1. Lexicographic Degree. Given $\mathbf{k} = (k_1, \ldots, k_n), \boldsymbol{\ell} = (\ell_1, \ldots, \ell_n) \in \mathbb{N}^n$ we say that

 $\mathbf{k} < \boldsymbol{\ell} \quad \Leftrightarrow \quad \text{there exists } j \text{ such that } k_i = \ell_i \text{ for all } i < j, \text{ but } k_j < \ell_j.$

Given $f(x_1, \ldots, x_n) = \sum_{\mathbf{k} \in \mathbb{N}^n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \in \mathbb{F}[\mathbf{x}]$ we define deg(f) as the lexicographically biggest element $\mathbf{k} \in \mathbb{N}^d$ such that $a_{\mathbf{k}} \neq 0$. The degree of the zero polynomial is not defined.

- (a) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$ prove that $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ imply $\mathbf{a} \leq \mathbf{c}$. [Hint: If $\mathbf{a} = \mathbf{b}$ or $\mathbf{b} = \mathbf{c}$ then there is nothing to show, so we can assume that $\mathbf{a} < \mathbf{b}$ and $\mathbf{b} < \mathbf{c}$.]
- (b) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$, show that $\mathbf{a} \leq \mathbf{b}$ implies $\mathbf{a} + \mathbf{c} \leq \mathbf{b} + \mathbf{c}$. [Hint: It is easier to prove that $\mathbf{a} + \mathbf{c} > \mathbf{b} + \mathbf{c}$ implies $\mathbf{a} > \mathbf{b}$.]
- (c) For all nonzero $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$, prove that $\deg(fg) = \deg(f) + \deg(g)$. [Hint: If $a_{\mathbf{k}}, b_{\boldsymbol{\ell}} \in \mathbb{F}$ are the coefficients of $f(\mathbf{x}), g(\mathbf{x})$ then $c_{\mathbf{m}} = \sum_{\mathbf{k}+\boldsymbol{\ell}=\mathbf{m}} a_{\mathbf{k}} b_{\boldsymbol{\ell}}$ are the coefficients of $f(\mathbf{x})g(\mathbf{x})$. Let $\mathbf{d} = \deg(f)$ and $\mathbf{e} = \deg(g)$ so that $\mathbf{k} > \mathbf{d}$ implies $a_{\mathbf{k}} = 0$ and $\boldsymbol{\ell} > \mathbf{e}$ implies $b_{\boldsymbol{\ell}} = 0$. Use parts (a) and (b) to show that $\mathbf{m} > \mathbf{d} + \mathbf{e}$ implies $c_{\mathbf{m}} = 0$.]

(a): If $\mathbf{a} = \mathbf{b}$ or $\mathbf{b} = \mathbf{c}$ then there is nothing to show. So let us assume that $\mathbf{a} < \mathbf{b}$ and $\mathbf{b} < \mathbf{c}$. By definition, this means that there exist some j and k satisfying

- $a_i < b_j$ and $a_i = b_i$ for all i < j,
- $b_k < c_k$ and $b_i = c_i$ for all i < k.

Now let $m = \min\{j, k\}$, so that $a_i = b_i = c_i$ for all i < m. If m = j = k then we have $a_m < b_m < c_m$. If m = j < k then we have $a_m < b_m = c_m$. If m = k < j then we have $a_m = b_m < c_m$. In any case, we have $a_m < c_m$. Since $a_m < c_m$ and $a_i = c_i$ for all i < m we conclude that $\mathbf{a} < \mathbf{c}$ (and hence $\mathbf{a} \le \mathbf{c}$) as desired.

(b): Suppose that $\mathbf{a} + \mathbf{c} > \mathbf{b} + \mathbf{c}$. By definition, this means that there exists some j such that $a_j + c_j > b_j + c_j$ and $a_i + c_i = b_i + c_i$ for all i < j. The first condition implies $a_j > b_j$ and the second condition implies $a_i = b_i$ for all i. Hence $\mathbf{a} > \mathbf{b}$ as desired.

(c): Let us write $f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{N}^n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ and $g(\mathbf{x}) = \sum_{\boldsymbol{\ell} \in \mathbb{N}^n} b_{\boldsymbol{\ell}} \mathbf{x}^{\boldsymbol{\ell}}$, with $\deg(f) = \mathbf{d} \in \mathbb{N}^n$ and $\deg(g) = \mathbf{e} \in \mathbb{N}^n$. By definition, this means that

- $a_{\mathbf{d}} \neq 0$ and $a_{\mathbf{k}} = 0$ for all $\mathbf{k} > \mathbf{d}$,
- $b_{\ell} \neq 0$ and $b_{\ell} = 0$ for all $\ell > \mathbf{e}$.

