1. Normal Subgroups. Let $(G, *, \varepsilon)$ and let $H \subseteq G$ be a subgroup. Prove that the following two statements are equivalent:
(N1) For all $g \in G$ and $h \in H$ we have $g * h * g^{-1} \in H$.
(N2) For all $g \in G$ we have $g * H=H * g$.
$(\mathrm{N} 2) \Rightarrow(\mathrm{N} 1)$: Suppose that (N2) is true. In order to prove (N1), consider any $g \in G$ and $h \in H$. Our goal is to show that $g * h * g^{-1} \in H$. Since $g * h \in g * H$ and since $g * H=H * g$ by (N2), we must have $g * h \in H * g$ and hence $g * h=h^{\prime} * g$ for some $h^{\prime} \in H$. Finally, we have

$$
g * h * g^{-1}=h^{\prime} \in H .
$$

$(\mathrm{N} 1) \Rightarrow(\mathrm{N} 2)$: Suppose that (N1) is true. In order to prove (N2), consider any $g \in G$. Our goal is to prove the following inclusions:
(i) $g * H \subseteq H * g$
(ii) $H * g \subseteq g * H$

To prove (i), consider any element $a \in g * H$, which must have the form $a=g * h$ for some $h \in H$. Then by (N1) we have $g * h * g^{-1}=h^{\prime}$ for some $h^{\prime} \in H$ and it follows that

$$
a=g * h=h^{\prime} * g \in H * g .
$$

The proof of (ii) is similar.
2. Kernel and Image. Let $\varphi:(G, *, \varepsilon) \rightarrow\left(G^{\prime}, \bullet, \delta\right)$ be a group homomorphism and define the kernel and image as follows:

$$
\begin{aligned}
\operatorname{ker} \varphi & :=\{a \in G: \varphi(a)=\delta\} \subseteq G, \\
\operatorname{im} \varphi & :=\{\varphi(a): a \in G\} \subseteq G^{\prime} .
\end{aligned}
$$

(a) Prove that $\operatorname{ker} \varphi \subseteq G$ is a normal subgroup.
(b) Prove that $\operatorname{im} \varphi \subseteq G^{\prime}$ is a subgroup.
(c) Given an example to show that the image need not be a normal subgroup. [Hint: The easiest example uses a homomorphism from $(\mathbb{Z},+, 0)$ to S_{3}. See Problem 3.]

Our proof will use the following facts, proved in the notes:
(1) $\varphi(\varepsilon)=\delta$,
(2) $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
(a): First we prove that $\operatorname{ker} \varphi \subseteq G$ is a subgroup:

- Identity. By (1) we have $\varphi(\varepsilon)=\delta$ and hence $\varepsilon \in \operatorname{ker} \varphi$.
- Inversion. Suppose that $a \in \operatorname{ker} \varphi$, so that $\varphi(a)=\delta$. Then from (2) we have

$$
\varphi\left(a^{-1}\right)=\varphi(a)^{-1}=\delta^{-1}=\delta,
$$

so that $a^{-1} \in \operatorname{ker} \varphi$.

- Closure under group operation. Suppose that $a, b \in \operatorname{ker} \varphi$ so that $\varphi(a)=\delta$ and $\varphi(b)=\delta$. Then from the definition of group homomorphism we have

$$
\varphi(a * b)=\varphi(a) \bullet \varphi(b)=\delta \bullet \delta=\delta,
$$

so that $a * b \in \operatorname{ker} \varphi$.

