
Math 562/662 Spring 2022
Homework 1 Drew Armstrong

1. Lexicographic Degree. Given k = (k1, . . . , kn), ` = (`1, . . . , `n) ∈ Nn we say that

k < ` ⇔ there exists j such that ki = `i for all i < j, but kj < `j .

Given f(x1, . . . , xn) =
∑

k∈Nn akx
k ∈ F[x] we define deg(f) as the lexicographically biggest

element k ∈ Nd such that ak 6= 0. The degree of the zero polynomial is not defined.

(a) For all a,b, c ∈ Nn prove that a ≤ b and b ≤ c imply a ≤ c. [Hint: If a = b or b = c
then there is nothing to show, so we can assume that a < b and b < c.]

(b) For all a,b, c ∈ Nn, show that a ≤ b implies a+ c ≤ b+ c. [Hint: It is easier to prove
that a + c > b + c implies a > b.]

(c) For all nonzero f(x), g(x) ∈ F[x], prove that deg(fg) = deg(f) + deg(g). [Hint: If
ak, b` ∈ F are the coefficients of f(x), g(x) then cm =

∑
k+`=m akb` are the coefficients

of f(x)g(x). Let d = deg(f) and e = deg(g) so that k > d implies ak = 0 and ` > e
implies b` = 0. Use parts (a) and (b) to show that m > d + e implies cm = 0.]

(a): If a = b or b = c then there is nothing to show. So let us assume that a < b and b < c.
By definition, this means that there exist some j and k satisfying

• aj < bj and ai = bi for all i < j,
• bk < ck and bi = ci for all i < k.

Now let m = min{j, k}, so that ai = bi = ci for all i < m. If m = j = k then we have
am < bm < cm. If m = j < k then we have am < bm = cm. If m = k < j then we have
am = bm < cm. In any case, we have am < cm. Since am < cm and ai = ci for all i < m we
conclude that a < c (and hence a ≤ c) as desired.

(b): Suppose that a+ c > b+ c. By definition, this means that there exists some j such that
aj + cj > bj + cj and ai + ci = bi + ci for all i < j. The first condition implies aj > bj and the
second condition implies ai = bi for all i. Hence a > b as desired.

(c): Let us write f(x) =
∑

k∈Nn akx
k and g(x) =

∑
`∈Nn b`x

`, with deg(f) = d ∈ Nn and
deg(g) = e ∈ Nn. By definition, this means that

• ad 6= 0 and ak = 0 for all k > d,
• b` 6= 0 and b` = 0 for all ` > e.

The product is given by f(x)g(x) =
∑

m∈Nn cmxm, with coefficients

cm =
∑

k+`=m

akb` ∈ F.

Our goal is to show that deg(fg) = d + e. In other words, we want to show that cd+e 6= 0
and that m > d + e implies cm = 0.

For the first condition, we observe that

cd+e =
∑

k+`=d+e

akb` ∈ F.

Since ad 6= 0 and be 6= 0, the summand adbe is nonzero. But I claim that every other summand
is zero. Indeed, suppose that k + ` = d + e with k 6= d or ` 6= e, which implies that k 6= d



and ` 6= e. If k > d then by definition of deg(f) we have ak = 0, hence the summand akb` is
zero. And if k < d then from (b) we must have ` > e because

k < d

k + ` < d + ` add ` to both sides

d + e < d + ` because k + ` = d + e

e < `. add −d to both sides

In this case we have b` = 0, hence the summand akb` is still zero. Since all but one summand
in cd+e is zero and the last is nonzero, we conclude that cd+e 6= 0 as desired.

For the second condition we want to show that m > d+ e implies cm = 0. In this case, every
summand in cm has the form akb` for some k, ` with k + ` = m > d + e. We will be done if
we can show that k + ` > d + e implies k > d or ` > e since this implies that at least one
of ak and b` is zero, hence akb` = 0. In this case every summand akb` of cm is zero, hence
cm = 0. It is equivalent to prove the contrapositive statement: that k ≤ d and ` ≤ e imply
k + ` ≤ d + e. So let us suppose that k ≤ d and ` ≤ e. In this case, (b) implies that{

k ≤ d
k + ` ≤ d + `

}
and

{
` ≤ e

d + ` ≤ d + e

}
,

and then since k + ` ≤ d + ` ≤ d + e, part (a) implies that k + ` ≤ d + e. �

I think that was a wholesome exercise.

2. Introduction to Permutations. Let S3 be the set of invertible functions from the set
{1, 2, 3} to itself. These are called permutations of {1, 2, 3}.

(a) List all 3! = 6 elements of this set. [I recommend using cycle notation.]
(b) We can think of (S3, ◦, id) as a group, where ◦ is functional composition and id is the

identity function defined by id(1) = 1, id(2) = 2 and id(3) = 3. Write out the full 6×6
group table. Observe that this group is not abelian.