The product is given by $f(\mathbf{x})g(\mathbf{x}) = \sum_{\mathbf{m} \in \mathbb{N}^n} c_{\mathbf{m}} \mathbf{x}^{\mathbf{m}}$, with coefficients

$$c_{\mathbf{m}} = \sum_{\mathbf{k} + \boldsymbol{\ell} = \mathbf{m}} a_{\mathbf{k}} b_{\boldsymbol{\ell}} \in \mathbb{F}$$

Our goal is to show that $\deg(fg) = \mathbf{d} + \mathbf{e}$. In other words, we want to show that $c_{\mathbf{d}+\mathbf{e}} \neq 0$ and that $\mathbf{m} > \mathbf{d} + \mathbf{e}$ implies $c_{\mathbf{m}} = 0$.

For the first condition, we observe that

$$c_{\mathbf{d}+\mathbf{e}} = \sum_{\mathbf{k}+\boldsymbol{\ell}=\mathbf{d}+\mathbf{e}} a_{\mathbf{k}} b_{\boldsymbol{\ell}} \in \mathbb{F}.$$

Since $a_{\mathbf{d}} \neq 0$ and $b_{\mathbf{e}} \neq 0$, the summand $a_{\mathbf{d}}b_{\mathbf{e}}$ is nonzero. But I claim that every other summand is zero. Indeed, suppose that $\mathbf{k} + \boldsymbol{\ell} = \mathbf{d} + \mathbf{e}$ with $\mathbf{k} \neq \mathbf{d}$ or $\boldsymbol{\ell} \neq \mathbf{e}$, which implies that $\mathbf{k} \neq \mathbf{d}$

and $\ell \neq \mathbf{e}$. If $\mathbf{k} > \mathbf{d}$ then by definition of deg(f) we have $a_{\mathbf{k}} = 0$, hence the summand $a_{\mathbf{k}}b_{\ell}$ is zero. And if $\mathbf{k} < \mathbf{d}$ then from (b) we must have $\ell > \mathbf{e}$ because

$\mathbf{k} < \mathbf{d}$	
$\mathbf{k} + \boldsymbol{\ell} < \mathbf{d} + \boldsymbol{\ell}$	add ℓ to both sides
$\mathbf{d} + \mathbf{e} < \mathbf{d} + \boldsymbol{\ell}$	because $\mathbf{k} + \boldsymbol{\ell} = \mathbf{d} + \mathbf{e}$
$\mathbf{e} < \boldsymbol{\ell}.$	add $-\mathbf{d}$ to both sides

In this case we have $b_{\ell} = 0$, hence the summand $a_{\mathbf{k}}b_{\ell}$ is still zero. Since all but one summand in $c_{\mathbf{d}+\mathbf{e}}$ is zero and the last is nonzero, we conclude that $c_{\mathbf{d}+\mathbf{e}} \neq 0$ as desired.

For the second condition we want to show that $\mathbf{m} > \mathbf{d} + \mathbf{e}$ implies $c_{\mathbf{m}} = 0$. In this case, every summand in $c_{\mathbf{m}}$ has the form $a_{\mathbf{k}}b_{\ell}$ for some \mathbf{k}, ℓ with $\mathbf{k} + \ell = \mathbf{m} > \mathbf{d} + \mathbf{e}$. We will be done if we can show that $\mathbf{k} + \ell > \mathbf{d} + \mathbf{e}$ implies $\mathbf{k} > \mathbf{d}$ or $\ell > \mathbf{e}$ since this implies that at least one of $a_{\mathbf{k}}$ and b_{ℓ} is zero, hence $a_{\mathbf{k}}b_{\ell} = 0$. In this case every summand $a_{\mathbf{k}}b_{\ell}$ of $c_{\mathbf{m}}$ is zero, hence $c_{\mathbf{m}} = 0$. It is equivalent to prove the contrapositive statement: that $\mathbf{k} \leq \mathbf{d}$ and $\ell \leq \mathbf{e}$ imply $\mathbf{k} + \ell \leq \mathbf{d} + \mathbf{e}$. So let us suppose that $\mathbf{k} \leq \mathbf{d}$ and $\ell \leq \mathbf{e}$. In this case, (b) implies that