Next we prove that $\operatorname{ker} \varphi \subseteq G$ is normal. To do this, consider any $g \in G$ and $h \in \operatorname{ker} \varphi$, so that $\varphi(h)=\delta$. Then from the definition of homomorphism and property (2) we have

$$
\begin{aligned}
\varphi\left(g * h * g^{-1}\right) & =\varphi(g) \bullet \varphi(h) \bullet \varphi(g)^{-1} \\
& =\varphi(g) \bullet \delta \bullet \varphi(g)^{-1} \\
& =\varphi(g) \bullet \varphi(g)^{-1} \\
& =\delta .
\end{aligned}
$$

It follows that $g * h * g^{-1} \in \operatorname{ker} \varphi$, hence $\operatorname{ker} \varphi$ is normal by property (N1).
(b): We verify that $\operatorname{im} \varphi \subseteq G^{\prime}$ satisfies the subgroup axioms:

- Identity. By (1) we have $\delta=\varphi(\varepsilon) \in \operatorname{im} \varphi$.
- Inversion. Let $a^{\prime} \in \operatorname{im} \varphi$, so that $a^{\prime}=\varphi(a)$ for some $a \in G$. Then from (2) we have

$$
\left(a^{\prime}\right)^{-1}=\varphi(a)^{-1}=\varphi\left(a^{-1}\right) \in \operatorname{im} \varphi .
$$

- Closure under group operation. Suppose that $a^{\prime}, b^{\prime} \in \operatorname{im} \varphi$ so that $a^{\prime}=\varphi(a)$ and $b^{\prime}=\varphi(b)$ for some $a, b \in G$. Then from the definition of group homomorphism we have

$$
a^{\prime} \bullet b^{\prime}=\varphi(a) \bullet \varphi(b)=\varphi(a * b) \in \operatorname{im} \varphi .
$$

(c): To see that the image need not be normal, consider the group homomorphism from $(\mathbb{Z},+, 0)$ to ($S_{3}, \mathrm{o}, \mathrm{id}$) defined by ${ }^{11}$

$$
\varphi(k)=(12)^{k}= \begin{cases}\text { id } & \text { if } k \text { is even } \\ (12) & \text { if } k \text { is odd }\end{cases}
$$

The image is the subgroup $\{\mathrm{id},(12)\} \subseteq S_{3}$ an we proved in class that this is not normal.
3. The Order of an Element. Let $(G, *, \varepsilon)$ be a group and fix some element $a \in G$. Then for any integer k we define the element $a^{n} \in G$ as follows:

$$
a^{k}:= \begin{cases}\overbrace{a * a * \cdots * a}^{k \text { times }} & \text { if } k \geq 1, \\ \varepsilon & \text { if } k=0, \\ \underbrace{a^{-1} * a^{-1} * \cdots * a^{-1}}_{-k \text { times }} & \text { if } k \leq-1 .\end{cases}
$$

(a) Prove that the function $\varphi(k):=a^{k}$ is a group homomorphism $(\mathbb{Z},+, 0) \rightarrow(G, *, \varepsilon)$.
(b) Prove that any group homomorphism $\varphi:(\mathbb{Z},+, 0) \rightarrow(G, *, \varphi)$ sending 1 to a must be equal to the homomorphism in part (a). We use the following notation for the image:

$$
\langle a\rangle:=\operatorname{im} \varphi=\left\{a^{k}: k \in \mathbb{Z}\right\} \subseteq G,
$$

and we call this the cyclic subgroup of G generated by a. [Hint: Induction.]
(c) Use the First Isomorphism Theorem to prove that either $\langle a\rangle \cong \mathbb{Z}$ or $\langle a\rangle \cong \mathbb{Z} / n \mathbb{Z}$ for some integer $n \geq 1$. This n is called the order of a as an element of G.
(d) If G is finite, conclude from Lagrange's Theorem that the order of a divides $\# G$.

[^0](a): Our goal is to show that $a^{k+\ell}=a^{k} * a^{\ell}$ for any integers $k, \ell \in \mathbb{Z}$. This is a surprisingly annoying case-by-case check. Most textbooks just assume this fact without even acknowledging that something needs to be proved.
(b): Consider any group homomorphism $\varphi:(\mathbb{Z},+, 0) \rightarrow G$ and let $a:=\varphi(1)$. Our goal is to prove that $\varphi(k)=a^{k}$ for all $k \in \mathbb{Z}$, and we can do this by induction on k. First we observe that $\varphi(0)=\varepsilon$ by property (1) of group homomorphisms. Hence $\varphi(0)=a^{0}$ as desired. Now let $k \geq 1$ and assume for induction that $\varphi(k)=a^{k}$. Then it follows by definition that
$$
\varphi(k+1)=\varphi(k) * \varphi(1)=a^{k} * a=a^{k+1} .
$$

