
Math 562/662 Spring 2022
Homework 2 Drew Armstrong

1. One Step Subgroup Test. Let (G, ∗, ε) be a group and let H ⊆ G be a subset. We say
that H is a subgroup when the following three conditions are satisfied:

(1) ε ∈ H,
(2) a ∈ H ⇒ a−1 ∈ H,
(3) a, b ∈ H ⇒ a ∗ b ∈ H.

Prove that these three conditions are equivalent to the following single condition:

(4) a, b ∈ H ⇒ a−1 ∗ b ∈ H.

Proof. First assume that (1), (2) and (3) hold. Then for any a, b ∈ H we have a−1 ∈ H by
(2) and since a−1, b ∈ H we have a−1 ∗ b ∈ H by (3). Hence (4) holds.

Conversely, suppose that (4) holds. In this case we will show that (1), (2) and (3) hold. It is
important to prove these in a specific order:

(1): For any a ∈ H we have by (4) that ε = a−1 ∗ a ∈ H.
(2): For any a ∈ H we have a, ε ∈ H by (1) and hence a−1 = a−1 ∗ ε ∈ H by (4).
(3): For any a, b ∈ H we have a−1, b ∈ H by (2). Hence by (4) we have

a ∗ b = (a−1)−1 ∗ b ∈ H.
�

2. Congruence Modulo a Subgroup. Let (G, ∗, ε) be a group and let H ⊆ G be a
subgroup. For any a, b ∈ G we define the relation of congruence modulo H:

a ≡ b mod H ⇐⇒ a−1 ∗ b ∈ H.
And for any a ∈ G we define the coset of H generated by a:

a ∗H := {a ∗ h : h ∈ H} ⊆ G.
(a) Prove that congruence mod H is an equivalence relation on G.
(b) For all a, b ∈ G, prove that a and b are congruent mod H if and only if the cosets that

they generate are equal:

a ≡ b mod H ⇐⇒ a ∗H = b ∗H.

(a): The properties (1), (2) and (3) of subgroups are defined precisely so that this relation is
an equivalence:

Reflexive. From (1) we have a−1 ∗ a = ε ∈ H and hence a ≡ a mod H for all a ∈ G.

Symmetric. For all a, b ∈ G we have

a ≡ b mod H =⇒ a−1 ∗ b ∈ H
=⇒ (a−1 ∗ b)−1 ∈ H from (2)

=⇒ b−1 ∗ (a−1)−1 ∈ H
=⇒ b−1 ∗ a ∈ H
=⇒ b ≡ a mod H.



Transitive. For all a, b, c ∈ G we have

a ≡ b and b ≡ c mod H =⇒ a−1 ∗ b ∈ H and b−1 ∗ c ∈ H
=⇒ (a−1 ∗ b) ∗ (b−1 ∗ c) ∈ H from (3)

=⇒ a−1 ∗ (b ∗ b−1) ∗ c ∈ H
=⇒ a−1 ∗ ε ∗ c ∈ H
=⇒ a−1 ∗ c ∈ H
=⇒ a ≡ c mod H.

(b): First suppose that we have a ∗H = b ∗H. Since ε ∈ H we have b = b ∗ ε ∈ b ∗H, which
implies that b ∈ a ∗H. By definition this means that b = a ∗ h for some h ∈ H, which implies
that a−1 ∗ b = h ∈ H. We conclude that a ≡ b mod H, as desired.

Conversely, suppose that we have a ≡ b mod H, so that a−1∗b ∈ H. Let’s say a−1∗b = h ∈ H,
so that b = a ∗h and a = b ∗h−1. Our goal is to show that a ∗H = b ∗H and for this we must
prove two inclusions:

• To see that b ∗H ⊆ a ∗H, consider any element b ∗h′ ∈ b ∗H, with h′ ∈ H. Then since
H is a subgroup we have h ∗ h′ ∈ H and hence

b ∗ h′ = (a ∗ h) ∗ h′ = a ∗ (h ∗ h′) ∈ a ∗H.
• To see that a ∗H ⊆ b ∗H, consider any element a ∗ h′′ ∈ a ∗H, with h′′ ∈ H. Then

since H is a subgroup we have h−1 ∗ h′′ ∈ H and hence

a ∗ h′′ = (b ∗ h−1) ∗ h′′ = b ∗ (h−1 ∗ h′′) ∈ b ∗H.