$$\left\{\begin{array}{ccc} \mathbf{k} & \leq & \mathbf{d} \\ \mathbf{k} + \boldsymbol{\ell} & \leq & \mathbf{d} + \boldsymbol{\ell} \end{array}\right\} \qquad \text{and} \qquad \left\{\begin{array}{ccc} \boldsymbol{\ell} & \leq & \mathbf{e} \\ \mathbf{d} + \boldsymbol{\ell} & \leq & \mathbf{d} + \mathbf{e} \end{array}\right\},$$

and then since $\mathbf{k} + \boldsymbol{\ell} \leq \mathbf{d} + \boldsymbol{\ell} \leq \mathbf{d} + \mathbf{e}$, part (a) implies that $\mathbf{k} + \boldsymbol{\ell} \leq \mathbf{d} + \mathbf{e}$.

I think that was a wholesome exercise.

2. Introduction to Permutations. Let S_3 be the set of invertible functions from the set $\{1, 2, 3\}$ to itself. These are called *permutations of* $\{1, 2, 3\}$.

- (a) List all 3! = 6 elements of this set. [I recommend using cycle notation.]
- (b) We can think of (S_3, \circ, id) as a group, where \circ is functional composition and id is the identity function defined by id(1) = 1, id(2) = 2 and id(3) = 3. Write out the full 6×6 group table. Observe that this group is not abelian.
- (a): I will list the permutations in one-line notation and in cycle notation:

one-line	123	213	132	321	231	312
cycle	id	(12)	(23)	(13)	(123)	(132)

(b): Here is the group table, where the entry in row σ and column τ is $\sigma \circ \tau$:

	0	id	(12)	(13)	(23)	(123)	(132)
	id	id	(12)	(13)	(23)	(123)	(132)
(1	12)	(12)	id	(132)	(123)	(23)	(13)
(1	13)	(13)	(123)	id	(132)	(12)	(23)
(1	23)	(23)	(132)	(123)	id	(13)	(12)
(1	(23)	(123)	(13)	(23)	(12)	(132)	id
(1	(32)	(132)	(23)	(12)	(13)	id	(123)

The group is not abelian since, for example, we have $(12) \circ (23) = (132)$ and $(23) \circ (12) = (123)$, but $(123) \neq (132)$.

3. The Alternating Group. Let $(ij) \in S_n$ denote the permutation of $\{1, \ldots, n\}$ that switches $i \leftrightarrow j$ and sends every other number to itself. Such elements are called *transpositions*. Observe that each transposition is equal to its own inverse.

- (a) Prove that every element of S_n can be expressed as a composition of transpositions. [Hint: Prove that every cycle is a composition of transpositions. By convention, the identity permutation is the composition of zero transpositions.]
- (b) Let $A_n \subseteq S_n$ denote the subset of permutations that can be expressed as a composition of an **even number** of transpositions. Prove the following properties:
 - id $\in A_n$,
 - $\sigma, \tau \in A_n \Rightarrow \sigma \circ \tau \in A_n$,
 - $\sigma \in A_n \Rightarrow \sigma^{-1} \in A_n$.

These properties say that A_n is a subgroup of S_n . We call it the alternating subgroup of S_n , or just the alternating group.

(a): The cycle notation is has the property that it can be viewed as a composition of commuting cycles. For example, we have

$$(137)(256)(48) = (137) \circ (256) \circ (48) = (48) \circ (137) \circ (256) = (562) \circ (84) \circ (712) =$$
etc.

We will show that each cycle can be viewed as a composition of (non-commuting) transpositions. For example, we have seen that $(123) = (12) \circ (23)$. One can similarly check that

$$(1234) = (12) \circ (23) \circ (34),$$

$$(12335) = (12) \circ (23) \circ (34) \circ (45)$$

and, indeed, for any numbers $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, n\}$ we have

$$(i_1i_2i_3\cdots i_{k-1}i_k) = (i_1i_2)\circ (i_2i_3)\circ \cdots \circ (i_{k-1}i_k).$$

By combining these two observations, we see that any permutation can be expressed as a composition of (generally non-commuting) cycles. This composition is not unique.¹

(c): By definition we say that id is a composition of zero transpositions. Since zero is an even number this says that $id \in A_n$. If you don't like that, observe that for any transposition (ij) we have $(ij)^{-1} = (ji) = (ij)$. Hence $id = (ij) \circ (ij)$ can be expressed as a composition of two transpositions, and two is even.