Hence we have shown that $\varphi(k)=a^{k}$ for all $k \geq 0$. Finally, for any integer $\ell<0$ we let $k=-\ell>0$. Then it follows from property (2) of homomorphisms that ${ }^{2}$

$$
\varphi(\ell)=\varphi(-k)=\varphi(k)^{-1}=\left(a^{k}\right)^{-1}=a^{-k}=a^{\ell} .
$$

(c): For any element $a \in G$, consider the unique homomorphism $\varphi: \mathbb{Z} \rightarrow G$ satisfying $\varphi(1)=a$. We will denote the image by

$$
\langle a\rangle=\operatorname{im} \varphi=\left\{a^{k}: k \in \mathbb{Z}\right\} .
$$

Hence the First Isomorphism Theorem tells us that

$$
\langle a\rangle \cong \mathbb{Z} / \operatorname{ker} \varphi
$$

The kernel of φ, being a subgroup of $(\mathbb{Z},+, 0)$ must have the form $n \mathbb{Z}$ for some (unique) integer $n \geq 0$. In the special case $\operatorname{ker} \varphi=0 \mathbb{Z}=\{0\}$, the quotient group $\mathbb{Z} / 0 \mathbb{Z}$ is just isomorphic to \mathbb{Z}, because the cosets of the subgroup $\{0\}$ are just the integers $n+\{0\}=\{n\}$ and the group operation is just addition of integers:

$$
\begin{aligned}
(m+\{0\})+(m+\{0\}) & =(m+n)+\{0\} \\
\{m\}+\{n\} & =\{m+n\} .
\end{aligned}
$$

(d): Since $\langle a\rangle \subseteq G$ is the image of a homomorphism it is necessarily a subgroup. If G is finite then Largange's Theorem tells us that

$$
\#\langle a\rangle \mid \# G .
$$

Remark: We will write $\operatorname{ord}_{G}(a):=\#\langle a\rangle$ and call this the order of a as an element of G. If $\#\langle a\rangle$ then because of the group isomorphism $\mathbb{Z} / m \mathbb{Z} \rightarrow\langle a\rangle$ we have $a^{k}=a^{\ell}$ if and only if $k \equiv \ell \bmod m$. It follows that every element of $\langle a\rangle$ has a unique representation of the form a^{r} for some $0 \leq r<m$:

$$
\langle a\rangle=\left\{\varepsilon, a, a^{2}, \ldots, a^{m-1}\right\rangle .
$$

Now consider the case $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$, where $\# G$ is Euler's phi function $\phi(n)$. For any element $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$part (d) gives

$$
\operatorname{ord}(a) \mid \# \phi(n),
$$

say $\operatorname{ord}(a) d=\phi(n)$ for some $d \in \mathbb{Z}$. Then it follows that

$$
a^{\phi(n)}=a^{\operatorname{ord}(a) d}=\left(a^{\operatorname{ord}(a)}\right)^{d}=1^{d}=1 \operatorname{in}(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

which is just Euler's Totient Theorem.