Remark: It follows from (a) and (b) that the group G is partitioned into cosets of H.
Furthermore, we observe that the function H → a ∗H defined by h 7→ a ∗ h is an invertible
function with inverse g 7→ a−1 ∗ g. Hence any coset a ∗H is in bijection with H. If G is finite
then H is finite and it follows that any two cosets have the same number of elements. Finally,
if G/H is the set of cosets, we conclude that

#G = #(G/H) ·#H.
This is called Lagrange’s Theorem.

3. Orbit-Stabilizer Theorem. Let (G, ∗, ε) be a group and let X be a set. Consider a
function · : G × X → X, which we will denote by (g, x) 7→ g · x. We call this function an
action of G on X when the following two properties are satisfied:

(i) ε · x = x for all x ∈ X,
(ii) a · (b · x) = (a ∗ b) · x for all a, b ∈ G and x ∈ X.

(a) For any element x ∈ X we define the set Stab(x) := {a ∈ G : a · x = x} ⊆ G, called
the stabilizer of x. Prove that this set is a subgroup of G.

(b) For any element x ∈ X we define the set Orb(x) := {g · x : g ∈ G} ⊆ X, called the
orbit of x. Prove that there exists a bijection Orb(x)↔ G/Stab(x) between elements
of the orbit and cosets of the stabilizer. [Hint: Send the element g · x ∈ Orb(x) to the
coset g ∗ Stab(x). Check that this is well-defined and bijective.]

(c) If G is finite, combine (b) with Lagrange’s Theorem to prove that

#G = #Orb(x)#Stab(x) for any x ∈ X.

(a): We must show that (1), (2) and (3) hold.



(1): From (i) we have ε · x = x for all x ∈ X, and hence ε ∈ Stab(x).
(2): For any a ∈ Stab(x), it follows from (i), (ii) and (1) that

a−1 · x = a−1 · (a · x) = (a−1 ∗ a) · x = ε · x = x,

and hence a−1 ∈ Stab(x).
(3): For any a, b ∈ Stab(x), it follows from (ii) that

(a ∗ b) · x = a · (b · x) = a · x = x,

and hence a ∗ b ∈ H.

Remark: We could also have used the one step subgroup test.

(b): We want to define a bijection from Orb(x) to the set of cosets G/Stab(x). I claim that
the following function does the trick:

ϕ : Orb(x) → G/Stab(x)
g · x 7→ g ∗ Stab(x).

First observe that the function ϕ is well-defined:

a · x = b · x =⇒ a−1 · (a · x) = a−1 · (b · x)

=⇒ x = (a−1 ∗ b) · x (i) and (ii)

=⇒ a−1 ∗ b ∈ Stab(x)

=⇒ a ∗ Stab(x) = b ∗ Stab(x) from 2(b)

=⇒ ϕ(a · x) = ϕ(b · x).

Next we observe that the function ϕ is surjective by definition because any coset has the form
g ∈ Stab(x) for some g ∈ G, and hence g ∗ Stab(x) = ϕ(g · x). Finally, we observe that ϕ is
injective:

ϕ(a · x) = ϕ(b · x) =⇒ a ∗ Stab(x) = b ∗ Stab(x)

=⇒ a−1 ∗ b ∈ Stab(x) from 2(b)

=⇒ x = (a−1 ∗ b) · x
=⇒ a · x = a · [(a−1 ∗ b)] · x
=⇒ a · x = b · x from (i) and (ii)

Remark: We could have proved simultaneously that ϕ is well-defined and injective by observing
that each of the implications in the argument is reversible. I only avoided this for pedagogical
reasons.

