No electronic devices are allowed. There are 4 pages. Each page worth 6 points, for a total of 24 points.

Problem 1. Finish each statement.

- (a) A subset $I \subseteq R$ of a ring is called an *ideal* when...
 - $0 \in I$,
 - (I, +, 0) is a subgroup of (R, +, 0),
 - $a \in I$ and $b \in R$ imply $ab \in I$.

Alternatively: For all $a, b \in I$ and $c \in R$ we have $a - bc \in I$.

- (b) A function $\varphi: R \to S$ between rings is called a *ring homomorphism* when...
 - $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$,
 - $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$,
 - $\varphi(1) = 1.$
- (c) The kernel and image of a ring homomorphism $\varphi : R \to S$ are defined as follows...

$$\begin{split} &\ker \varphi = \{ a \in R : \varphi(a) = 0 \}, \\ & \operatorname{im} \varphi = \{ b \in S : \exists a \in R, \varphi(a) = b \}. \end{split}$$

Problem 2.

(a) Let $I \subseteq R$ be an ideal. Prove that the following operation on cosets is well-defined: (a+I)(b+I) := ab+I.

Proof. Assume that a + I = a' + I and b + I = b' + I, so that $a - a' \in I$ and $b - b' \in I$. Then since I is an ideal we have

$$ab - a'b' = ab - a'b + a'b - a'b' = (a - a')b + a'(b - b') \in I,$$

so that ab + I = a'b' + I.

(b) Let R be an integral domain. For all $a, b \in R$ prove that

 $aR = bR \iff au = b$ for some unit $u \in R^{\times}$.

Proof. First suppose that au = b for some $u \in R^{\times}$. Then for any $r \in R$ we have $br = (au)r = a(ur) \in aR$, so that $bR \subseteq aR$. Since u^{-1} exists we also have $b = au^{-1}$ so for any $r \in R$ we have $br = a(u^{-1}r) \in aR$ and hence $bR \subseteq aR$.

Conversely, suppose that aR = bR. We want to show that au = b for some $u \in R^{\times}$. If a = 0 or b = 0 then we can take u = 1. So let us assume that $a \neq 0$ and $b \neq 0$. By assumption we have $a = a1 \in aR = bR$ and $b = b1 \in bR = aR$, so that a = bv

and b = au for some $u, v \in R$. We will show that $u, v \in R^{\times}$. Indeed, since R is a domain and $a \neq 0$ we have

$$a = bv$$

$$a = auv$$

$$a(1 - uv) = 0$$

$$1 - uv = 0$$

$$1 = uv.$$

г		

Problem 3. Let $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ be an element of a field extension and consider the ring homomorphism defined by evaluation:

$$\begin{array}{rccc} \varphi : & \mathbb{F}[x] & \to & \mathbb{E} \\ & f(x) & \mapsto & f(\alpha) \end{array}$$

Suppose that ker $\varphi = m(x)\mathbb{F}[x]$, where m(x) is monic and non-constant.

(a) Prove that the polynomial m(x) is irreducible over \mathbb{F} .

Proof. Let m(x) = f(x)g(x) for some $f(x), g(x) \in \mathbb{F}[x]$. Our goal is to show that f(x) or g(x) is constant.¹ Since $m(x) \in \ker \varphi$ we have $m(\alpha) = 0$ and hence

$$0 = m(\alpha) = f(\alpha)g(\alpha).$$

This implies that $f(\alpha) = 0$ or $g(\alpha) = 0$; let's say $f(\alpha) = 0$. But now we have $f(x) \in \ker \varphi = m(x)\mathbb{F}[x]$ and hence f(x) = m(x)h(x) for some $h(x) \in \mathbb{F}[x]$. Since $\mathbb{F}[x]$ is a domain and $f(x) \neq 0$ this implies that

$$f(x) = m(x)h(x)$$

$$f(x) = f(x)g(x)h(x)$$

$$f(x)(1 - g(x)h(x)) = 0$$

$$1 - g(x)h(x) = 0$$

$$1 = g(x)h(x),$$

and hence g(x) is constant.

