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No electronic devices are allowed. There are 4 pages. Each page worth 6 points, for a total
of 24 points.

Problem 1. Finish each statement.

(a) A subset I ⊆ R of a ring is called an ideal when. . .

• 0 ∈ I,
• (I,+, 0) is a subgroup of (R,+, 0),
• a ∈ I and b ∈ R imply ab ∈ I.

Alternatively: For all a, b ∈ I and c ∈ R we have a− bc ∈ I.

(b) A function ϕ : R→ S between rings is called a ring homomorphism when. . .

• ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R,
• ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R,
• ϕ(1) = 1.

(c) The kernel and image of a ring homomorphism ϕ : R→ S are defined as follows. . .

kerϕ = {a ∈ R : ϕ(a) = 0},
imϕ = {b ∈ S : ∃a ∈ R,ϕ(a) = b}.

Problem 2.

(a) Let I ⊆ R be an ideal. Prove that the following operation on cosets is well-defined:

(a+ I)(b+ I) := ab+ I.

Proof. Assume that a + I = a′ + I and b + I = b′ + I, so that a − a′ ∈ I and
b− b′ ∈ I. Then since I is an ideal we have

ab− a′b′ = ab− a′b+ a′b− a′b′ = (a− a′)b+ a′(b− b′) ∈ I,
so that ab+ I = a′b′ + I. �

(b) Let R be an integral domain. For all a, b ∈ R prove that

aR = bR ⇐⇒ au = b for some unit u ∈ R×.

Proof. First suppose that au = b for some u ∈ R×. Then for any r ∈ R we have
br = (au)r = a(ur) ∈ aR, so that bR ⊆ aR. Since u−1 exists we also have b = au−1

so for any r ∈ R we have br = a(u−1r) ∈ aR and hence bR ⊆ aR.

Conversely, suppose that aR = bR. We want to show that au = b for some u ∈ R×.
If a = 0 or b = 0 then we can take u = 1. So let us assume that a 6= 0 and b 6= 0.
By assumption we have a = a1 ∈ aR = bR and b = b1 ∈ bR = aR, so that a = bv



and b = au for some u, v ∈ R. We will show that u, v ∈ R×. Indeed, since R is a
domain and a 6= 0 we have

a = bv

a = auv

a(1− uv) = 0

1− uv = 0

1 = uv.

�

Problem 3. Let α ∈ E ⊇ F be an element of a field extension and consider the ring
homomorphism defined by evaluation:

ϕ : F[x] → E
f(x) 7→ f(α).

Suppose that kerϕ = m(x)F[x], where m(x) is monic and non-constant.

(a) Prove that the polynomial m(x) is irreducible over F.

Proof. Let m(x) = f(x)g(x) for some f(x), g(x) ∈ F[x]. Our goal is to show that
f(x) or g(x) is constant.1 Since m(x) ∈ kerϕ we have m(α) = 0 and hence

0 = m(α) = f(α)g(α).

This implies that f(α) = 0 or g(α) = 0; let’s say f(α) = 0. But now we have
f(x) ∈ kerϕ = m(x)F[x] and hence f(x) = m(x)h(x) for some h(x) ∈ F[x]. Since
F[x] is a domain and f(x) 6= 0 this implies that

f(x) = m(x)h(x)

f(x) = f(x)g(x)h(x)

f(x)(1− g(x)h(x)) = 0

1− g(x)h(x) = 0

1 = g(x)h(x),

and hence g(x) is constant. �

(b) Let f(x) ∈ F[x] be any monic irreducible polynomial satisfying f(α) = 0. Prove
that we must have f(x) = m(x).

Proof. If f(α) = 0 then we have f(x) ∈ kerϕ = m(x)F[x], so that m(x)|f(x). If
f(x) is irreducible then since m(x) is non-constant we have f(x) = λm(x) for some
constant λ. Finally, since f(x) and m(x) are both monic we have λ = 1. �

Problem 4.

1Equivalently, either f(x) or g(x) is associate to m(x).



(a) Consider a polynomial f(x) ∈ F[x] of degree 3. If f(x) is reducible over F, prove
that f(x) has a root in F.

Proof. Let f(x) ∈ F[x] be reducible, so that f(x) = g(x)h(x) for some non-
constant g(x), h(x) ∈ F[x]. Comparing degrees gives

3 = deg(f) = deg(g) + deg(h).

Since g(x) and h(x) are non-constant we must have deg(g),deg(h) ≥ 1, so the
above equality implies that deg(g) = 1 or deg(h) = 1. Let’s say deg(g) = 1, so that
g(x) = ax+ b for some a, b ∈ F with a 6= 0. It follows that

f(−b/a) = g(−b/a)h(−b/a) = 0 · h(−b/a) = 0,

so that −b/a ∈ F is a root of f(x). �

(b) Let F3 = {0, 1, 2} be the field with three elements. Use part (a) to prove that the
polynomial x3 + 2x+ 1 is irreducible over F3.

Proof. By part (a) it is sufficient to check that x3 + 2x+ 1 has no root in F3, and
this is easy because F3 has only three elements:2

x 0 1 2

x3 + 2x+ 1 1 1 1

Bonus (Continued from 4b). Since x3 + 2x+ 1 is irreducible over F3 we know that the
following quotient ring is a field:

E = F3[x]/(x3 + 2x+ 1)F3[x].

Compute the inverse of the element

α := x+ (x3 + 2x+ 1)F3[x] ∈ E.

Solution. For any polynomial f(x) ∈ F3[x] we have

f(α) = f(x) + (x3 + 2x+ 1)F3[x].

This shows that E = F3[α]. It also shows that α3 +2α+1 = 0 ∈ E, which since x3 +2x+1
is irreducible over F3[x] implies that

mα/F3
(x) = x3 + 2x+ 1.

Finally, since deg(mα/F3
) = 3 we know from the Minimal Polynomial Theorem that every

element of E can be expressed as a+ bα+ cα2 for unique a, b, c ∈ F3. Our goal is to find
a, b, c ∈ F3 such that

1 + 0α+ 0α2 = α(a+ bα+ cα2)

= aα+ bα2 + cα3

= aα+ bα2 + c(−1− 2α)

= −c+ (a− 2c)α+ bα2.

By uniqueness we may equate coefficients to get −c = 1, a− 2c = 0 and b = 0. It follows
that (a, b, c) = (−2, 0,−1) = (1, 0, 2),2 and hence α−1 = 1 + 2α2. �

2Don’t forget, we are working mod 3.


