1. Lexicographic Degree. Given $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right), \ell=\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{N}^{n}$ we say that

$$
\mathbf{k}<\boldsymbol{\ell} \Leftrightarrow \text { there exists } j \text { such that } k_{i}=\ell_{i} \text { for all } i<j \text {, but } k_{j}<\ell_{j} \text {. }
$$

Given $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \in \mathbb{F}[\mathbf{x}]$ we define $\operatorname{deg}(f)$ as the lexicographically biggest element $\mathbf{k} \in \mathbb{N}^{d}$ such that $a_{\mathbf{k}} \neq 0$. The degree of the zero polynomial is not defined.
(a) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^{n}$ prove that $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ imply $\mathbf{a} \leq \mathbf{c}$. [Hint: If $\mathbf{a}=\mathbf{b}$ or $\mathbf{b}=\mathbf{c}$ then there is nothing to show, so we can assume that $\mathbf{a}<\mathbf{b}$ and $\mathbf{b}<\mathbf{c}$.]
(b) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^{n}$, show that $\mathbf{a} \leq \mathbf{b}$ implies $\mathbf{a}+\mathbf{c} \leq \mathbf{b}+\mathbf{c}$. [Hint: It is easier to prove that $\mathbf{a}+\mathbf{c}>\mathbf{b}+\mathbf{c}$ implies $\mathbf{a}>\mathbf{b}$.]
(c) For all nonzero $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$, prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. [Hint: If $a_{\mathbf{k}}, b_{\ell} \in \mathbb{F}$ are the coefficients of $f(\mathbf{x}), g(\mathbf{x})$ then $c_{\mathbf{m}}=\sum_{\mathbf{k}+\ell=\mathbf{m}} a_{\mathbf{k}} b_{\ell}$ are the coefficients of $f(\mathbf{x}) g(\mathbf{x})$. Let $\mathbf{d}=\operatorname{deg}(f)$ and $\mathbf{e}=\operatorname{deg}(g)$ so that $\mathbf{k}>\mathbf{d}$ implies $a_{\mathbf{k}}=0$ and $\boldsymbol{\ell}>\mathbf{e}$ implies $b_{\ell}=0$. Use parts (a) and (b) to show that $\mathbf{m}>\mathbf{d}+\mathbf{e}$ implies $c_{\mathbf{m}}=0$.]
(a): If $\mathbf{a}=\mathbf{b}$ or $\mathbf{b}=\mathbf{c}$ then there is nothing to show. So let us assume that $\mathbf{a}<\mathbf{b}$ and $\mathbf{b}<\mathbf{c}$. By definition, this means that there exist some j and k satisfying

- $a_{j}<b_{j}$ and $a_{i}=b_{i}$ for all $i<j$,
- $b_{k}<c_{k}$ and $b_{i}=c_{i}$ for all $i<k$.

Now let $m=\min \{j, k\}$, so that $a_{i}=b_{i}=c_{i}$ for all $i<m$. If $m=j=k$ then we have $a_{m}<b_{m}<c_{m}$. If $m=j<k$ then we have $a_{m}<b_{m}=c_{m}$. If $m=k<j$ then we have $a_{m}=b_{m}<c_{m}$. In any case, we have $a_{m}<c_{m}$. Since $a_{m}<c_{m}$ and $a_{i}=c_{i}$ for all $i<m$ we conclude that $\mathbf{a}<\mathbf{c}$ (and hence $\mathbf{a} \leq \mathbf{c}$) as desired.
(b): Suppose that $\mathbf{a}+\mathbf{c}>\mathbf{b}+\mathbf{c}$. By definition, this means that there exists some j such that $a_{j}+c_{j}>b_{j}+c_{j}$ and $a_{i}+c_{i}=b_{i}+c_{i}$ for all $i<j$. The first condition implies $a_{j}>b_{j}$ and the second condition implies $a_{i}=b_{i}$ for all i. Hence $\mathbf{a}>\mathbf{b}$ as desired.
(c): Let us write $f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ and $g(\mathbf{x})=\sum_{\ell \in \mathbb{N}^{n}} b_{\ell} \mathbf{x}^{\ell}$, with $\operatorname{deg}(f)=\mathbf{d} \in \mathbb{N}^{n}$ and $\operatorname{deg}(g)=\mathbf{e} \in \mathbb{N}^{n}$. By definition, this means that

- $a_{\mathbf{d}} \neq 0$ and $a_{\mathbf{k}}=0$ for all $\mathbf{k}>\mathbf{d}$,
- $b_{\boldsymbol{\ell}} \neq 0$ and $b_{\boldsymbol{\ell}}=0$ for all $\boldsymbol{\ell}>\mathbf{e}$.

