Math 562/662 Spring 2022
Homework 4 Drew Armstrong

1. The Fundamental Theorem of Cyclic Groups. Let G be a finite cyclic group of size
n and pick a generator a € G so that G = (a) = {¢,a,a?,...,a" '}. By Lagrange’s Theorem,
the size of any subgroup divides n. Conversely, we will show that for any positive divisor d|n
there exists a unique subgroup of size d. Let n = dd’ for some integers d,d’ > 1.
(a) Prove that the cyclic subgroup (a?) C G has size d.
(b) Let H C G be any cyclic subgroup of size d. Prove that H = (a%). [Hint: For any
a* € G we know from HW3 that #(a*) = n/ged(k,n) and (a¥) = (a&ed*:m)) ]
(c) Let H C G be any subgroup of size d. Prove that H = (a®). [Hint: If d = 1 then
there is nothing to show, so let d > 2. Let m be the smallest integer m > 0 such that
a™ € H and let b € H be an arbitrary element. We can write b = a* for some k.
Divide k£ by m to obtain k = mq + r with 0 < r < m. Show that our assumptions
imply r = 0. It follows that b is a power of @™ and hence H = (a™).]

(a): We showed in the previous homework that #(a*) = n/gcd(k,n) for any integer k € Z.
In this case since d’|n we have ged(d’,n) = d’ and hence

#(a®) =n/ged(d',n) =n/d = d.

(b): Any cyclic subgroup H C G has the form H = (b) for some b € G. But any element of
G has the form b = a*. Recall from the previous homework that

(i) {a*) = (asedtn),
(i) #(a*) = n/ ged(k,n).
Now suppose that #H = d. It follows from (ii) that
d=mn/ged(k,n)
and hence ged(k,n) =n/d = d'. Then it follows from (i) that
H = (a*) = (a®).

(c): Let H C G be any subgroup of size d. We will show that H is cyclic and then it will follow
from (b) that H = (a®). If d = 1 then there is nothing to show, so suppose that d > 2 and let
m > 0 be the smallest positive integer such that a™ € H E] On the one hand, since a™ € H
and since H is a subgroup we know that any power of " is in H, hence (a™) C H. On the
other hand, we will show that any element b € H is a power of ¢ and hence H C (a™). It
will follow that H = (a") and hence H is cyclic.

So consider any element b € H. Since G = {a) we can write b = a* for some k € Z. Divide k
by m to obtain

k=mqg+r,
0<r<m.

We observe that a” € H because a~ " € H and hence

a" =a"m = g% (a"™) e H.

1Such an integer exists because a" = €.



If » = 0 then this contradicts the definition of m. It follows that 7 = 0 and hence b = a* =
a™ = (a")? is a power of a™, as desired.

2. Cyclotomic Polynomials. Let (£,, x,1) be the group of nth roots of unity and let
w = e2™/" We know that Q, = (w) is a cyclic group. Now consider the subse of primitive
T00tS:

Q) ={w*:1<k<nand ged(k,n) =1}.

(a) Prove that the subgroups of €2, are just Q4 for positive divisors d|n.

(b) Prove that € is the set of generators ¢ € €, such that (¢) = Q,. [Hint: We know
from HW3 that the cyclic subgroup (w¥) C Q,, has size n/ gcd(k,n).]

(c¢) Use (a) and (b) to express ), as a disjoint union:

0, =[]
dln
[Hint: For any ¢ € ,, we have ¢ € €} if and only if ({) = Q4]
(d) We define the nth cyclotomic polynomial as followsﬂ
D, (x) = H (x —¢) € Clz].
Ceq,
Prove that ®,(x) actually has integer coefficients. [Hint: From part (c) we have
" —1= H@d(l‘).
dln

Let f(x) be the product of ®4(z) for all divisors d|n except d = n, so that 2 — 1 =
@, (z)f(x). By induction we may assume that f(x) has integer coefficients. On the
other hand, since f(x) € Z[x] has leading coefficient 1 there exist ¢(x),r(x) € Z[x] with
z" — 1 = q(x)f(z) + r(z), such that r(x) = 0 or deg(r) < deg(f). You don’t need to
prove this; it follows from the same proof as a the division algorithm over fields.]

(a): We know that Q, = (w). Therefore from Problem 1 the subgroups of €, are just (w™%)
for positive divisors d|n. I claim that
(W4 = Q.

Indeed, we know that #(w"™/?) = d, so we will be done if we can show that (w™?%) C Q4. In
other words, we want to show that every power of w™/® is a dth root of unity. And this is

straightforward:
k d

(b): Let ¢ = w* € Q,, be an arbitrary nth root of unity. Then we have

#(0) = #(w") = n/ ged(k, n),
so that
Q)= <<= #((=n <+= gcd(kn)=1

2It is not a subgroup.
3We use this notation because the degree of @, is Euler’s totient ¢(n).



(c): Every nth root of unity ¢ € €, generates a cyclic subgroup (¢) C €, which must equal
Q4 for some d|n. Therefore we have a disjoint union:

Q= [J{¢ € Qu: (Q) =} = [ Q%

din dn

(d): It follows from part (c) that
[Tea) =] [[@-0=][@-0=a"-1.
dln dln ¢e9Y, ceQn
Let f(z) be the product of ®4(x) over all divisors d|n except d = n, so that
" —1=d,(x)f(x).

Observe that the polynomial f(x) has leading coefficient 1 because each ®4(x) has leading
coefficient 1. Now let us assume for induction that ®x(z) € Z[x] for all k¥ < n, which implies
that f(z) € Z[x]. Since f(x) € Z[x] has leading coefficient 1 there exist q(z),r(z) € Z[z] with

2" — 1= q(2) f(x) + r(2),
r(z) =0 or deg(r) < deg(f).

On the other hand, we have 2" —1 = ®,,(x) f(2) 40 in the ring C[z]. By uniqueness of quotient
and remainder in C[z] it follows that ®,(z) = ¢(z) and hence ®,(z) € Z[z].

Remark: It is difficult to predict the coefficients of the polynomials ®,,(x). However, part (d)
gives a recursive algorithm to compute them. Here are the first few cyclotomic polynomials:

n | &,(x)

1 |xz—1

2 |z+1

3|22 +2x+1

4 |22 +1

5l +at+3+a24++1

6 |22 —x+1

T S +5+ 2+ +22+2+1
8 |z%+1

9 |28 +23+1

10|zt —a3+22—2+1

1129429+ 8+ "+ a8+ + a2t + 22+ 22+ +1
12|zt —22+1

See the course notes for more information.
In particular, this table tells us the factorization of z'?2 —1 over the integersﬁ Since the divisors
of 12 are 1,2,3,4,6,12 we obtain
a;12 —1= (I)l(.%‘)(I)Q(.%')‘I’g(.%)‘I’4(Q?)‘I)6($)(I)12(.’L')
=D+ +r+ )@+ 1)@ -2+ 1) — 22 +1).

40ne can show that each cyclotomic polynomial is prime over Z, so this is the prime factorization in the
ring Z[z]. However, the proof is quite difficult (even Gauss had trouble with it) so we won’t discuss it in this
class.