(a): I will list the permutations in one-line notation and in cycle notation:

one-line 123 213 132 321 231 312

cycle id (12) (23) (13) (123) (132)

(b): Here is the group table, where the entry in row σ and column τ is σ ◦ τ :

◦ id (12) (13) (23) (123) (132)

id id (12) (13) (23) (123) (132)
(12) (12) id (132) (123) (23) (13)
(13) (13) (123) id (132) (12) (23)
(23) (23) (132) (123) id (13) (12)
(123) (123) (13) (23) (12) (132) id
(132) (132) (23) (12) (13) id (123)

The group is not abelian since, for example, we have (12)◦(23) = (132) and (23)◦(12) = (123),
but (123) 6= (132).



3. The Alternating Group. Let (ij) ∈ Sn denote the permutation of {1, . . . , n} that
switches i↔ j and sends every other number to itself. Such elements are called transpositions.
Observe that each transposition is equal to its own inverse.

(a) Prove that every element of Sn can be expressed as a composition of transpositions.
[Hint: Prove that every cycle is a composition of transpositions. By convention, the
identity permutation is the composition of zero transpositions.]

(b) Let An ⊆ Sn denote the subset of permutations that can be expressed as a composition
of an even number of transpositions. Prove the following properties:
• id ∈ An,
• σ, τ ∈ An ⇒ σ ◦ τ ∈ An,
• σ ∈ An ⇒ σ−1 ∈ An.

These properties say that An is a subgroup of Sn. We call it the alternating subgroup
of Sn, or just the alternating group.

(a): The cycle notation is has the property that it can be viewed as a composition of commuting
cycles. For example, we have

(137)(256)(48) = (137) ◦ (256) ◦ (48) = (48) ◦ (137) ◦ (256) = (562) ◦ (84) ◦ (712) = etc.

We will show that each cycle can be viewed as a composition of (non-commuting) transposi-
tions. For example, we have seen that (123) = (12) ◦ (23). One can similarly check that

(1234) = (12) ◦ (23) ◦ (34),

(12335) = (12) ◦ (23) ◦ (34) ◦ (45),

and, indeed, for any numbers i1, i2, . . . , ik ∈ {1, 2, . . . , n} we have

(i1i2i3 · · · ik−1ik) = (i1i2) ◦ (i2i3) ◦ · · · ◦ (ik−1ik).

By combining these two observations, we see that any permutation can be expressed as a
composition of (generally non-commuting) cycles. This composition is not unique.1

(c): By definition we say that id is a composition of zero transpositions. Since zero is an even
number this says that id ∈ An. If you don’t like that, observe that for any transposition (ij)
we have (ij)−1 = (ji) = (ij). Hence id = (ij) ◦ (ij) can be expressed as a composition of two
transpositions, and two is even.

Next, suppose that σ, τ ∈ An so we can write

σ = s1 ◦ s2 ◦ · · · ◦ sk,
τ = t1 ◦ t2 · · · ◦ t`,

for some transpositions s1, . . . , sk, t1, . . . , t`, where k and ` are even. But then we can write
σ ◦ τ as a composition of k + ` transpositions:

σ ◦ τ = s1 ◦ s2 ◦ · · · ◦ sk ◦ t1 ◦ t2 · · · ◦ t`.

Since k + ` is even this implies that σ ◦ τ ∈ An.

1For example, we could also write

(i1i2i3 · · · ik−1ik) = (i1ik) ◦ (i1ik−1) ◦ · · · ◦ (i1i2).



Finally, for any σ ∈ An we will show that σ−1 ∈ An.2 If σ ∈ An then by definition we can
write

σ = s1 ◦ s2 ◦ · · · ◦ sk,
where s1, . . . , sk are transpositions and k is even. But observe that for any transposition
s = (ij) we have s−1 = (ij) = s, which is also a transposition (in fact, the same transposition).
Combining this with the formula (ρ ◦ τ)−1 = τ−1 ◦ ρ−1 gives

σ−1 = s−1k ◦ · · · ◦ s
−1
2 ◦ s

−1
1 = sk ◦ · · · ◦ s2 ◦ s1,

so σ−1 can also be expressed as a composition of k transpositions. Hence σ−1 ∈ An.

Remark: It is harder to prove that a given permutation can not be expressed as a product of
evenly many transpositions. For example, I will show that the permutation (12) ∈ S3 is not
in A3. Suppose for contradiction that we can write

(∗) (12) = (t1 ◦ t2) ◦ (t3 ◦ t4) ◦ · · · ◦ (t2k−1 ◦ tk)

for some k. From the group table in Problem 2 we see that any two transpositions compose
to give (123) or (132) = (123)−1, thus the condition (∗) implies that (12) is a power of (123).
But the power of (123) are

(123)0 = id, (123)1 = (123), (123)2 = (132), (123)3 = id, and then it repeats.