The product is given by $f(\mathbf{x}) g(\mathbf{x})=\sum_{\mathbf{m} \in \mathbb{N}^{n}} c_{\mathbf{m}} \mathbf{x}^{\mathbf{m}}$, with coefficients

$$
c_{\mathbf{m}}=\sum_{\mathbf{k}+\ell=\mathbf{m}} a_{\mathbf{k}} b_{\ell} \in \mathbb{F}
$$

Our goal is to show that $\operatorname{deg}(f g)=\mathbf{d}+\mathbf{e}$. In other words, we want to show that $c_{\mathbf{d}+\mathbf{e}} \neq 0$ and that $\mathbf{m}>\mathbf{d}+\mathbf{e}$ implies $c_{\mathbf{m}}=0$.

For the first condition, we observe that

$$
c_{\mathbf{d}+\mathbf{e}}=\sum_{\mathbf{k}+\ell=\mathbf{d}+\mathbf{e}} a_{\mathbf{k}} b_{\ell} \in \mathbb{F} .
$$

Since $a_{\mathbf{d}} \neq 0$ and $b_{\mathbf{e}} \neq 0$, the summand $a_{\mathbf{d}} b_{\mathbf{e}}$ is nonzero. But I claim that every other summand is zero. Indeed, suppose that $\mathbf{k}+\boldsymbol{\ell}=\mathbf{d}+\mathbf{e}$ with $\mathbf{k} \neq \mathbf{d}$ or $\boldsymbol{\ell} \neq \mathbf{e}$, which implies that $\mathbf{k} \neq \mathbf{d}$
and $\boldsymbol{\ell} \neq \mathbf{e}$. If $\mathbf{k}>\mathbf{d}$ then by definition of $\operatorname{deg}(f)$ we have $a_{\mathbf{k}}=0$, hence the summand $a_{\mathbf{k}} b_{\ell}$ is zero. And if $\mathbf{k}<\mathbf{d}$ then from (b) we must have $\boldsymbol{\ell}>\mathbf{e}$ because

$$
\begin{aligned}
\mathbf{k} & <\mathbf{d} \\
\mathbf{k}+\ell & <\mathbf{d}+\boldsymbol{\ell} \\
\mathbf{d}+\mathbf{e} & <\mathbf{d}+\boldsymbol{\ell} \\
\mathbf{e} & <\boldsymbol{\ell} .
\end{aligned}
$$

add $\boldsymbol{\ell}$ to both sides
because $\mathbf{k}+\boldsymbol{\ell}=\mathbf{d}+\mathbf{e}$
add $-\mathbf{d}$ to both sides
In this case we have $b_{\ell}=0$, hence the summand $a_{\mathbf{k}} b_{\ell}$ is still zero. Since all but one summand in $c_{\mathbf{d}+\mathbf{e}}$ is zero and the last is nonzero, we conclude that $c_{\mathbf{d}+\mathbf{e}} \neq 0$ as desired.

For the second condition we want to show that $\mathbf{m}>\mathbf{d}+\mathbf{e}$ implies $c_{\mathbf{m}}=0$. In this case, every summand in $c_{\mathbf{m}}$ has the form $a_{\mathbf{k}} b_{\ell}$ for some $\mathbf{k}, \boldsymbol{\ell}$ with $\mathbf{k}+\boldsymbol{\ell}=\mathbf{m}>\mathbf{d}+\mathbf{e}$. We will be done if we can show that $\mathbf{k}+\boldsymbol{\ell}>\mathbf{d}+\mathbf{e}$ implies $\mathbf{k}>\mathbf{d}$ or $\boldsymbol{\ell}>\mathbf{e}$ since this implies that at least one of $a_{\mathbf{k}}$ and b_{ℓ} is zero, hence $a_{\mathbf{k}} b_{\ell}=0$. In this case every summand $a_{\mathbf{k}} b_{\ell}$ of $c_{\mathbf{m}}$ is zero, hence $c_{\mathbf{m}}=0$. It is equivalent to prove the contrapositive statement: that $\mathbf{k} \leq \mathbf{d}$ and $\ell \leq \mathbf{e}$ imply $\mathbf{k}+\boldsymbol{\ell} \leq \mathbf{d}+\mathbf{e}$. So let us suppose that $\mathbf{k} \leq \mathbf{d}$ and $\ell \leq \mathbf{e}$. In this case, (b) implies that

