1. Lexicographic Degree. Given $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right), \ell=\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{N}^{n}$ we say that
$\mathbf{k}<\boldsymbol{\ell} \Leftrightarrow$ there exists j such that $k_{i}=\ell_{i}$ for all $i<j$, but $k_{j}<\ell_{j}$.
Given $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \in \mathbb{F}[\mathbf{x}]$ we define $\operatorname{deg}(f)$ as the lexicographically biggest element $\mathbf{k} \in \mathbb{N}^{d}$ such that $a_{\mathbf{k}} \neq 0$. The degree of the zero polynomial is not defined.
(a) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^{n}$ prove that $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ imply $\mathbf{a} \leq \mathbf{c}$. [Hint: If $\mathbf{a}=\mathbf{b}$ or $\mathbf{b}=\mathbf{c}$ then there is nothing to show, so we can assume that $\mathbf{a}<\mathbf{b}$ and $\mathbf{b}<\mathbf{c}$.]
(b) For all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^{n}$, show that $\mathbf{a} \leq \mathbf{b}$ implies $\mathbf{a}+\mathbf{c} \leq \mathbf{b}+\mathbf{c}$. [Hint: It is easier to prove that $\mathbf{a}+\mathbf{c}>\mathbf{b}+\mathbf{c}$ implies $\mathbf{a}>\mathbf{b}$.]
(c) For all nonzero $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$, prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. [Hint: If $a_{\mathbf{k}}, b_{\ell} \in \mathbb{F}$ are the coefficients of $f(\mathbf{x}), g(\mathbf{x})$ then $c_{\mathbf{m}}=\sum_{\mathbf{k}+\ell=\mathbf{m}} a_{\mathbf{k}} b_{\ell}$ are the coefficients of $f(\mathbf{x}) g(\mathbf{x})$. Let $\mathbf{d}=\operatorname{deg}(f)$ and $\mathbf{e}=\operatorname{deg}(g)$ so that $\mathbf{k}>\mathbf{d}$ implies $a_{\mathbf{k}}=0$ and $\boldsymbol{\ell}>\mathbf{e}$ implies $b_{\ell}=0$. Use parts (a) and (b) to show that $\mathbf{m}>\mathbf{d}+\mathbf{e}$ implies $c_{\mathbf{m}}=0$.]
2. Introduction to Permutations. Let S_{3} be the set of invertible functions from the set $\{1,2,3\}$ to itself. These are called permutations of $\{1,2,3\}$.
(a) List all 6 elements of this set. [I recommend using cycle notation.]
(b) We can think of (S_{3}, \circ, id) as a group, where \circ is functional composition and id is the identity function defined by $\operatorname{id}(1)=1, \operatorname{id}(2)=2$ and $\operatorname{id}(3)=3$. Write out the full 6×6 group table. Observe that this group is not abelian.
3. The Alternating Group. Let $(i j) \in S_{n}$ denote the permutation of $\{1, \ldots, n\}$ that switches $i \leftrightarrow j$ and sends every other number to itself. Such elements are called transpositions. Observe that each transposition is equal to its own inverse.
(a) Prove that every element of S_{n} can be expressed as a composition of transpositions. [Hint: Prove that every cycle is a composition of transpositions. By convention, the identity permutation is the composition of zero transpositions.]
(b) Let $A_{n} \subseteq S_{n}$ denote the subset of permutations that can be expressed as a composition of an even number of transpositions. Prove the following properties:

- id $\in A_{n}$,
- $\sigma, \tau \in A_{n} \Rightarrow \sigma \circ \tau \in A_{n}$,
- $\sigma \in A_{n} \Rightarrow \sigma^{-1} \in A_{n}$.

These properties say that A_{n} is a subgroup of S_{n}. We call it the alternating subgroup of S_{n}, or just the alternating group.
4. Waring's Algorithm. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension. Suppose that the polynomial $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{F}[x]$ has roots $\alpha, \beta, \gamma \in \mathbb{E}$, so that

$$
x^{3}+a x^{2}+b x+c=(x-\alpha)(x-\beta)(x-\gamma) .
$$

Use Waring's algorithm to find a polynomial in $\mathbb{F}[x]$ whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$. [Hint: The coefficients of $\left(x-\alpha^{2}\right)\left(x-\beta^{2}\right)\left(x-\gamma^{2}\right)$ are symmetric combinations of α, β, γ, hence we can express them in terms of the coefficients a, b, c, which are in \mathbb{F}.]