(c): If G is finite then the subgroup Stab(x) ⊆ G is finite Lagrange’s Theorem gives

#G = #(G/Stab(x)) ·#Stab(x).

But from the Orbit-Stabilizer Theorem we know that the sets Orb(x) and G/Stab(x) have
the same number of elements, hence

#G = #Orb(x) ·#Stab(x).

4. The Alternating Group, Part 2. Consider the following polynomial in n variables:

δ(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj) ∈ Q[x1, . . . , xn].



Recall that the symmetric group Sn acts on the ring of polynomials by permuting variables:
For all σ ∈ Sn and f(x1, . . . , xn) ∈ Q[x1, . . . , xn] we define

(σ · f)(x1, . . . , xn) := f(xσ(1), . . . , xσ(n)) ∈ Q[x].

(a) Prove that for any transposition t ∈ Sn we have t · δ = −δ.
(b) Use part (a) to prove that the stabilizer of δ is the alternating group:

Stab(δ) = An.

(c) Now use the Orbit-Stabilizer Theorem to prove that

#An =
1

2
#Sn =

1

2
n!.

[Hint: Show that Orb(δ) has size 2.]

(a): I realized this is too hard so I told you not to prove it. For any σ ∈ Sn we have

σ · δ =
∏
i<j

(xσ(i) − xσ(j)).

When σ(i) < σ(j) the factor xσ(i) − xσ(j) occurs in both δ and σ · δ. But when σ(i) > σ(j)
the factor xσ(j) − xσ(i) = −(xσ(i) − xσ(j)) occurs in δ. This means that σ · δ = ±δ, where the
sign is determined by the number of pairs i < j such that σ(i) > σ(j). Such a pair i < j is
called an inversion of σ. If inv(σ) denotes the number of inversions of σ then we see that

σ · δ = (−1)inv(σ)δ.

Thus our goal is to show that any transposition t ∈ Sn has an odd number of inversions.
In fact, I claim that the transposition (k`) ∈ Sn, with k < `, has exactly 2(` − k − 1) + 1
inversions, which come in three kinds:

• The pair k < ` is an inversion.
• Each pair k < j (with j < `) is an inversion. There are `− k − 1 of these.
• Each pair j < ` (with k < j) is an inversion. There are `− k − 1 of these.

To see this it’s best to draw a picture. The inversions of σ correspond to pairs of numbers
σ(i) and σ(j) in the one-line notation where the larger number is on the left. Thus we need
to count such pairs in the one-line notation for the transposition (k`) ∈ Sn. Here’s the picture
for (37) ∈ S10:

(b): You showed on a previous homework that every permutation σ ∈ Sn can be expressed in
the form σ = t1 ◦ t2 ◦ · · · ◦ tk, where t1, . . . , tk ∈ Sn are transpositions. In this case, part (a)
and property (ii) of group actions imply that

(∗) σ · δ = t1 · (t2 · (t3 · (· · · tk · δ)) = (−1)kδ.



The transpositions ti and the number k are not unique. However, we see that the parity of
k (i.e., the evenness or oddness) is unique. Indeed, if σ is a composition of an even number
transpositions then (∗) says that σ · δ = δ and if σ is a product of an odd number of transpo-
sitions then (∗) says that σ · δ = −δ. But since δ 6= −δ, this implies that no permutation can
simultaneously be a composition of an even and an odd number of transpositions. By defini-
tion, An is the set of permutations that are a composition of an even number of transpositions.
Hence it follows that

An = {σ ∈ Sn : σ · δ = δ} = Stab(δ).

(c): In part (b) we observed that σ · δ = ±δ for all σ ∈ Sn, and in part (a) we found that both
of these possibilities do indeed occur. Thus we have

Orb(δ) = {σ · δ : σ ∈ Sn} = {δ,−δ}.
Finally, we conclude from the Orbit-Stabilizer Theorem that

#Sn = #Orb(δ)#Stab(δ)

n! = 2#An

#An = n!/2.


