1. One Step Subgroup Test. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subset. We say that H is a subgroup when the following three conditions are satisfied:
(1) $\varepsilon \in H$,
(2) $a \in H \Rightarrow a^{-1} \in H$,
(3) $a, b \in H \Rightarrow a * b \in H$.

Prove that these three conditions are equivalent to the following single condition:
(4) $a, b \in H \Rightarrow a^{-1} * b \in H$.

Proof. First assume that (1), (2) and (3) hold. Then for any $a, b \in H$ we have $a^{-1} \in H$ by (2) and since $a^{-1}, b \in H$ we have $a^{-1} * b \in H$ by (3). Hence (4) holds.

Conversely, suppose that (4) holds. In this case we will show that (1), (2) and (3) hold. It is important to prove these in a specific order:
(1): For any $a \in H$ we have by (4) that $\varepsilon=a^{-1} * a \in H$.
(2): For any $a \in H$ we have $a, \varepsilon \in H$ by (1) and hence $a^{-1}=a^{-1} * \varepsilon \in H$ by (4).
(3): For any $a, b \in H$ we have $a^{-1}, b \in H$ by (2). Hence by (4) we have

$$
a * b=\left(a^{-1}\right)^{-1} * b \in H .
$$

2. Congruence Modulo a Subgroup. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subgroup. For any $a, b \in G$ we define the relation of congruence modulo H :

$$
a \equiv b \bmod H \quad \Longleftrightarrow \quad a^{-1} * b \in H
$$

And for any $a \in G$ we define the coset of H generated by a :

$$
a * H:=\{a * h: h \in H\} \subseteq G .
$$

(a) Prove that congruence $\bmod H$ is an equivalence relation on G.
(b) For all $a, b \in G$, prove that a and b are congruent $\bmod H$ if and only if the cosets that they generate are equal:

$$
a \equiv b \bmod H \quad \Longleftrightarrow \quad a * H=b * H
$$

(a): The properties (1), (2) and (3) of subgroups are defined precisely so that this relation is an equivalence:

Reflexive. From (1) we have $a^{-1} * a=\varepsilon \in H$ and hence $a \equiv a \bmod H$ for all $a \in G$.
Symmetric. For all $a, b \in G$ we have

$$
\begin{align*}
a \equiv b \bmod H & \Longrightarrow a^{-1} * b \in H \\
& \Longrightarrow\left(a^{-1} * b\right)^{-1} \in H \tag{2}\\
& \Longrightarrow b^{-1} *\left(a^{-1}\right)^{-1} \in H \\
& \Longrightarrow b^{-1} * a \in H \\
& \Longrightarrow b \equiv a \bmod H .
\end{align*}
$$

Transitive. For all $a, b, c \in G$ we have

$$
\begin{align*}
a \equiv b \text { and } b \equiv c \bmod H & \Longrightarrow a^{-1} * b \in H \text { and } b^{-1} * c \in H \\
& \Longrightarrow\left(a^{-1} * b\right) *\left(b^{-1} * c\right) \in H \tag{3}\\
& \Longrightarrow a^{-1} *\left(b * b^{-1}\right) * c \in H \\
& \Longrightarrow a^{-1} * \varepsilon * c \in H \\
& \Longrightarrow a^{-1} * c \in H \\
& \Longrightarrow a \equiv c \bmod H .
\end{align*}
$$

(b): First suppose that we have $a * H=b * H$. Since $\varepsilon \in H$ we have $b=b * \varepsilon \in b * H$, which implies that $b \in a * H$. By definition this means that $b=a * h$ for some $h \in H$, which implies that $a^{-1} * b=h \in H$. We conclude that $a \equiv b \bmod H$, as desired.

Conversely, suppose that we have $a \equiv b \bmod H$, so that $a^{-1} * b \in H$. Let's say $a^{-1} * b=h \in H$, so that $b=a * h$ and $a=b * h^{-1}$. Our goal is to show that $a * H=b * H$ and for this we must prove two inclusions:

- To see that $b * H \subseteq a * H$, consider any element $b * h^{\prime} \in b * H$, with $h^{\prime} \in H$. Then since H is a subgroup we have $h * h^{\prime} \in H$ and hence

$$
b * h^{\prime}=(a * h) * h^{\prime}=a *\left(h * h^{\prime}\right) \in a * H .
$$

- To see that $a * H \subseteq b * H$, consider any element $a * h^{\prime \prime} \in a * H$, with $h^{\prime \prime} \in H$. Then since H is a subgroup we have $h^{-1} * h^{\prime \prime} \in H$ and hence

$$
a * h^{\prime \prime}=\left(b * h^{-1}\right) * h^{\prime \prime}=b *\left(h^{-1} * h^{\prime \prime}\right) \in b * H .
$$