(b) Let $f(x) \in \mathbb{F}[x]$ be any monic irreducible polynomial satisfying $f(\alpha) = 0$. Prove that we must have f(x) = m(x).

Proof. If $f(\alpha) = 0$ then we have $f(x) \in \ker \varphi = m(x)\mathbb{F}[x]$, so that m(x)|f(x). If f(x) is irreducible then since m(x) is non-constant we have $f(x) = \lambda m(x)$ for some constant λ . Finally, since f(x) and m(x) are both monic we have $\lambda = 1$. \Box

Problem 4.

¹Equivalently, either f(x) or g(x) is associate to m(x).

(a) Consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 3. If f(x) is **reducible** over \mathbb{F} , prove that f(x) has a root in \mathbb{F} .

Proof. Let $f(x) \in \mathbb{F}[x]$ be reducible, so that f(x) = g(x)h(x) for some nonconstant $g(x), h(x) \in \mathbb{F}[x]$. Comparing degrees gives

$$3 = \deg(f) = \deg(g) + \deg(h).$$

Since g(x) and h(x) are non-constant we must have $\deg(g), \deg(h) \ge 1$, so the above equality implies that $\deg(g) = 1$ or $\deg(h) = 1$. Let's say $\deg(g) = 1$, so that g(x) = ax + b for some $a, b \in \mathbb{F}$ with $a \ne 0$. It follows that

$$f(-b/a) = g(-b/a)h(-b/a) = 0 \cdot h(-b/a) = 0,$$

so that $-b/a \in \mathbb{F}$ is a root of f(x).

(b) Let $\mathbb{F}_3 = \{0, 1, 2\}$ be the field with three elements. Use part (a) to prove that the polynomial $x^3 + 2x + 1$ is irreducible over \mathbb{F}_3 .

Proof. By part (a) it is sufficient to check that $x^3 + 2x + 1$ has no root in \mathbb{F}_3 , and this is easy because \mathbb{F}_3 has only three elements:²

Bonus (Continued from 4b). Since $x^3 + 2x + 1$ is irreducible over \mathbb{F}_3 we know that the following quotient ring is a field:

$$\mathbb{E} = \mathbb{F}_3[x]/(x^3 + 2x + 1)\mathbb{F}_3[x].$$

Compute the inverse of the element

$$\alpha := x + (x^3 + 2x + 1)\mathbb{F}_3[x] \in \mathbb{E}.$$

Solution. For any polynomial $f(x) \in \mathbb{F}_3[x]$ we have

$$f(\alpha) = f(x) + (x^3 + 2x + 1)\mathbb{F}_3[x].$$

This shows that $\mathbb{E} = \mathbb{F}_3[\alpha]$. It also shows that $\alpha^3 + 2\alpha + 1 = 0 \in \mathbb{E}$, which since $x^3 + 2x + 1$ is irreducible over $\mathbb{F}_3[x]$ implies that

$$m_{\alpha/\mathbb{F}_3}(x) = x^3 + 2x + 1$$

Finally, since $\deg(m_{\alpha/\mathbb{F}_3}) = 3$ we know from the Minimal Polynomial Theorem that every element of \mathbb{E} can be expressed as $a + b\alpha + c\alpha^2$ for **unique** $a, b, c \in \mathbb{F}_3$. Our goal is to find $a, b, c \in \mathbb{F}_3$ such that

$$1 + 0\alpha + 0\alpha^{2} = \alpha(a + b\alpha + c\alpha^{2})$$
$$= a\alpha + b\alpha^{2} + c\alpha^{3}$$
$$= a\alpha + b\alpha^{2} + c(-1 - 2\alpha)$$
$$= -c + (a - 2c)\alpha + b\alpha^{2}.$$

By uniqueness we may equate coefficients to get -c = 1, a - 2c = 0 and b = 0. It follows that (a, b, c) = (-2, 0, -1) = (1, 0, 2),² and hence $\alpha^{-1} = 1 + 2\alpha^2$.

²Don't forget, we are working mod 3.