1. The Fundamental Theorem of Cyclic Groups. Let G be a finite cyclic group of size n and pick a generator $a \in G$ so that $G=\langle a\rangle=\left\{\varepsilon, a, a^{2}, \ldots, a^{n-1}\right\}$. By Lagrange's Theorem, the size of any subgroup divides n. Conversely, we will show that for any positive divisor $d \mid n$ there exists a unique subgroup of size d. Let $n=d d^{\prime}$ for some integers $d, d^{\prime} \geq 1$.
(a) Prove that the cyclic subgroup $\left\langle a^{d^{\prime}}\right\rangle \subseteq G$ has size d.
(b) Let $H \subseteq G$ be any cyclic subgroup of size d. Prove that $H=\left\langle a^{d^{\prime}}\right\rangle$. [Hint: For any $a^{k} \in G$ we know from HW3 that $\#\left\langle a^{k}\right\rangle=n / \operatorname{gcd}(k, n)$ and $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(k, n)}\right\rangle$.]
(c) Let $H \subseteq G$ be any subgroup of size d. Prove that $H=\left\langle a^{d^{\prime}}\right\rangle$. [Hint: If $d=1$ then there is nothing to show, so let $d \geq 2$. Let m be the smallest integer $m>0$ such that $a^{m} \in H$ and let $b \in H$ be an arbitrary element. We can write $b=a^{k}$ for some k. Divide k by m to obtain $k=m q+r$ with $0 \leq r<m$. Show that our assumptions imply $r=0$. It follows that b is a power of a^{m} and hence $H=\left\langle a^{m}\right\rangle$.]
2. Cyclotomic Polynomials. Let $\left(\Omega_{n}, \times, 1\right)$ be the group of nth roots of unity and consider the subset \square^{1} of primitive roots:

$$
\Omega_{n}^{\prime}=\left\{\omega^{k}: 1 \leq k \leq n \text { and } \operatorname{gcd}(k, n)=1\right\} .
$$

(a) Prove that the subgroups of Ω_{n} are just Ω_{d} for divisors $d \mid n$.
(b) Prove that Ω_{n}^{\prime} is the set of generators $\zeta \in \Omega_{n}$ such that $\langle\zeta\rangle=\Omega_{n}$. [Hint: We know from HW3 that the cyclic subgroup $\left\langle\omega^{k}\right\rangle \subseteq \Omega_{n}$ has size $n / \operatorname{gcd}(k, n)$.]
(c) Use (a) and (b) to express Ω_{n} as a disjoint union:

$$
\Omega_{n}=\coprod_{d \mid n} \Omega_{d}^{\prime}
$$

[Hint: For any $\zeta \in \Omega_{n}$ we have $\zeta \in \Omega_{d}^{\prime}$ if and only if $\langle\zeta\rangle=\Omega_{d}$.]
(d) We define the nth cyclotomic polynomial as follows ${ }^{2}$

$$
\Phi_{n}(x):=\prod_{\zeta \in \Omega_{n}^{\prime}}(x-\zeta) \in \mathbb{C}[x] .
$$

Prove that $\Phi_{n}(x)$ actually has integer coefficients. [Hint: From part (c) we have

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) .
$$

Let $f(x)$ be the product of $\Phi_{d}(x)$ for all divisors $d \mid n$ except $d=n$, so that $x^{n}-1=$ $\Phi_{n}(x) f(x)$. By induction we may assume that $f(x)$ has integer coefficients. On the other hand, since $f(x) \in \mathbb{Z}[x]$ has leading coefficient 1 there exist $q(x), r(x) \in \mathbb{Z}[x]$ with $x^{n}-1=q(x) f(x)+r(x)$, such that $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(f)$. You don't need to prove this; it follows from the same proof as a the division algorithm over fields.]

[^0]
[^0]: ${ }^{1}$ It is not a subgroup.
 ${ }^{2}$ We use this notation because the degree of Φ_{n} is Euler's totient $\phi(n)$.