Next, suppose that $\sigma, \tau \in A_n$ so we can write

$$\sigma = s_1 \circ s_2 \circ \cdots \circ s_k,$$

$$\tau = t_1 \circ t_2 \cdots \circ t_\ell,$$

for some transpositions $s_1, \ldots, s_k, t_1, \ldots, t_\ell$, where k and ℓ are even. But then we can write $\sigma \circ \tau$ as a composition of $k + \ell$ transpositions:

$$\sigma \circ \tau = s_1 \circ s_2 \circ \cdots \circ s_k \circ t_1 \circ t_2 \cdots \circ t_\ell.$$

Since $k + \ell$ is even this implies that $\sigma \circ \tau \in A_n$.

$$(i_1i_2i_3\cdots i_{k-1}i_k) = (i_1i_k) \circ (i_1i_{k-1}) \circ \cdots \circ (i_1i_2).$$

¹For example, we could also write

Finally, for any $\sigma \in A_n$ we will show that $\sigma^{-1} \in A_n$.² If $\sigma \in A_n$ then by definition we can write

$$\sigma = s_1 \circ s_2 \circ \cdots \circ s_k,$$

where s_1, \ldots, s_k are transpositions and k is even. But observe that for any transposition s = (ij) we have $s^{-1} = (ij) = s$, which is also a transposition (in fact, the same transposition). Combining this with the formula $(\rho \circ \tau)^{-1} = \tau^{-1} \circ \rho^{-1}$ gives

$$\sigma^{-1} = s_k^{-1} \circ \cdots \circ s_2^{-1} \circ s_1^{-1} = s_k \circ \cdots \circ s_2 \circ s_1,$$

so σ^{-1} can also be expressed as a composition of k transpositions. Hence $\sigma^{-1} \in A_n$.

Remark: It is harder to prove that a given permutation can **not** be expressed as a product of evenly many transpositions. For example, I will show that the permutation $(12) \in S_3$ is not in A_3 . Suppose for contradiction that we can write

(*)
$$(12) = (t_1 \circ t_2) \circ (t_3 \circ t_4) \circ \dots \circ (t_{2k-1} \circ t_k)$$

for some k. From the group table in Problem 2 we see that any two transpositions compose to give (123) or $(132) = (123)^{-1}$, thus the condition (*) implies that (12) is a power of (123). But the power of (123) are

$$(123)^0 = id, \quad (123)^1 = (123), \quad (123)^2 = (132), \quad (123)^3 = id, \quad and then it repeats.$$

Since (12) is a not a power of (123) we obtain a contradiction to (*), hence (12) is not in A_3 . The same argument shows that (13) and (23) are not in A_3 . Hence we find that

$$A_3 = \{ \mathrm{id}, (123), (132) \},\$$

with group table

By accident, it happens that this group is abelian, and in fact it is isomorphic to the additive group $(\mathbb{Z}/3\mathbb{Z}, +, 0)$. This can be seen by observing that the group tables are "the same" up to renaming of the elements:

$$\begin{array}{c|ccccc} + & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array}$$

We will show later that **any** two groups of size 3 must be isomorphic.

4. Waring's Algorithm. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension. Suppose that the polynomial $f(x) = x^3 + ax^2 + bx + c \in \mathbb{F}[x]$ has roots $\alpha, \beta, \gamma \in \mathbb{E}$, so that

$$x^{3} + ax^{2} + bx + c = (x - \alpha)(x - \beta)(x - \gamma).$$

Use Waring's algorithm to find a polynomial in $\mathbb{F}[x]$ whose roots are $\alpha^2, \beta^2, \gamma^2$. [Hint: The coefficients of $(x - \alpha^2)(x - \beta^2)(x - \gamma^2)$ are symmetric combinations of α, β, γ , hence we can express them in terms of the coefficients a, b, c, which are in \mathbb{F} .]

²Of course we already know that $\sigma^{-1} \in S_n$ exists, and from part (a) we know that σ^{-1} can be expressed as a composition of transpositions. We just want to show that the number of these transpositions is even.