Remark: It follows from (a) and (b) that the group G is partitioned into cosets of H. Furthermore, we observe that the function $H \rightarrow a * H$ defined by $h \mapsto a * h$ is an invertible function with inverse $g \mapsto a^{-1} * g$. Hence any coset $a * H$ is in bijection with H. If G is finite then H is finite and it follows that any two cosets have the same number of elements. Finally, if G / H is the set of cosets, we conclude that

$$
\# G=\#(G / H) \cdot \# H
$$

This is called Lagrange's Theorem.
3. Orbit-Stabilizer Theorem. Let $(G, *, \varepsilon)$ be a group and let X be a set. Consider a function $\cdot: G \times X \rightarrow X$, which we will denote by $(g, x) \mapsto g \cdot x$. We call this function an action of G on X when the following two properties are satisfied:
(i) $\varepsilon \cdot x=x$ for all $x \in X$,
(ii) $a \cdot(b \cdot x)=(a * b) \cdot x$ for all $a, b \in G$ and $x \in X$.
(a) For any element $x \in X$ we define the set $\operatorname{Stab}(x):=\{a \in G: a \cdot x=x\} \subseteq G$, called the stabilizer of x. Prove that this set is a subgroup of G.
(b) For any element $x \in X$ we define the set $\operatorname{Orb}(x):=\{g \cdot x: g \in G\} \subseteq X$, called the orbit of x. Prove that there exists a bijection $\operatorname{Orb}(x) \leftrightarrow G / \operatorname{Stab}(x)$ between elements of the orbit and cosets of the stabilizer. [Hint: Send the element $g \cdot x \in \operatorname{Orb}(x)$ to the $\operatorname{coset} g * \operatorname{Stab}(x)$. Check that this is well-defined and bijective.]
(c) If G is finite, combine (b) with Lagrange's Theorem to prove that

$$
\# G=\# \operatorname{Orb}(x) \# \operatorname{Stab}(x) \quad \text { for any } x \in X
$$

(a): We must show that (1), (2) and (3) hold.
(1): From (i) we have $\varepsilon \cdot x=x$ for all $x \in X$, and hence $\varepsilon \in \operatorname{Stab}(x)$.
(2): For any $a \in \operatorname{Stab}(x)$, it follows from (i), (ii) and (1) that

$$
a^{-1} \cdot x=a^{-1} \cdot(a \cdot x)=\left(a^{-1} * a\right) \cdot x=\varepsilon \cdot x=x,
$$

and hence $a^{-1} \in \operatorname{Stab}(x)$.
(3): For any $a, b \in \operatorname{Stab}(x)$, it follows from (ii) that

$$
(a * b) \cdot x=a \cdot(b \cdot x)=a \cdot x=x,
$$

and hence $a * b \in H$.
Remark: We could also have used the one step subgroup test.
(b): We want to define a bijection from $\operatorname{Orb}(x)$ to the set of cosets $G / \operatorname{Stab}(x)$. I claim that the following function does the trick:

$$
\begin{aligned}
\varphi: \quad \operatorname{Orb}(x) & \rightarrow \\
g \cdot x & \mapsto \\
& \mapsto * \operatorname{Stab}(x) \\
& g * \operatorname{Stab}(x) .
\end{aligned}
$$

First observe that the function φ is well-defined:

$$
\begin{align*}
a \cdot x=b \cdot x & \Longrightarrow a^{-1} \cdot(a \cdot x)=a^{-1} \cdot(b \cdot x) \\
& \Longrightarrow x=\left(a^{-1} * b\right) \cdot x \tag{i}\\
& \Longrightarrow a^{-1} * b \in \operatorname{Stab}(x) \\
& \Longrightarrow a * \operatorname{Stab}(x)=b * \operatorname{Stab}(x) \\
& \Longrightarrow \varphi(a \cdot x)=\varphi(b \cdot x)
\end{align*}
$$

Next we observe that the function φ is surjective by definition because any coset has the form $g \in \operatorname{Stab}(x)$ for some $g \in G$, and hence $g * \operatorname{Stab}(x)=\varphi(g \cdot x)$. Finally, we observe that φ is injective:

$$
\begin{align*}
\varphi(a \cdot x)=\varphi(b \cdot x) & \Longrightarrow a * \operatorname{Stab}(x)=b * \operatorname{Stab}(x) \\
& \Longrightarrow a^{-1} * b \in \operatorname{Stab}(x) \tag{b}\\
& \Longrightarrow x=\left(a^{-1} * b\right) \cdot x \\
& \Longrightarrow a \cdot x=a \cdot\left[\left(a^{-1} * b\right)\right] \cdot x \\
& \Longrightarrow a \cdot x=b \cdot x
\end{align*}
$$

from (i) and (ii)
Remark: We could have proved simultaneously that φ is well-defined and injective by observing that each of the implications in the argument is reversible. I only avoided this for pedagogical reasons.
(c): If G is finite then the subgroup $\operatorname{Stab}(x) \subseteq G$ is finite Lagrange's Theorem gives

$$
\# G=\#(G / \operatorname{Stab}(x)) \cdot \# \operatorname{Stab}(x) .
$$

But from the Orbit-Stabilizer Theorem we know that the sets $\operatorname{Orb}(x)$ and $G / \operatorname{Stab}(x)$ have the same number of elements, hence

$$
\# G=\# \operatorname{Orb}(x) \cdot \# \operatorname{Stab}(x) .
$$

4. The Alternating Group, Part 2. Consider the following polynomial in n variables:

$$
\delta\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]
$$

Recall that the symmetric group S_{n} acts on the ring of polynomials by permuting variables: For all $\sigma \in S_{n}$ and $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ we define

$$
(\sigma \cdot f)\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \in \mathbb{Q}[x]
$$