$$
\left\{\begin{aligned}
\mathbf{k} & \leq \mathbf{d} \\
\mathbf{k}+\ell & \leq \mathbf{d}+\ell
\end{aligned}\right\} \quad \text { and } \quad\left\{\begin{aligned}
\ell & \leq \mathbf{e} \\
\mathbf{d}+\ell & \leq \mathbf{d}+\mathbf{e}
\end{aligned}\right\}
$$

and then since $\mathbf{k}+\boldsymbol{\ell} \leq \mathbf{d}+\boldsymbol{\ell} \leq \mathbf{d}+\mathbf{e}$, part (a) implies that $\mathbf{k}+\boldsymbol{\ell} \leq \mathbf{d}+\mathbf{e}$.
I think that was a wholesome exercise.
2. Introduction to Permutations. Let S_{3} be the set of invertible functions from the set $\{1,2,3\}$ to itself. These are called permutations of $\{1,2,3\}$.
(a) List all $3!=6$ elements of this set. [I recommend using cycle notation.]
(b) We can think of ($S_{3}, \circ, \mathrm{id}$) as a group, where \circ is functional composition and id is the identity function defined by $\operatorname{id}(1)=1, \operatorname{id}(2)=2$ and $\operatorname{id}(3)=3$. Write out the full 6×6 group table. Observe that this group is not abelian.
(a): I will list the permutations in one-line notation and in cycle notation:

one-line	123	213	132	321	231	312
cycle	id	(12)	(23)	(13)	(123)	(132)

(b): Here is the group table, where the entry in row σ and column τ is $\sigma \circ \tau$:

\circ	id	(12)	(13)	(23)	(123)	(132)
id	id	(12)	(13)	(23)	(123)	(132)
(12)	(12)	id	(132)	(123)	(23)	(13)
(13)	(13)	(123)	id	(132)	(12)	(23)
(23)	(23)	(132)	(123)	id	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	id
(132)	(132)	(23)	(12)	(13)	id	(123)

The group is not abelian since, for example, we have (12) $\circ(23)=(132)$ and $(23) \circ(12)=(123)$, but (123) $\neq(132)$.
3. The Alternating Group. Let $(i j) \in S_{n}$ denote the permutation of $\{1, \ldots, n\}$ that switches $i \leftrightarrow j$ and sends every other number to itself. Such elements are called transpositions. Observe that each transposition is equal to its own inverse.
(a) Prove that every element of S_{n} can be expressed as a composition of transpositions. [Hint: Prove that every cycle is a composition of transpositions. By convention, the identity permutation is the composition of zero transpositions.]
(b) Let $A_{n} \subseteq S_{n}$ denote the subset of permutations that can be expressed as a composition of an even number of transpositions. Prove the following properties:

- id $\in A_{n}$,
- $\sigma, \tau \in A_{n} \Rightarrow \sigma \circ \tau \in A_{n}$,
- $\sigma \in A_{n} \Rightarrow \sigma^{-1} \in A_{n}$.

These properties say that A_{n} is a subgroup of S_{n}. We call it the alternating subgroup of S_{n}, or just the alternating group.
(a): The cycle notation is has the property that it can be viewed as a composition of commuting cycles. For example, we have

$$
(137)(256)(48)=(137) \circ(256) \circ(48)=(48) \circ(137) \circ(256)=(562) \circ(84) \circ(712)=\text { etc. }
$$

We will show that each cycle can be viewed as a composition of (non-commuting) transpositions. For example, we have seen that $(123)=(12) \circ(23)$. One can similarly check that

$$
\begin{aligned}
(1234) & =(12) \circ(23) \circ(34), \\
(12335) & =(12) \circ(23) \circ(34) \circ(45),
\end{aligned}
$$

and, indeed, for any numbers $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ we have

$$
\left(i_{1} i_{2} i_{3} \cdots i_{k-1} i_{k}\right)=\left(i_{1} i_{2}\right) \circ\left(i_{2} i_{3}\right) \circ \cdots \circ\left(i_{k-1} i_{k}\right) .
$$

By combining these two observations, we see that any permutation can be expressed as a composition of (generally non-commuting) cycles. This composition is not unique.1
(c): By definition we say that id is a composition of zero transpositions. Since zero is an even number this says that id $\in A_{n}$. If you don't like that, observe that for any transposition ($i j$) we have $(i j)^{-1}=(j i)=(i j)$. Hence id $=(i j) \circ(i j)$ can be expressed as a composition of two transpositions, and two is even.