Since (12) is a not a power of (123) we obtain a contradiction to (∗), hence (12) is not in A3.
The same argument shows that (13) and (23) are not in A3. Hence we find that

A3 = {id, (123), (132)},

with group table

◦ id (123) (132)

id id (123) (132)
(123) (123) (132) id
(132) (132) id (123)

By accident, it happens that this group is abelian, and in fact it is isomorphic to the additive
group (Z/3Z,+, 0). This can be seen by observing that the group tables are “the same” up
to renaming of the elements:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

We will show later that any two groups of size 3 must be isomorphic.

4. Waring’s Algorithm. Let E ⊇ F be a field extension. Suppose that the polynomial
f(x) = x3 + ax2 + bx+ c ∈ F[x] has roots α, β, γ ∈ E, so that

x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ).

Use Waring’s algorithm to find a polynomial in F[x] whose roots are α2, β2, γ2. [Hint: The
coefficients of (x − α2)(x − β2)(x − γ2) are symmetric combinations of α, β, γ, hence we can
express them in terms of the coefficients a, b, c, which are in F.]

2Of course we already know that σ−1 ∈ Sn exists, and from part (a) we know that σ−1 can be expressed as
a composition of transpositions. We just want to show that the number of these transpositions is even.



Expanding the right hand side gives

x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ)

= x3 − e1x2 + e2x− e3,

where

e1 = α+ β + γ,

e2 = αβ + αγ + βγ,

e3 = αβγ.

And then comparing coefficients gives

e1 = −a,
e2 = b,

e3 = −c.

Now consider the polynomial with roots α2, β2, γ2:

x3 + a′x2 + b′x+ c′ = (x− α2)(x− β2)(x− γ2),

where a′, b′, c′ are some elements of E. We will show that a′, b′, c′ can be expressed in terms
of a, b, c, hence are actually in F. To do this we expand the right hand side to get

x3 + a′x2 + b′x+ c′ = x3 − (α2 + β2 + γ2)x2 + (α2β2 + α2γ2 + β2γ2)x− (α2β2γ2),

and then compare coefficients to get

a′ = −(α2 + β2 + γ2),

b′ = α2β2 + α2γ2 + β2γ2,

c′ = −α2β2γ2.

Since each of these is a symmetric combination of α, β, γ we know that each can be expressed
in terms of the elementary symmetric combinations e1, e2, e3 by Waring’s algorithm.

We begin with a′. Note that a′ and −e21 have the same leading term −α2. Expand −e21 to get

−(α+ β + γ)2 = −α2 − β2 − γ2 − 2(αβ + αγ + βγ).

Then subtract to get

a′ + e21 = 2(αβ + αγ + βγ)

a′ + e21 = 2e2

a′ = −e21 + 2e2

= −(−a)2 + 2(b)

= 2b− a2.

Now we compute b′. Observe that b′ and e22 have the same leading term α2β2. Expand to get

e22 = (αβ + αγ + βγ)2

= α2β2 + α2γ2 + β2γ2 + 2α2βγ + 2αβ2γ + 2αβγ2.



Then subtract to get

b′ − e22 = −2(α2βγ + αβ2γ + αβγ2)

b′ − e22 = −2(α+ β + γ)(αβγ)

b′ − e22 = −2e1e3

b′ = e22 − 2e1e3

= (b)2 − 2(−a)(−c)
= b2 − 2ac.

Finally, we observe that

c′ = −α2β2γ2

= −(αβγ)2

= −e23
= −(−c)2

= −c2.
In conclusion, we have

x3 + (2b− a2)x2 + (b2 − 2ac)x− c2 = (x− α2)(x− β2)(x− γ2).

Example: Consider the polynomial x3+x2+x+1 with coefficients (a, b, c) = (1, 1, 1). Consider
the factorization

x4 − 1 = (x− 1)(x3 + x2 + x+ 1).

Since x4 − 1 has roots ±1,±i and x − 1 has root +1, we see that x3 + x2 + x + 1 has roots
−1,±i. According to the result of Problem 4, the polynomial x3 + a′x2 + b′x+ c′ with

(a′, b′, c′) = (2b− a2, b2 − 2ac,−c2) = (2− 1, 1− 2,−1) = (1,−1,−1)

should have roots (−1)2, i2, (−i)2, i.e., 1,−1,−1. And, indeed, we have

x3 + x2 − x− 1 = (x− 1)(x+ 1)2,

which has the desired roots and multiplicities.


