
Math 562/662 Spring 2022
Homework 4 Drew Armstrong

1. The Fundamental Theorem of Cyclic Groups. Let G be a finite cyclic group of size
n and pick a generator a ∈ G so that G = 〈a〉 = {ε, a, a2, . . . , an−1}. By Lagrange’s Theorem,
the size of any subgroup divides n. Conversely, we will show that for any positive divisor d|n
there exists a unique subgroup of size d. Let n = dd′ for some integers d, d′ ≥ 1.

(a) Prove that the cyclic subgroup 〈ad′〉 ⊆ G has size d.

(b) Let H ⊆ G be any cyclic subgroup of size d. Prove that H = 〈ad′〉. [Hint: For any

ak ∈ G we know from HW3 that #〈ak〉 = n/ gcd(k, n) and 〈ak〉 = 〈agcd(k,n)〉.]
(c) Let H ⊆ G be any subgroup of size d. Prove that H = 〈ad′〉. [Hint: If d = 1 then

there is nothing to show, so let d ≥ 2. Let m be the smallest integer m > 0 such that
am ∈ H and let b ∈ H be an arbitrary element. We can write b = ak for some k.
Divide k by m to obtain k = mq + r with 0 ≤ r < m. Show that our assumptions
imply r = 0. It follows that b is a power of am and hence H = 〈am〉.]

(a): We showed in the previous homework that #〈ak〉 = n/ gcd(k, n) for any integer k ∈ Z.
In this case since d′|n we have gcd(d′, n) = d′ and hence

#〈ad′〉 = n/ gcd(d′, n) = n/d′ = d.

(b): Any cyclic subgroup H ⊆ G has the form H = 〈b〉 for some b ∈ G. But any element of
G has the form b = ak. Recall from the previous homework that

(i) 〈ak〉 = 〈agcd(k,n),
(ii) #〈ak〉 = n/ gcd(k, n).

Now suppose that #H = d. It follows from (ii) that

d = n/ gcd(k, n)

and hence gcd(k, n) = n/d = d′. Then it follows from (i) that

H = 〈ak〉 = 〈ad′〉.

(c): Let H ⊆ G be any subgroup of size d. We will show that H is cyclic and then it will follow

from (b) that H = 〈ad′〉. If d = 1 then there is nothing to show, so suppose that d ≥ 2 and let
m > 0 be the smallest positive integer such that am ∈ H.1 On the one hand, since am ∈ H
and since H is a subgroup we know that any power of am is in H, hence 〈am〉 ⊆ H. On the
other hand, we will show that any element b ∈ H is a power of am and hence H ⊆ 〈am〉. It
will follow that H = 〈am〉 and hence H is cyclic.

So consider any element b ∈ H. Since G = 〈a〉 we can write b = ak for some k ∈ Z. Divide k
by m to obtain {

k = mq + r,

0 ≤ r < m.

We observe that ar ∈ H because a−m ∈ H and hence

ar = ak−mq = ak(a−m)q ∈ H.

1Such an integer exists because an = ε.



If r = 0 then this contradicts the definition of m. It follows that r = 0 and hence b = ak =
amq = (am)q is a power of am, as desired.

2. Cyclotomic Polynomials. Let (Ωn,×, 1) be the group of nth roots of unity and let

ω = e2πi/n. We know that Ωn = 〈ω〉 is a cyclic group. Now consider the subset2 of primitive
roots:

Ω′n = {ωk : 1 ≤ k ≤ n and gcd(k, n) = 1}.
(a) Prove that the subgroups of Ωn are just Ωd for positive divisors d|n.
(b) Prove that Ω′n is the set of generators ζ ∈ Ωn such that 〈ζ〉 = Ωn. [Hint: We know

from HW3 that the cyclic subgroup 〈ωk〉 ⊆ Ωn has size n/ gcd(k, n).]
(c) Use (a) and (b) to express Ωn as a disjoint union:

Ωn =
∐
d|n

Ω′d.

[Hint: For any ζ ∈ Ωn we have ζ ∈ Ω′d if and only if 〈ζ〉 = Ωd.]

(d) We define the nth cyclotomic polynomial as follows:3

Φn(x) :=
∏
ζ∈Ω′

n

(x− ζ) ∈ C[x].

