1. One Step Subgroup Test. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subset. We say that H is a *subgroup* when the following three conditions are satisfied:

- (1) $\varepsilon \in H$,
- (2) $a \in H \Rightarrow a^{-1} \in H$,
- $(3) \ a,b \in H \Rightarrow a * b \in H.$

Prove that these three conditions are equivalent to the following single condition:

(4) $a, b \in H \Rightarrow a^{-1} * b \in H$.

Proof. First assume that (1), (2) and (3) hold. Then for any $a, b \in H$ we have $a^{-1} \in H$ by (2) and since $a^{-1}, b \in H$ we have $a^{-1} * b \in H$ by (3). Hence (4) holds.

Conversely, suppose that (4) holds. In this case we will show that (1), (2) and (3) hold. It is important to prove these in a specific order:

- (1): For any $a \in H$ we have by (4) that $\varepsilon = a^{-1} * a \in H$.
- (2): For any $a \in H$ we have $a, \varepsilon \in H$ by (1) and hence $a^{-1} = a^{-1} * \varepsilon \in H$ by (4).
- (3): For any $a, b \in H$ we have $a^{-1}, b \in H$ by (2). Hence by (4) we have

$$a * b = (a^{-1})^{-1} * b \in H.$$

2. Congruence Modulo a Subgroup. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subgroup. For any $a, b \in G$ we define the relation of *congruence modulo* H:

$$a \equiv b \mod H \iff a^{-1} * b \in H.$$

And for any $a \in G$ we define the coset of H generated by a:

$$a * H := \{a * h : h \in H\} \subseteq G.$$

- (a) Prove that congruence mod H is an equivalence relation on G.
- (b) For all $a, b \in G$, prove that a and b are congruent mod H if and only if the cosets that they generate are equal:

$$a \equiv b \mod H \iff a * H = b * H.$$

(a): The properties (1), (2) and (3) of subgroups are defined precisely so that this relation is an equivalence:

Reflexive. From (1) we have $a^{-1} * a = \varepsilon \in H$ and hence $a \equiv a \mod H$ for all $a \in G$.

Symmetric. For all $a, b \in G$ we have

$$a \equiv b \mod H \implies a^{-1} * b \in H$$
$$\implies (a^{-1} * b)^{-1} \in H \qquad \text{from (2)}$$
$$\implies b^{-1} * (a^{-1})^{-1} \in H$$
$$\implies b^{-1} * a \in H$$
$$\implies b \equiv a \mod H.$$

Transitive. For all $a, b, c \in G$ we have

$$a \equiv b \text{ and } b \equiv c \mod H \implies a^{-1} * b \in H \text{ and } b^{-1} * c \in H$$
$$\implies (a^{-1} * b) * (b^{-1} * c) \in H \qquad \qquad \text{from (3)}$$
$$\implies a^{-1} * (b * b^{-1}) * c \in H$$
$$\implies a^{-1} * \varepsilon * c \in H$$
$$\implies a^{-1} * c \in H$$
$$\implies a \equiv c \mod H.$$

(b): First suppose that we have a * H = b * H. Since $\varepsilon \in H$ we have $b = b * \varepsilon \in b * H$, which implies that $b \in a * H$. By definition this means that b = a * h for some $h \in H$, which implies that $a^{-1} * b = h \in H$. We conclude that $a \equiv b \mod H$, as desired.

Conversely, suppose that we have $a \equiv b \mod H$, so that $a^{-1} * b \in H$. Let's say $a^{-1} * b = h \in H$, so that b = a * h and $a = b * h^{-1}$. Our goal is to show that a * H = b * H and for this we must prove two inclusions:

• To see that $b * H \subseteq a * H$, consider any element $b * h' \in b * H$, with $h' \in H$. Then since H is a subgroup we have $h * h' \in H$ and hence

$$b * h' = (a * h) * h' = a * (h * h') \in a * H.$$

• To see that $a * H \subseteq b * H$, consider any element $a * h'' \in a * H$, with $h'' \in H$. Then since H is a subgroup we have $h^{-1} * h'' \in H$ and hence

$$a * h'' = (b * h^{-1}) * h'' = b * (h^{-1} * h'') \in b * H.$$

Remark: It follows from (a) and (b) that the group G is **partitioned** into cosets of H. Furthermore, we observe that the function $H \to a * H$ defined by $h \mapsto a * h$ is an invertible function with inverse $g \mapsto a^{-1} * g$. Hence any coset a * H is in bijection with H. If G is finite then H is finite and it follows that any two cosets have the same number of elements. Finally, if G/H is the set of cosets, we conclude that

$$#G = #(G/H) \cdot #H$$

This is called *Lagrange's Theorem*.