Next, suppose that $\sigma, \tau \in A_{n}$ so we can write

$$
\begin{aligned}
\sigma & =s_{1} \circ s_{2} \circ \cdots \circ s_{k} \\
\tau & =t_{1} \circ t_{2} \cdots \circ t_{\ell}
\end{aligned}
$$

for some transpositions $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{\ell}$, where k and ℓ are even. But then we can write $\sigma \circ \tau$ as a composition of $k+\ell$ transpositions:

$$
\sigma \circ \tau=s_{1} \circ s_{2} \circ \cdots \circ s_{k} \circ t_{1} \circ t_{2} \cdots \circ t_{\ell}
$$

Since $k+\ell$ is even this implies that $\sigma \circ \tau \in A_{n}$.

[^0]Finally, for any $\sigma \in A_{n}$ we will show that $\left.\sigma^{-1} \in A_{n}\right|^{2}$ If $\sigma \in A_{n}$ then by definition we can write

$$
\sigma=s_{1} \circ s_{2} \circ \cdots \circ s_{k}
$$

where s_{1}, \ldots, s_{k} are transpositions and k is even. But observe that for any transposition $s=(i j)$ we have $s^{-1}=(i j)=s$, which is also a transposition (in fact, the same transposition). Combining this with the formula $(\rho \circ \tau)^{-1}=\tau^{-1} \circ \rho^{-1}$ gives

$$
\sigma^{-1}=s_{k}^{-1} \circ \cdots \circ s_{2}^{-1} \circ s_{1}^{-1}=s_{k} \circ \cdots \circ s_{2} \circ s_{1}
$$

so σ^{-1} can also be expressed as a composition of k transpositions. Hence $\sigma^{-1} \in A_{n}$.
Remark: It is harder to prove that a given permutation can not be expressed as a product of evenly many transpositions. For example, I will show that the permutation (12) $\in S_{3}$ is not in A_{3}. Suppose for contradiction that we can write

$$
\begin{equation*}
(12)=\left(t_{1} \circ t_{2}\right) \circ\left(t_{3} \circ t_{4}\right) \circ \cdots \circ\left(t_{2 k-1} \circ t_{k}\right) \tag{*}
\end{equation*}
$$

for some k. From the group table in Problem 2 we see that any two transpositions compose to give (123) or $(132)=(123)^{-1}$, thus the condition $(*)$ implies that (12) is a power of (123). But the power of (123) are

$$
(123)^{0}=\mathrm{id}, \quad(123)^{1}=(123), \quad(123)^{2}=(132), \quad(123)^{3}=\mathrm{id}, \quad \text { and then it repeats. }
$$

Since (12) is a not a power of (123) we obtain a contradiction to $(*)$, hence (12) is not in A_{3}. The same argument shows that (13) and (23) are not in A_{3}. Hence we find that

$$
A_{3}=\{\mathrm{id},(123),(132)\}
$$

with group table

\circ	id	(123)	(132)
id	id	(123)	(132)
(123)	(123)	(132)	id
(132)	(132)	id	(123)

By accident, it happens that this group is abelian, and in fact it is isomorphic to the additive group $(\mathbb{Z} / 3 \mathbb{Z},+, 0)$. This can be seen by observing that the group tables are "the same" up to renaming of the elements:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

We will show later that any two groups of size 3 must be isomorphic.
4. Waring's Algorithm. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension. Suppose that the polynomial $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{F}[x]$ has roots $\alpha, \beta, \gamma \in \mathbb{E}$, so that

$$
x^{3}+a x^{2}+b x+c=(x-\alpha)(x-\beta)(x-\gamma)
$$

Use Waring's algorithm to find a polynomial in $\mathbb{F}[x]$ whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$. [Hint: The coefficients of $\left(x-\alpha^{2}\right)\left(x-\beta^{2}\right)\left(x-\gamma^{2}\right)$ are symmetric combinations of α, β, γ, hence we can express them in terms of the coefficients a, b, c, which are in \mathbb{F}.]

[^1]Expanding the right hand side gives

$$
\begin{aligned}
x^{3}+a x^{2}+b x+c & =(x-\alpha)(x-\beta)(x-\gamma) \\
& =x^{3}-e_{1} x^{2}+e_{2} x-e_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{1}=\alpha+\beta+\gamma \\
& e_{2}=\alpha \beta+\alpha \gamma+\beta \gamma \\
& e_{3}=\alpha \beta \gamma
\end{aligned}
$$

