1. The Fundamental Theorem of Cyclic Groups. Let G be a finite cyclic group of size n and pick a generator $a \in G$ so that $G = \langle a \rangle = \{\varepsilon, a, a^2, \ldots, a^{n-1}\}$. By Lagrange's Theorem, the size of any subgroup divides n. Conversely, we will show that for any positive divisor d|n there exists a unique subgroup of size d. Let n = dd' for some integers $d, d' \geq 1$.

- (a) Prove that the cyclic subgroup $\langle a^{d'} \rangle \subseteq G$ has size d.
- (b) Let $H \subseteq G$ be any cyclic subgroup of size d. Prove that $H = \langle a^{d'} \rangle$. [Hint: For any $a^k \in G$ we know from HW3 that $\# \langle a^k \rangle = n/\gcd(k,n)$ and $\langle a^k \rangle = \langle a^{\gcd(k,n)} \rangle$.]
- (c) Let $H \subseteq G$ be **any subgroup** of size d. Prove that $H = \langle a^{d'} \rangle$. [Hint: If d = 1 then there is nothing to show, so let $d \geq 2$. Let m be the smallest integer m > 0 such that $a^m \in H$ and let $b \in H$ be an arbitrary element. We can write $b = a^k$ for some k. Divide k by m to obtain k = mq + r with $0 \leq r < m$. Show that our assumptions imply r = 0. It follows that b is a power of a^m and hence $H = \langle a^m \rangle$.]

(a): We showed in the previous homework that $\#\langle a^k \rangle = n/\gcd(k,n)$ for any integer $k \in \mathbb{Z}$. In this case since d'|n we have $\gcd(d',n) = d'$ and hence

$$\#\langle a^{d'}\rangle = n/\gcd(d',n) = n/d' = d.$$

(b): Any cyclic subgroup $H \subseteq G$ has the form $H = \langle b \rangle$ for some $b \in G$. But any element of G has the form $b = a^k$. Recall from the previous homework that

(i) $\langle a^k \rangle = \langle a^{\gcd(k,n)}, \rangle$

(ii)
$$\#\langle a^k \rangle = n/\gcd(k,n).$$

Now suppose that #H = d. It follows from (ii) that

$$d = n/\gcd(k, n)$$

and hence gcd(k, n) = n/d = d'. Then it follows from (i) that

$$H = \langle a^k \rangle = \langle a^{d'} \rangle.$$

(c): Let $H \subseteq G$ be any subgroup of size d. We will show that H is cyclic and then it will follow from (b) that $H = \langle a^{d'} \rangle$. If d = 1 then there is nothing to show, so suppose that $d \ge 2$ and let m > 0 be the smallest positive integer such that $a^m \in H$.¹ On the one hand, since $a^m \in H$ and since H is a subgroup we know that any power of a^m is in H, hence $\langle a^m \rangle \subseteq H$. On the other hand, we will show that any element $b \in H$ is a power of a^m and hence $H \subseteq \langle a^m \rangle$. It will follow that $H = \langle a^m \rangle$ and hence H is cyclic.

So consider any element $b \in H$. Since $G = \langle a \rangle$ we can write $b = a^k$ for some $k \in \mathbb{Z}$. Divide k by m to obtain

$$\begin{cases} k = mq + r, \\ 0 \le r < m. \end{cases}$$

We observe that $a^r \in H$ because $a^{-m} \in H$ and hence

$$a^r = a^{k-mq} = a^k (a^{-m})^q \in H.$$

¹Such an integer exists because $a^n = \varepsilon$.

If r = 0 then this contradicts the definition of m. It follows that r = 0 and hence $b = a^k = a^{mq} = (a^m)^q$ is a power of a^m , as desired.

2. Cyclotomic Polynomials. Let $(\Omega_n, \times, 1)$ be the group of *n*th roots of unity and let $\omega = e^{2\pi i/n}$. We know that $\Omega_n = \langle \omega \rangle$ is a cyclic group. Now consider the subset² of primitive roots:

$$\Omega'_n = \{ \omega^k : 1 \le k \le n \text{ and } \gcd(k, n) = 1 \}.$$

- (a) Prove that the subgroups of Ω_n are just Ω_d for positive divisors d|n.
- (b) Prove that Ω'_n is the set of generators $\zeta \in \Omega_n$ such that $\langle \zeta \rangle = \Omega_n$. [Hint: We know from HW3 that the cyclic subgroup $\langle \omega^k \rangle \subseteq \Omega_n$ has size $n/\gcd(k, n)$.]
- (c) Use (a) and (b) to express Ω_n as a disjoint union:

$$\Omega_n = \coprod_{d|n} \Omega'_d$$

[Hint: For any $\zeta \in \Omega_n$ we have $\zeta \in \Omega'_d$ if and only if $\langle \zeta \rangle = \Omega_d$.] (d) We define the *n*th cyclotomic polynomial as follows:³

$$\Phi_n(x) := \prod_{\zeta \in \Omega'_n} (x - \zeta) \in \mathbb{C}[x].$$

Prove that $\Phi_n(x)$ actually has integer coefficients. [Hint: From part (c) we have

