No electronic devices are allowed. There are 4 pages. Each page worth 6 points, for a total of 24 points.

Problem 1. Finish each statement.
(a) A subset $I \subseteq R$ of a ring is called an ideal when...

- $0 \in I$,
- $(I,+, 0)$ is a subgroup of $(R,+, 0)$,
- $a \in I$ and $b \in R$ imply $a b \in I$.

Alternatively: For all $a, b \in I$ and $c \in R$ we have $a-b c \in I$.
(b) A function $\varphi: R \rightarrow S$ between rings is called a ring homomorphism when...

- $\varphi(a+b)=\varphi(a)+\varphi(b)$ for all $a, b \in R$,
- $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in R$,
- $\varphi(1)=1$.
(c) The kernel and image of a ring homomorphism $\varphi: R \rightarrow S$ are defined as follows...

$$
\begin{aligned}
\operatorname{ker} \varphi & =\{a \in R: \varphi(a)=0\} \\
\operatorname{im} \varphi & =\{b \in S: \exists a \in R, \varphi(a)=b\}
\end{aligned}
$$

Problem 2.

(a) Let $I \subseteq R$ be an ideal. Prove that the following operation on cosets is well-defined:

$$
(a+I)(b+I):=a b+I
$$

Proof. Assume that $a+I=a^{\prime}+I$ and $b+I=b^{\prime}+I$, so that $a-a^{\prime} \in I$ and $b-b^{\prime} \in I$. Then since I is an ideal we have

$$
a b-a^{\prime} b^{\prime}=a b-a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}=\left(a-a^{\prime}\right) b+a^{\prime}\left(b-b^{\prime}\right) \in I,
$$

so that $a b+I=a^{\prime} b^{\prime}+I$.
(b) Let R be an integral domain. For all $a, b \in R$ prove that

$$
a R=b R \quad \Longleftrightarrow \quad a u=b \text { for some unit } u \in R^{\times} .
$$

Proof. First suppose that $a u=b$ for some $u \in R^{\times}$. Then for any $r \in R$ we have $b r=(a u) r=a(u r) \in a R$, so that $b R \subseteq a R$. Since u^{-1} exists we also have $b=a u^{-1}$ so for any $r \in R$ we have $b r=a\left(u^{-1} r\right) \in a R$ and hence $b R \subseteq a R$.

Conversely, suppose that $a R=b R$. We want to show that $a u=b$ for some $u \in R^{\times}$. If $a=0$ or $b=0$ then we can take $u=1$. So let us assume that $a \neq 0$ and $b \neq 0$. By assumption we have $a=a 1 \in a R=b R$ and $b=b 1 \in b R=a R$, so that $a=b v$
and $b=a u$ for some $u, v \in R$. We will show that $u, v \in R^{\times}$. Indeed, since R is a domain and $a \neq 0$ we have

$$
\begin{aligned}
a & =b v \\
a & =a u v \\
a(1-u v) & =0 \\
1-u v & =0 \\
1 & =u v .
\end{aligned}
$$

Problem 3. Let $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ be an element of a field extension and consider the ring homomorphism defined by evaluation:

$$
\begin{array}{lclc}
\varphi: & \mathbb{F}[x] & \rightarrow & \mathbb{E} \\
& f(x) & \mapsto & f(\alpha) .
\end{array}
$$

Suppose that $\operatorname{ker} \varphi=m(x) \mathbb{F}[x]$, where $m(x)$ is monic and non-constant.
(a) Prove that the polynomial $m(x)$ is irreducible over \mathbb{F}.

Proof. Let $m(x)=f(x) g(x)$ for some $f(x), g(x) \in \mathbb{F}[x]$. Our goal is to show that $f(x)$ or $g(x)$ is constant ${ }^{1}$ Since $m(x) \in \operatorname{ker} \varphi$ we have $m(\alpha)=0$ and hence

$$
0=m(\alpha)=f(\alpha) g(\alpha)
$$

This implies that $f(\alpha)=0$ or $g(\alpha)=0$; let's say $f(\alpha)=0$. But now we have $f(x) \in \operatorname{ker} \varphi=m(x) \mathbb{F}[x]$ and hence $f(x)=m(x) h(x)$ for some $h(x) \in \mathbb{F}[x]$. Since $\mathbb{F}[x]$ is a domain and $f(x) \neq 0$ this implies that

$$
\begin{aligned}
f(x) & =m(x) h(x) \\
f(x) & =f(x) g(x) h(x) \\
f(x)(1-g(x) h(x)) & =0 \\
1-g(x) h(x) & =0 \\
1 & =g(x) h(x),
\end{aligned}
$$

and hence $g(x)$ is constant.
(b) Let $f(x) \in \mathbb{F}[x]$ be any monic irreducible polynomial satisfying $f(\alpha)=0$. Prove that we must have $f(x)=m(x)$.

