is the prime factorization in the ring $\mathbb{Z}[x]$. However, the proof is quite difficult (even Gauss had trouble with it) so we won't discuss it in this class.