And then comparing coefficients gives

$$
\begin{aligned}
& e_{1}=-a \\
& e_{2}=b \\
& e_{3}=-c
\end{aligned}
$$

Now consider the polynomial with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$:

$$
x^{3}+a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=\left(x-\alpha^{2}\right)\left(x-\beta^{2}\right)\left(x-\gamma^{2}\right)
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ are some elements of \mathbb{E}. We will show that $a^{\prime}, b^{\prime}, c^{\prime}$ can be expressed in terms of a, b, c, hence are actually in \mathbb{F}. To do this we expand the right hand side to get

$$
x^{3}+a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=x^{3}-\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) x^{2}+\left(\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}\right) x-\left(\alpha^{2} \beta^{2} \gamma^{2}\right)
$$

and then compare coefficients to get

$$
\begin{aligned}
a^{\prime} & =-\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \\
b^{\prime} & =\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2} \\
c^{\prime} & =-\alpha^{2} \beta^{2} \gamma^{2}
\end{aligned}
$$

Since each of these is a symmetric combination of α, β, γ we know that each can be expressed in terms of the elementary symmetric combinations e_{1}, e_{2}, e_{3} by Waring's algorithm.

We begin with a^{\prime}. Note that a^{\prime} and $-e_{1}^{2}$ have the same leading term $-\alpha^{2}$. Expand $-e_{1}^{2}$ to get

$$
-(\alpha+\beta+\gamma)^{2}=-\alpha^{2}-\beta^{2}-\gamma^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)
$$

Then subtract to get

$$
\begin{aligned}
a^{\prime}+e_{1}^{2} & =2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
a^{\prime}+e_{1}^{2} & =2 e_{2} \\
a^{\prime} & =-e_{1}^{2}+2 e_{2} \\
& =-(-a)^{2}+2(b) \\
& =2 b-a^{2}
\end{aligned}
$$

Now we compute b^{\prime}. Observe that b^{\prime} and e_{2}^{2} have the same leading term $\alpha^{2} \beta^{2}$. Expand to get

$$
\begin{aligned}
e_{2}^{2} & =(\alpha \beta+\alpha \gamma+\beta \gamma)^{2} \\
& =\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2 \alpha^{2} \beta \gamma+2 \alpha \beta^{2} \gamma+2 \alpha \beta \gamma^{2}
\end{aligned}
$$

Then subtract to get

$$
\begin{aligned}
b^{\prime}-e_{2}^{2} & =-2\left(\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}\right) \\
b^{\prime}-e_{2}^{2} & =-2(\alpha+\beta+\gamma)(\alpha \beta \gamma) \\
b^{\prime}-e_{2}^{2} & =-2 e_{1} e_{3} \\
b^{\prime} & =e_{2}^{2}-2 e_{1} e_{3} \\
& =(b)^{2}-2(-a)(-c) \\
& =b^{2}-2 a c .
\end{aligned}
$$

Finally, we observe that

$$
\begin{aligned}
c^{\prime} & =-\alpha^{2} \beta^{2} \gamma^{2} \\
& =-(\alpha \beta \gamma)^{2} \\
& =-e_{3}^{2} \\
& =-(-c)^{2} \\
& =-c^{2} .
\end{aligned}
$$

In conclusion, we have

$$
x^{3}+\left(2 b-a^{2}\right) x^{2}+\left(b^{2}-2 a c\right) x-c^{2}=\left(x-\alpha^{2}\right)\left(x-\beta^{2}\right)\left(x-\gamma^{2}\right) .
$$

Example: Consider the polynomial $x^{3}+x^{2}+x+1$ with coefficients $(a, b, c)=(1,1,1)$. Consider the factorization

$$
x^{4}-1=(x-1)\left(x^{3}+x^{2}+x+1\right) .
$$

Since $x^{4}-1$ has roots $\pm 1, \pm i$ and $x-1$ has root +1 , we see that $x^{3}+x^{2}+x+1$ has roots $-1, \pm i$. According to the result of Problem 4, the polynomial $x^{3}+a^{\prime} x^{2}+b^{\prime} x+c^{\prime}$ with

$$
\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(2 b-a^{2}, b^{2}-2 a c,-c^{2}\right)=(2-1,1-2,-1)=(1,-1,-1)
$$

should have roots $(-1)^{2}, i^{2},(-i)^{2}$, i.e., $1,-1,-1$. And, indeed, we have

$$
x^{3}+x^{2}-x-1=(x-1)(x+1)^{2},
$$

which has the desired roots and multiplicities.

[^0]: ${ }^{1}$ For example, we could also write

 $$
 \left(i_{1} i_{2} i_{3} \cdots i_{k-1} i_{k}\right)=\left(i_{1} i_{k}\right) \circ\left(i_{1} i_{k-1}\right) \circ \cdots \circ\left(i_{1} i_{2}\right)
 $$

[^1]: ${ }^{2}$ Of course we already know that $\sigma^{-1} \in S_{n}$ exists, and from part (a) we know that σ^{-1} can be expressed as a composition of transpositions. We just want to show that the number of these transpositions is even.