3. Orbit-Stabilizer Theorem. Let $(G, *, \varepsilon)$ be a group and let X be a set. Consider a function $\cdot : G \times X \to X$, which we will denote by $(g, x) \mapsto g \cdot x$. We call this function an *action of G on X* when the following two properties are satisfied:

- (i) $\varepsilon \cdot x = x$ for all $x \in X$,
- (ii) $a \cdot (b \cdot x) = (a * b) \cdot x$ for all $a, b \in G$ and $x \in X$.
- (a) For any element $x \in X$ we define the set $Stab(x) := \{a \in G : a \cdot x = x\} \subseteq G$, called the *stabilizer of x*. Prove that this set is a subgroup of G.
- (b) For any element $x \in X$ we define the set $\operatorname{Orb}(x) := \{g \cdot x : g \in G\} \subseteq X$, called the *orbit of* x. Prove that there exists a bijection $\operatorname{Orb}(x) \leftrightarrow G/\operatorname{Stab}(x)$ between elements of the orbit and cosets of the stabilizer. [Hint: Send the element $g \cdot x \in \operatorname{Orb}(x)$ to the coset $g * \operatorname{Stab}(x)$. Check that this is well-defined and bijective.]
- (c) If G is finite, combine (b) with Lagrange's Theorem to prove that

$$#G = #Orb(x)#Stab(x)$$
 for any $x \in X$.

(a): We must show that (1), (2) and (3) hold.

- (1): From (i) we have $\varepsilon \cdot x = x$ for all $x \in X$, and hence $\varepsilon \in \text{Stab}(x)$.
- (2): For any $a \in \text{Stab}(x)$, it follows from (i), (ii) and (1) that

$$a^{-1} \cdot x = a^{-1} \cdot (a \cdot x) = (a^{-1} * a) \cdot x = \varepsilon \cdot x = x,$$

and hence $a^{-1} \in \operatorname{Stab}(x)$.

(3): For any $a, b \in \text{Stab}(x)$, it follows from (ii) that

$$(a * b) \cdot x = a \cdot (b \cdot x) = a \cdot x = x,$$

and hence $a * b \in H$.

Remark: We could also have used the one step subgroup test.

(b): We want to define a bijection from Orb(x) to the set of cosets G/Stab(x). I claim that the following function does the trick:

$$\begin{array}{rcl} \varphi: & \operatorname{Orb}(x) & \to & G/\operatorname{Stab}(x) \\ & g \cdot x & \mapsto & g * \operatorname{Stab}(x). \end{array}$$

First observe that the function φ is well-defined:

$$a \cdot x = b \cdot x \Longrightarrow a^{-1} \cdot (a \cdot x) = a^{-1} \cdot (b \cdot x)$$

$$\Longrightarrow x = (a^{-1} * b) \cdot x \qquad (i) \text{ and } (ii)$$

$$\Longrightarrow a^{-1} * b \in \operatorname{Stab}(x)$$

$$\Longrightarrow a * \operatorname{Stab}(x) = b * \operatorname{Stab}(x) \qquad \text{from } 2(b)$$

$$\Longrightarrow \varphi(a \cdot x) = \varphi(b \cdot x).$$

Next we observe that the function φ is surjective by definition because any coset has the form $g \in \operatorname{Stab}(x)$ for some $g \in G$, and hence $g * \operatorname{Stab}(x) = \varphi(g \cdot x)$. Finally, we observe that φ is injective:

$$\varphi(a \cdot x) = \varphi(b \cdot x) \Longrightarrow a * \operatorname{Stab}(x) = b * \operatorname{Stab}(x)$$
$$\Longrightarrow a^{-1} * b \in \operatorname{Stab}(x) \qquad \text{from } 2(b)$$
$$\Longrightarrow x = (a^{-1} * b) \cdot x$$
$$\Longrightarrow a \cdot x = a \cdot [(a^{-1} * b)] \cdot x$$
$$\Longrightarrow a \cdot x = b \cdot x \qquad \text{from (i) and (ii)}$$

Remark: We could have proved simultaneously that φ is well-defined and injective by observing that each of the implications in the argument is reversible. I only avoided this for pedagogical reasons.