[^1]4. The Order of a Power. Let $(G, *, \varepsilon)$ and let $a \in G$ be an element of order n. It follows from Problem 4(c) that $\langle a\rangle \cong \mathbb{Z} / n \mathbb{Z}$ and hence
$$
a^{k}=a^{\ell} \text { in } G \quad \Longleftrightarrow \quad k \equiv \ell \bmod n .
$$
(a) For all $k \in \mathbb{Z}$, prove that $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$, where $d=\operatorname{gcd}(k, n)$. [Hint: Since $d \mid k$ we see that a^{k} is a power of a^{d}, hence $\left\langle a^{k}\right\rangle \subseteq\left\langle a^{d}\right\rangle$. Conversely, use Bézout's Identity to show that a^{d} is a power of a^{k}, hence $\left\langle a^{d}\right\rangle \subseteq\left\langle a^{k}\right\rangle$.]
(b) For any positive divisor $d \mid n$, show that $\#\left\langle a^{d}\right\rangle=n / d$. [Hint: Let $m=n / d$. The goal is to show that the elements m elements $\varepsilon, a^{d},\left(a^{d}\right)^{2}, \ldots,\left(a^{d}\right)^{m-1}$ are distinct. Use the fact that $a^{d k}=a^{d \ell}$ if and only if $d k \equiv d \ell \bmod n$.]
(c) Combine (a) and (b) to prove that for all $k \in \mathbb{Z}$ we have
$$
\#\left\langle a^{k}\right\rangle=n / \operatorname{gcd}(k, n) .
$$
(a): Let $a \in(G, *, \varepsilon)$ be an element of order n, so that $a^{n}=\varepsilon$. Consider any integers $k \in \mathbb{Z}$ with $d=\operatorname{gcd}(k, n)$ and $k=d k^{\prime}$. Our goal is to show that $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$. To prove $\left\langle a^{k}\right\rangle \subseteq\left\langle a^{d}\right\rangle$, consider any power of a^{k}, say $\left(a^{k}\right)^{m}=a^{k m}$. Then we have
$$
a^{k m}=a^{d k^{\prime} m}=\left(a^{d}\right)^{k^{\prime} m} \in\left\langle a^{d}\right\rangle .
$$

To prove $\left\langle a^{d}\right\rangle \subseteq\left\langle a^{k}\right\rangle$, consider any power of a^{d}, say $\left(a^{d}\right)^{m}=a^{d m}$. Since $d=\operatorname{gcd}(k, n)$ we know from Bézout's Identity that $d=k x+n y$ for some $x, y \in \mathbb{Z}$. Hence we have

$$
a^{d m}=a^{(k x+n y) m}=\left(a^{k}\right)^{x m} *\left(a^{n}\right)^{y m}=\left(a^{k}\right)^{x m} *(\varepsilon)^{y m}=\left(a^{k}\right)^{x m} \in\left\langle a^{k}\right\rangle .
$$

(b): Let $a \in(G, *, \varepsilon)$ have order n so that $a^{x}=a^{y}$ if and only if $x \equiv y \bmod n$. Consider any positive divisor $d \mid n$ with $n=d m$, so that m is also positive Our goal is to show that $\#\left\langle a^{d}\right\rangle=m$. Since $\left(a^{d}\right)^{m}=a^{d m}=a^{n}=\varepsilon$, it is enough to show that the elements

$$
\varepsilon, a^{d},\left(a^{d}\right)^{2}, \ldots,\left(a^{d}\right)^{m-1}
$$

are all distinct. So let us assume for contradiction that there exist integers $0 \leq k<\ell<m$ such that $\left(a^{d}\right)^{k}=\left(a^{d}\right)^{\ell}$, and hence

$$
\begin{aligned}
\left(a^{d}\right)^{\ell} & =\left(a^{d}\right)^{k} \\
a^{d \ell} & =a^{d k} \\
a^{d(\ell-k)} & =\varepsilon .
\end{aligned}
$$

Since $0 \leq k<\ell<m$ we have $0<\ell-k<m$ and hence $0<d(\ell-k)<d m=n$. But since a has order n, the identity $a^{d(k-\ell)}=\varepsilon$ implies that $d(k-\ell)$ is a multiple of n. Contradiction.
(c): For any $k \in \mathbb{Z}$ we showed in part (a) that

$$
\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(k, n)}\right\rangle
$$

Then since $\operatorname{gcd}(k, n)$ is a positive divisor of n, it follows from part (b) that

$$
\#\left\langle a^{k}\right\rangle=\#\left\langle a^{\operatorname{gcd}(k, n)}\right\rangle=n / \operatorname{gcd}(k, n)
$$

[^0]: ${ }^{1}$ The fact that this is a homomorphism can be checked directly, or we can quote Problem 3(a).

[^1]: ${ }^{2}$ Oops, I didn't ask you to prove that $\left(a^{k}\right)^{-1}=a^{-k}$. That is another annoying case-by-case proof.