Proof. If $f(\alpha)=0$ then we have $f(x) \in \operatorname{ker} \varphi=m(x) \mathbb{F}[x]$, so that $m(x) \mid f(x)$. If $f(x)$ is irreducible then since $m(x)$ is non-constant we have $f(x)=\lambda m(x)$ for some constant λ. Finally, since $f(x)$ and $m(x)$ are both monic we have $\lambda=1$.

Problem 4.

[^0](a) Consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 3 . If $f(x)$ is reducible over \mathbb{F}, prove that $f(x)$ has a root in \mathbb{F}.

Proof. Let $f(x) \in \mathbb{F}[x]$ be reducible, so that $f(x)=g(x) h(x)$ for some nonconstant $g(x), h(x) \in \mathbb{F}[x]$. Comparing degrees gives

$$
3=\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)
$$

Since $g(x)$ and $h(x)$ are non-constant we must have $\operatorname{deg}(g), \operatorname{deg}(h) \geq 1$, so the above equality implies that $\operatorname{deg}(g)=1$ or $\operatorname{deg}(h)=1$. Let's say $\operatorname{deg}(g)=1$, so that $g(x)=a x+b$ for some $a, b \in \mathbb{F}$ with $a \neq 0$. It follows that

$$
f(-b / a)=g(-b / a) h(-b / a)=0 \cdot h(-b / a)=0,
$$

so that $-b / a \in \mathbb{F}$ is a root of $f(x)$.
(b) Let $\mathbb{F}_{3}=\{0,1,2\}$ be the field with three elements. Use part (a) to prove that the polynomial $x^{3}+2 x+1$ is irreducible over \mathbb{F}_{3}.

Proof. By part (a) it is sufficient to check that $x^{3}+2 x+1$ has no root in \mathbb{F}_{3}, and this is easy because \mathbb{F}_{3} has only three elements $\sqrt[2]{2}$

x	0	1	2
$x^{3}+2 x+1$	1	1	1

Bonus (Continued from 4b). Since $x^{3}+2 x+1$ is irreducible over \mathbb{F}_{3} we know that the following quotient ring is a field:

$$
\mathbb{E}=\mathbb{F}_{3}[x] /\left(x^{3}+2 x+1\right) \mathbb{F}_{3}[x] .
$$

Compute the inverse of the element

$$
\alpha:=x+\left(x^{3}+2 x+1\right) \mathbb{F}_{3}[x] \in \mathbb{E} .
$$

Solution. For any polynomial $f(x) \in \mathbb{F}_{3}[x]$ we have

$$
f(\alpha)=f(x)+\left(x^{3}+2 x+1\right) \mathbb{F}_{3}[x] .
$$

This shows that $\mathbb{E}=\mathbb{F}_{3}[\alpha]$. It also shows that $\alpha^{3}+2 \alpha+1=0 \in \mathbb{E}$, which since $x^{3}+2 x+1$ is irreducible over $\mathbb{F}_{3}[x]$ implies that

$$
m_{\alpha / \mathbb{F}_{3}}(x)=x^{3}+2 x+1 .
$$

Finally, since $\operatorname{deg}\left(m_{\alpha / \mathbb{F}_{3}}\right)=3$ we know from the Minimal Polynomial Theorem that every element of \mathbb{E} can be expressed as $a+b \alpha+c \alpha^{2}$ for unique $a, b, c \in \mathbb{F}_{3}$. Our goal is to find $a, b, c \in \mathbb{F}_{3}$ such that

$$
\begin{aligned}
1+0 \alpha+0 \alpha^{2} & =\alpha\left(a+b \alpha+c \alpha^{2}\right) \\
& =a \alpha+b \alpha^{2}+c \alpha^{3} \\
& =a \alpha+b \alpha^{2}+c(-1-2 \alpha) \\
& =-c+(a-2 c) \alpha+b \alpha^{2} .
\end{aligned}
$$

By uniqueness we may equate coefficients to get $-c=1, a-2 c=0$ and $b=0$. It follows that $(a, b, c)=(-2,0,-1)=(1,0,2),{ }^{2}$ and hence $\alpha^{-1}=1+2 \alpha^{2}$.

[^1]
[^0]: ${ }^{1}$ Equivalently, either $f(x)$ or $g(x)$ is associate to $m(x)$.

[^1]: ${ }^{2}$ Don't forget, we are working mod 3 .