(c): If G is finite then the subgroup $\operatorname{Stab}(x) \subseteq G$ is finite Lagrange's Theorem gives

$$#G = #(G/\operatorname{Stab}(x)) \cdot #\operatorname{Stab}(x).$$

But from the Orbit-Stabilizer Theorem we know that the sets Orb(x) and G/Stab(x) have the same number of elements, hence

$$#G = #\operatorname{Orb}(x) \cdot #\operatorname{Stab}(x).$$

4. The Alternating Group, Part 2. Consider the following polynomial in *n* variables:

$$\delta(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} (x_i - x_j) \in \mathbb{Q}[x_1,\ldots,x_n].$$

Recall that the symmetric group S_n acts on the ring of polynomials by permuting variables: For all $\sigma \in S_n$ and $f(x_1, \ldots, x_n) \in \mathbb{Q}[x_1, \ldots, x_n]$ we define

$$(\sigma \cdot f)(x_1,\ldots,x_n) := f(x_{\sigma(1)},\ldots,x_{\sigma(n)}) \in \mathbb{Q}[x].$$

- (a) Prove that for any transposition $t \in S_n$ we have $t \cdot \delta = -\delta$.
- (b) Use part (a) to prove that the stabilizer of δ is the alternating group:

$$\operatorname{Stab}(\delta) = A_n$$

(c) Now use the Orbit-Stabilizer Theorem to prove that

$$#A_n = \frac{1}{2} #S_n = \frac{1}{2}n!.$$

[Hint: Show that $Orb(\delta)$ has size 2.]

(a): I realized this is too hard so I told you not to prove it. For any $\sigma \in S_n$ we have

$$\sigma \cdot \delta = \prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)})$$

When $\sigma(i) < \sigma(j)$ the factor $x_{\sigma(i)} - x_{\sigma(j)}$ occurs in both δ and $\sigma \cdot \delta$. But when $\sigma(i) > \sigma(j)$ the factor $x_{\sigma(j)} - x_{\sigma(i)} = -(x_{\sigma(i)} - x_{\sigma(j)})$ occurs in δ . This means that $\sigma \cdot \delta = \pm \delta$, where the sign is determined by the number of pairs i < j such that $\sigma(i) > \sigma(j)$. Such a pair i < j is called an *inversion* of σ . If $inv(\sigma)$ denotes the number of inversions of σ then we see that

$$\sigma \cdot \delta = (-1)^{\mathrm{inv}(\sigma)} \delta.$$

Thus our goal is to show that any transposition $t \in S_n$ has an **odd number of inversions**. In fact, I claim that the transposition $(k\ell) \in S_n$, with $k < \ell$, has exactly $2(\ell - k - 1) + 1$ inversions, which come in three kinds:

- The pair $k < \ell$ is an inversion.
- Each pair k < j (with $j < \ell$) is an inversion. There are $\ell k 1$ of these.
- Each pair $j < \ell$ (with k < j) is an inversion. There are $\ell k 1$ of these.

To see this it's best to draw a picture. The inversions of σ correspond to pairs of numbers $\sigma(i)$ and $\sigma(j)$ in the one-line notation where the larger number is on the left. Thus we need to count such pairs in the one-line notation for the transposition $(k\ell) \in S_n$. Here's the picture for $(37) \in S_{10}$:

(b): You showed on a previous homework that every permutation $\sigma \in S_n$ can be expressed in the form $\sigma = t_1 \circ t_2 \circ \cdots \circ t_k$, where $t_1, \ldots, t_k \in S_n$ are transpositions. In this case, part (a) and property (ii) of group actions imply that

(*)
$$\sigma \cdot \delta = t_1 \cdot (t_2 \cdot (t_3 \cdot (\cdots t_k \cdot \delta)) = (-1)^k \delta.$$

The transpositions t_i and the number k are not unique. However, we see that the *parity* of k (i.e., the evenness or oddness) is unique. Indeed, if σ is a composition of an even number transpositions then (*) says that $\sigma \cdot \delta = \delta$ and if σ is a product of an odd number of transpositions then (*) says that $\sigma \cdot \delta = -\delta$. But since $\delta \neq -\delta$, this implies that no permutation can simultaneously be a composition of an even and an odd number of transpositions. By definition, A_n is the set of permutations that are a composition of an even number of transpositions. Hence it follows that

$$A_n = \{ \sigma \in S_n : \sigma \cdot \delta = \delta \} = \operatorname{Stab}(\delta).$$

(c): In part (b) we observed that $\sigma \cdot \delta = \pm \delta$ for all $\sigma \in S_n$, and in part (a) we found that both of these possibilities do indeed occur. Thus we have

$$Orb(\delta) = \{\sigma \cdot \delta : \sigma \in S_n\} = \{\delta, -\delta\}.$$

Finally, we conclude from the Orbit-Stabilizer Theorem that

$$#S_n = #Orb(\delta)#Stab(\delta)$$
$$n! = 2#A_n$$
$$#A_n = n!/2.$$