1. Normal Subgroups. Let $(G, *, \varepsilon)$ and let $H \subseteq G$ be a subgroup. Prove that the following two statements are equivalent:
(N1) For all $g \in G$ and $h \in H$ we have $g * h * g^{-1} \in H$.
(N2) For all $g \in G$ we have $g * H=H * g$.
2. Kernel and Image. Let $\varphi:(G, *, \varepsilon) \rightarrow\left(G^{\prime}, \bullet, \delta\right)$ be a group homomorphism and define the kernel and image as follows:

$$
\begin{aligned}
\operatorname{ker} \varphi & :=\{a \in G: \varphi(a)=\delta\} \subseteq G, \\
\operatorname{im} \varphi & :=\{\varphi(a): a \in G\} \subseteq G^{\prime} .
\end{aligned}
$$

(a) Prove that $\operatorname{ker} \varphi \subseteq G$ is a normal subgroup.
(b) Prove that $\operatorname{im} \varphi \subseteq G^{\prime}$ is a subgroup.
(c) Given an example to show that the image need not be a normal subgroup. [Hint: The easiest example uses a homomorphism from $(\mathbb{Z},+, 0)$ to S_{3}. See Problem 3.]
3. The Order of an Element. Let $(G, *, \varepsilon)$ be a group and fix some element $a \in G$. Then for any integer k we define the element $a^{n} \in G$ as follows:

$$
a^{k}:= \begin{cases}\overbrace{a * a * \cdots * a}^{k \text { times }} & \text { if } k \geq 1, \\ \varepsilon & \text { if } k=0, \\ \underbrace{a^{-1} * a^{-1} * \cdots * a^{-1}}_{-k \text { times }} & \text { if } k \leq-1 .\end{cases}
$$

(a) Prove that the function $\varphi(k):=a^{k}$ is a group homomorphism $(\mathbb{Z},+, 0) \rightarrow(G, *, \varepsilon)$.
(b) Prove that any group homomorphism $\varphi:(\mathbb{Z},+, 0) \rightarrow(G, *, \varphi)$ sending 1 to a must be equal to the homomorphism in part (a). We use the following notation for the image:

$$
\langle a\rangle:=\operatorname{im} \varphi=\left\{a^{k}: k \in \mathbb{Z}\right\} \subseteq G,
$$

and we call this the cyclic subgroup of G generated by a. [Hint: Induction.]
(c) Use the First Isomorphism Theorem to prove that either $\langle a\rangle \cong \mathbb{Z}$ or $\langle a\rangle \cong \mathbb{Z} / n \mathbb{Z}$ for some integer $n \geq 1$. This n is called the order of a as an element of G.
(d) If G is finite, conclude from Lagrange's Theorem that the order of a divides $\# G$.
4. The Order of a Power. Let $(G, *, \varepsilon)$ and let $a \in G$ be an element of order n. It follows from Problem 4(c) that $\langle a\rangle \cong \mathbb{Z} / n \mathbb{Z}$ and hence

$$
a^{k}=a^{\ell} \text { in } G \quad \Longleftrightarrow \quad k \equiv \ell \bmod n .
$$

(a) For all $k \in \mathbb{Z}$, prove that $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$, where $d=\operatorname{gcd}(k, n)$. [Hint: Since $d \mid k$ we see that a^{k} is a power of a^{d}, hence $\left\langle a^{k}\right\rangle \subseteq\left\langle a^{d}\right\rangle$. Conversely, use Bézout's Identity to show that a^{d} is a power of a^{k}, hence $\left\langle a^{d}\right\rangle \subseteq\left\langle a^{k}\right\rangle$.]
(b) For any positive divisor $d \mid n$, show that $\#\left\langle a^{d}\right\rangle=n / d$. [Hint: Let $m=n / d$. The goal is to show that the elements m elements $\varepsilon, a^{d},\left(a^{d}\right)^{2}, \ldots,\left(a^{d}\right)^{m-1}$ are distinct. Use the fact that $a^{d k}=a^{d \ell}$ if and only if $d k \equiv d \ell \bmod n$.]
(c) Combine (a) and (b) to prove that for all $k \in \mathbb{Z}$ we have

$$
\#\left\langle a^{k}\right\rangle=n / \operatorname{gcd}(k, n) .
$$