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

Let f(x) be the product of $\Phi_d(x)$ for all divisors d|n except d = n, so that $x^n - 1 = \Phi_n(x)f(x)$. By induction we may assume that f(x) has integer coefficients. On the other hand, since $f(x) \in \mathbb{Z}[x]$ has leading coefficient 1 there exist $q(x), r(x) \in \mathbb{Z}[x]$ with $x^n - 1 = q(x)f(x) + r(x)$, such that r(x) = 0 or deg $(r) < \deg(f)$. You don't need to prove this; it follows from the same proof as a the division algorithm over fields.]

(a): We know that $\Omega_n = \langle \omega \rangle$. Therefore from Problem 1 the subgroups of Ω_n are just $\langle \omega^{n/d} \rangle$ for positive divisors d|n. I claim that

$$\langle \omega^{n/d} \rangle = \Omega_d.$$

Indeed, we know that $\#\langle \omega^{n/d} \rangle = d$, so we will be done if we can show that $\langle \omega^{n/d} \rangle \subseteq \Omega_d$. In other words, we want to show that every power of $\omega^{n/d}$ is a *d*th root of unity. And this is straightforward:

$$\left(\left(\omega^{n/d}\right)^k\right)^d = \omega^{nk} = (\omega^n)^k = 1^k = 1.$$

(b): Let $\zeta = \omega^k \in \Omega_n$ be an arbitrary *n*th root of unity. Then we have

$$\#\langle\zeta\rangle = \#\langle\omega^k\rangle = n/\gcd(k,n),$$

so that

$$\langle \zeta \rangle = \Omega_n \quad \Longleftrightarrow \quad \# \langle \zeta \rangle = n \quad \Longleftrightarrow \quad \gcd(k, n) = 1.$$

²It is not a subgroup.

³We use this notation because the degree of Φ_n is Euler's totient $\phi(n)$.

(c): Every *n*th root of unity $\zeta \in \Omega_n$ generates a cyclic subgroup $\langle \zeta \rangle \subseteq \Omega_n$, which must equal Ω_d for some d|n. Therefore we have a disjoint union:

$$\Omega_n = \prod_{d|n} \{\zeta \in \Omega_n : \langle \zeta \rangle = \Omega_d \} = \prod_{d|n} \Omega'_d.$$

(d): It follows from part (c) that

$$\prod_{d|n} \Phi_d(x) = \prod_{d|n} \prod_{\zeta \in \Omega'_d} (x - \zeta) = \prod_{\zeta \in \Omega_n} (x - \zeta) = x^n - 1.$$

Let f(x) be the product of $\Phi_d(x)$ over all divisors d|n except d = n, so that

$$x^n - 1 = \Phi_n(x)f(x).$$

Observe that the polynomial f(x) has leading coefficient 1 because each $\Phi_d(x)$ has leading coefficient 1. Now let us assume for induction that $\Phi_k(x) \in \mathbb{Z}[x]$ for all k < n, which implies that $f(x) \in \mathbb{Z}[x]$. Since $f(x) \in \mathbb{Z}[x]$ has leading coefficient 1 there exist $q(x), r(x) \in \mathbb{Z}[x]$ with

$$\begin{cases} x^n - 1 = q(x)f(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < \deg(f). \end{cases}$$

On the other hand, we have $x^n - 1 = \Phi_n(x)f(x) + 0$ in the ring $\mathbb{C}[x]$. By uniqueness of quotient and remainder in $\mathbb{C}[x]$ it follows that $\Phi_n(x) = q(x)$ and hence $\Phi_n(x) \in \mathbb{Z}[x]$.

Remark: It is difficult to predict the coefficients of the polynomials $\Phi_n(x)$. However, part (d) gives a recursive algorithm to compute them. Here are the first few cyclotomic polynomials:

See the course notes for more information.

In particular, this table tells us the factorization of $x^{12}-1$ over the integers.⁴ Since the divisors of 12 are 1, 2, 3, 4, 6, 12 we obtain

$$x^{12} - 1 = \Phi_1(x)\Phi_2(x)\Phi_3(x)\Phi_4(x)\Phi_6(x)\Phi_{12}(x)$$

= $(x - 1)(x + 1)(x^2 + x + 1)(x^2 + 1)(x^2 - x + 1)(x^4 - x^2 + 1).$

⁴One can show that each cyclotomic polynomial is prime over \mathbb{Z} , so this is the prime factorization in the ring $\mathbb{Z}[x]$. However, the proof is quite difficult (even Gauss had trouble with it) so we won't discuss it in this class.