Expanding the right hand side gives

$$x^{3} + ax^{2} + bx + c = (x - \alpha)(x - \beta)(x - \gamma)$$
$$= x^{3} - e_{1}x^{2} + e_{2}x - e_{3},$$

where

$$e_1 = \alpha + \beta + \gamma,$$

$$e_2 = \alpha\beta + \alpha\gamma + \beta\gamma,$$

$$e_3 = \alpha\beta\gamma.$$

And then comparing coefficients gives

$$e_1 = -a,$$

$$e_2 = b,$$

$$e_3 = -c.$$

Now consider the polynomial with roots $\alpha^2, \beta^2, \gamma^2$:

$$x^{3} + a'x^{2} + b'x + c' = (x - \alpha^{2})(x - \beta^{2})(x - \gamma^{2}),$$

where a', b', c' are some elements of \mathbb{E} . We will show that a', b', c' can be expressed in terms of a, b, c, hence are actually in \mathbb{F} . To do this we expand the right hand side to get

$$x^{3} + a'x^{2} + b'x + c' = x^{3} - (\alpha^{2} + \beta^{2} + \gamma^{2})x^{2} + (\alpha^{2}\beta^{2} + \alpha^{2}\gamma^{2} + \beta^{2}\gamma^{2})x - (\alpha^{2}\beta^{2}\gamma^{2}),$$

and then compare coefficients to get

$$\begin{aligned} a' &= -(\alpha^2 + \beta^2 + \gamma^2), \\ b' &= \alpha^2 \beta^2 + \alpha^2 \gamma^2 + \beta^2 \gamma^2, \\ c' &= -\alpha^2 \beta^2 \gamma^2. \end{aligned}$$

Since each of these is a symmetric combination of α , β , γ we know that each can be expressed in terms of the elementary symmetric combinations e_1, e_2, e_3 by Waring's algorithm.

We begin with a'. Note that a' and $-e_1^2$ have the same leading term $-\alpha^2$. Expand $-e_1^2$ to get

$$-(\alpha + \beta + \gamma)^2 = -\alpha^2 - \beta^2 - \gamma^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma).$$

Then subtract to get

$$a' + e_1^2 = 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$

$$a' + e_1^2 = 2e_2$$

$$a' = -e_1^2 + 2e_2$$

$$= -(-a)^2 + 2(b)$$

$$= 2b - a^2.$$

Now we compute b'. Observe that b' and e_2^2 have the same leading term $\alpha^2 \beta^2$. Expand to get

$$e_2^2 = (\alpha\beta + \alpha\gamma + \beta\gamma)^2$$

= $\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2\alpha^2\beta\gamma + 2\alpha\beta^2\gamma + 2\alpha\beta\gamma^2$.

Then subtract to get

$$b' - e_2^2 = -2(\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2)$$

$$b' - e_2^2 = -2(\alpha + \beta + \gamma)(\alpha \beta \gamma)$$

$$b' - e_2^2 = -2e_1e_3$$

$$b' = e_2^2 - 2e_1e_3$$

$$= (b)^2 - 2(-a)(-c)$$

$$= b^2 - 2ac.$$

Finally, we observe that

$$c' = -\alpha^2 \beta^2 \gamma^2$$
$$= -(\alpha \beta \gamma)^2$$
$$= -e_3^2$$
$$= -(-c)^2$$
$$= -c^2.$$

In conclusion, we have

$$x^{3} + (2b - a^{2})x^{2} + (b^{2} - 2ac)x - c^{2} = (x - \alpha^{2})(x - \beta^{2})(x - \gamma^{2})$$

Example: Consider the polynomial $x^3 + x^2 + x + 1$ with coefficients (a, b, c) = (1, 1, 1). Consider the factorization

$$x^{4} - 1 = (x - 1)(x^{3} + x^{2} + x + 1).$$

Since $x^4 - 1$ has roots $\pm 1, \pm i$ and x - 1 has root ± 1 , we see that $x^3 + x^2 + x + 1$ has roots $-1, \pm i$. According to the result of Problem 4, the polynomial $x^3 + a'x^2 + b'x + c'$ with

$$(a', b', c') = (2b - a^2, b^2 - 2ac, -c^2) = (2 - 1, 1 - 2, -1) = (1, -1, -1)$$

should have roots $(-1)^2$, i^2 , $(-i)^2$, i.e., 1, -1, -1. And, indeed, we have

$$x^{3} + x^{2} - x - 1 = (x - 1)(x + 1)^{2},$$

which has the desired roots and multiplicities.