Prove that Φn(x) actually has integer coefficients. [Hint: From part (c) we have

xn − 1 =
∏
d|n

Φd(x).

Let f(x) be the product of Φd(x) for all divisors d|n except d = n, so that xn − 1 =
Φn(x)f(x). By induction we may assume that f(x) has integer coefficients. On the
other hand, since f(x) ∈ Z[x] has leading coefficient 1 there exist q(x), r(x) ∈ Z[x] with
xn − 1 = q(x)f(x) + r(x), such that r(x) = 0 or deg(r) < deg(f). You don’t need to
prove this; it follows from the same proof as a the division algorithm over fields.]

(a): We know that Ωn = 〈ω〉. Therefore from Problem 1 the subgroups of Ωn are just 〈ωn/d〉
for positive divisors d|n. I claim that

〈ωn/d〉 = Ωd.

Indeed, we know that #〈ωn/d〉 = d, so we will be done if we can show that 〈ωn/d〉 ⊆ Ωd. In

other words, we want to show that every power of ωn/d is a dth root of unity. And this is
straightforward: ((

ωn/d
)k)d

= ωnk = (ωn)k = 1k = 1.

(b): Let ζ = ωk ∈ Ωn be an arbitrary nth root of unity. Then we have

#〈ζ〉 = #〈ωk〉 = n/ gcd(k, n),

so that

〈ζ〉 = Ωn ⇐⇒ #〈ζ〉 = n ⇐⇒ gcd(k, n) = 1.

2It is not a subgroup.
3We use this notation because the degree of Φn is Euler’s totient φ(n).



(c): Every nth root of unity ζ ∈ Ωn generates a cyclic subgroup 〈ζ〉 ⊆ Ωn, which must equal
Ωd for some d|n. Therefore we have a disjoint union:

Ωn =
∐
d|n

{ζ ∈ Ωn : 〈ζ〉 = Ωd} =
∐
d|n

Ω′d.

(d): It follows from part (c) that∏
d|n

Φd(x) =
∏
d|n

∏
ζ∈Ω′

d

(x− ζ) =
∏
ζ∈Ωn

(x− ζ) = xn − 1.

Let f(x) be the product of Φd(x) over all divisors d|n except d = n, so that

xn − 1 = Φn(x)f(x).

Observe that the polynomial f(x) has leading coefficient 1 because each Φd(x) has leading
coefficient 1. Now let us assume for induction that Φk(x) ∈ Z[x] for all k < n, which implies
that f(x) ∈ Z[x]. Since f(x) ∈ Z[x] has leading coefficient 1 there exist q(x), r(x) ∈ Z[x] with{

xn − 1 = q(x)f(x) + r(x),

r(x) = 0 or deg(r) < deg(f).

On the other hand, we have xn−1 = Φn(x)f(x)+0 in the ring C[x]. By uniqueness of quotient
and remainder in C[x] it follows that Φn(x) = q(x) and hence Φn(x) ∈ Z[x].

Remark: It is difficult to predict the coefficients of the polynomials Φn(x). However, part (d)
gives a recursive algorithm to compute them. Here are the first few cyclotomic polynomials:

n Φn(x)
1 x− 1
2 x+ 1
3 x2 + x+ 1
4 x2 + 1
5 x5 + x4 + x3 + x2 + x+ 1
6 x2 − x+ 1
7 x6 + x5 + x4 + x3 + x2 + x+ 1
8 x4 + 1
9 x6 + x3 + 1
10 x4 − x3 + x2 − x+ 1
11 x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
12 x4 − x2 + 1

See the course notes for more information.

In particular, this table tells us the factorization of x12−1 over the integers.4 Since the divisors
of 12 are 1, 2, 3, 4, 6, 12 we obtain

x12 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ4(x)Φ6(x)Φ12(x)

= (x− 1)(x+ 1)(x2 + x+ 1)(x2 + 1)(x2 − x+ 1)(x4 − x2 + 1).

4One can show that each cyclotomic polynomial is prime over Z, so this is the prime factorization in the
ring Z[x]. However, the proof is quite difficult (even Gauss had trouble with it) so we won’t discuss it in this
class.