(a) Prove that for any transposition $t \in S_{n}$ we have $t \cdot \delta=-\delta$.
(b) Use part (a) to prove that the stabilizer of δ is the alternating group:

$$
\operatorname{Stab}(\delta)=A_{n}
$$

(c) Now use the Orbit-Stabilizer Theorem to prove that

$$
\# A_{n}=\frac{1}{2} \# S_{n}=\frac{1}{2} n!
$$

[Hint: Show that $\operatorname{Orb}(\delta)$ has size 2.]
(a): I realized this is too hard so I told you not to prove it. For any $\sigma \in S_{n}$ we have

$$
\sigma \cdot \delta=\prod_{i<j}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)
$$

When $\sigma(i)<\sigma(j)$ the factor $x_{\sigma(i)}-x_{\sigma(j)}$ occurs in both δ and $\sigma \cdot \delta$. But when $\sigma(i)>\sigma(j)$ the factor $x_{\sigma(j)}-x_{\sigma(i)}=-\left(x_{\sigma(i)}-x_{\sigma(j)}\right)$ occurs in δ. This means that $\sigma \cdot \delta= \pm \delta$, where the sign is determined by the number of pairs $i<j$ such that $\sigma(i)>\sigma(j)$. Such a pair $i<j$ is called an inversion of σ. If $\operatorname{inv}(\sigma)$ denotes the number of inversions of σ then we see that

$$
\sigma \cdot \delta=(-1)^{\operatorname{inv}(\sigma)} \delta
$$

Thus our goal is to show that any transposition $t \in S_{n}$ has an odd number of inversions. In fact, I claim that the transposition $(k \ell) \in S_{n}$, with $k<\ell$, has exactly $2(\ell-k-1)+1$ inversions, which come in three kinds:

- The pair $k<\ell$ is an inversion.
- Each pair $k<j$ (with $j<\ell$) is an inversion. There are $\ell-k-1$ of these.
- Each pair $j<\ell$ (with $k<j$) is an inversion. There are $\ell-k-1$ of these.

To see this it's best to draw a picture. The inversions of σ correspond to pairs of numbers $\sigma(i)$ and $\sigma(j)$ in the one-line notation where the larger number is on the left. Thus we need to count such pairs in the one-line notation for the transposition $(k \ell) \in S_{n}$. Here's the picture for (37) $\in S_{10}$:

(b): You showed on a previous homework that every permutation $\sigma \in S_{n}$ can be expressed in the form $\sigma=t_{1} \circ t_{2} \circ \cdots \circ t_{k}$, where $t_{1}, \ldots, t_{k} \in S_{n}$ are transpositions. In this case, part (a) and property (ii) of group actions imply that

$$
\begin{equation*}
\sigma \cdot \delta=t_{1} \cdot\left(t_{2} \cdot\left(t_{3} \cdot\left(\cdots t_{k} \cdot \delta\right)\right)=(-1)^{k} \delta\right. \tag{*}
\end{equation*}
$$

The transpositions t_{i} and the number k are not unique. However, we see that the parity of k (i.e., the evenness or oddness) is unique. Indeed, if σ is a composition of an even number transpositions then $(*)$ says that $\sigma \cdot \delta=\delta$ and if σ is a product of an odd number of transpositions then $(*)$ says that $\sigma \cdot \delta=-\delta$. But since $\delta \neq-\delta$, this implies that no permutation can simultaneously be a composition of an even and an odd number of transpositions. By definition, A_{n} is the set of permutations that are a composition of an even number of transpositions. Hence it follows that

$$
A_{n}=\left\{\sigma \in S_{n}: \sigma \cdot \delta=\delta\right\}=\operatorname{Stab}(\delta) .
$$

(c): In part (b) we observed that $\sigma \cdot \delta= \pm \delta$ for all $\sigma \in S_{n}$, and in part (a) we found that both of these possibilities do indeed occur. Thus we have

$$
\operatorname{Orb}(\delta)=\left\{\sigma \cdot \delta: \sigma \in S_{n}\right\}=\{\delta,-\delta\} .
$$

Finally, we conclude from the Orbit-Stabilizer Theorem that

$$
\begin{aligned}
\# S_{n} & =\# \operatorname{Orb}(\delta) \# \operatorname{Stab}(\delta) \\
n! & =2 \# A_{n} \\
\# A_{n} & =n!/ 2 .
\end{aligned}
$$

