Math 562/662 Exam 3
Spring 2022 Mon May 2

No electronic devices are allowed. There are 4 pages. Each page worth 6 points, for a total
of 24 points.

Problem 1. Finish each statement.

(a) A subset I C R of a ring is called an ideal when. ..

e 0el,
e (I,+,0) is a subgroup of (R,+,0),
e aclandbe Rimplyabe I

Alternatively: For all a,b € I and ¢ € R we have a — bc € I.
(b) A function ¢ : R — S between rings is called a ring homomorphism when. . .

e p(a+0b) = p(a)+ p(b) for all a,b € R,
e p(ab) = p(a)p(b) for all a,b € R,
e o(1)=1.

(¢) The kernel and image of a ring homomorphism ¢ : R — S are defined as follows. ..

kerp ={a € R: p(a) =0},
imp={be S:3a€ R, p(a)=>}.

Problem 2.

(a) Let I C R be an ideal. Prove that the following operation on cosets is well-defined:
(a+I)b+1I):=ab+ 1.

Proof. Assume that a4+ =d' +Tand b+ 1 =V + 1, so that a —a’ € I and
b— b € I. Then since I is an ideal we have

ab—ad't =ab—adb+adb—dV =(a—dV+db-0V)el,
so that ab+ I = a'b' + I. O

(b) Let R be an integral domain. For all a,b € R prove that
aR=bR <= au=> for some unit u € R*.

Proof. First suppose that au = b for some v € R*. Then for any r € R we have
br = (au)r = a(ur) € aR, so that bR C aR. Since u~! exists we also have b = au™?
so for any r € R we have br = a(u~!r) € aR and hence bR C aR.

Conversely, suppose that aR = bR. We want to show that au = b for some u € R*.
If a =0 or b =0 then we can take u = 1. So let us assume that a # 0 and b # 0.
By assumption we have a = al € aR = bR and b = bl € bR = aR, so that a = bv



and b = au for some u,v € R. We will show that u,v € R*. Indeed, since R is a
domain and a # 0 we have

a=bv

a = auv

a(l —uv) =0
l—uwv=20

1 =uw.

Problem 3. Let a € E O F be an element of a field extension and consider the ring
homomorphism defined by evaluation:

p: Flz] - E
f(@) = fla).

Suppose that ker ¢ = m(x)F[z], where m(z) is monic and non-constant.

(a) Prove that the polynomial m(z) is irreducible over F.

Proof. Let m(z) = f(z)g(z) for some f(x),g(x) € F[z]. Our goal is to show that
f(z) or g(x) is constant)| Since m(x) € ker ¢ we have m(a) = 0 and hence

0 =m(a) = fla)g(a).

This implies that f(a) = 0 or g(a) = 0; let’s say f(a) = 0. But now we have
f(z) € ker p = m(z)F[z] and hence f(z) = m(z)h(x) for some h(z) € Flz]. Since
F[x] is a domain and f(x) # 0 this implies that

f(@) = m(z)h(z)
= f(x)g(x)h(z)

and hence g(z) is constant. O

(b) Let f(x) € F[z] be any monic irreducible polynomial satisfying f(«) = 0. Prove
that we must have f(x) = m(x).

Proof. If f(a) = 0 then we have f(z) € ker p = m(x)F[z], so that m(x)|f(x). If

f(x) is irreducible then since m(x) is non-constant we have f(z) = Am(x) for some
constant A. Finally, since f(z) and m(z) are both monic we have A = 1. O

Problem 4.

1Equivalently, either f(x) or g(z) is associate to m(z).



(a) Consider a polynomial f(z) € F[x] of degree 3. If f(z) is reducible over F, prove
that f(z) has a root in F.

Proof. Let f(x) € Flz] be reducible, so that f(z) = g(z)h(z) for some non-
constant g(x), h(z) € F[z]. Comparing degrees gives

3 = deg(f) = deg(g) + deg(h).
Since ¢g(z) and h(z) are non-constant we must have deg(g),deg(h) > 1, so the

above equality implies that deg(g) = 1 or deg(h) = 1. Let’s say deg(g) = 1, so that
g(x) = ax + b for some a,b € F with a # 0. It follows that

f(=b/a) = g(=b/a)h(=b/a) =0 - h(=b/a) =0,
so that —b/a € F is a root of f(z). O

(b) Let F3 = {0, 1,2} be the field with three elements. Use part (a) to prove that the
polynomial 23 + 2z + 1 is irreducible over F3.

Proof. By part (a) it is sufficient to check that 2® 4+ 2x + 1 has no root in F3, and
this is easy because Fg has only three elementsﬂ

x ‘0‘1‘2
B2w+1]1]1]1

Bonus (Continued from 4b). Since 3 +2x + 1 is irreducible over F3 we know that the
following quotient ring is a field:

E = F3[z]/(2® + 22 + 1)F3[z].
Compute the inverse of the element

o=+ (2° + 2z + 1)F3[z] € E.

Solution. For any polynomial f(z) € F3[x] we have
fla) = f(z) + (¢® + 22 + 1)Fala].

This shows that E = F3[a]. It also shows that a®+2a+1 = 0 € E, which since 23+ 2z + 1
is irreducible over Fs[x] implies that

Mo /7, (T) = 23+ 20+ 1.

Finally, since deg(mq/r,) = 3 we know from the Minimal Polynomial Theorem that every

element of E can be expressed as a + ba + ca? for unique a, b, ¢ € F3. Our goal is to find
a,b,c € F3 such that

1+ 0+ 0a% = a(a + ba + ca?)
= aa + ba? + ca®
= aa + ba? + ¢(—1 — 2a)
= —c+ (a —2c)a + ba.

By uniqueness we may equate coefficients to get —c =1, a —2¢ =0 and b = 0. It follows
that (a,b,c) = (=2,0,—1) = (1,0,2),? and hence a~! = 1 + 2a2. O

2Don’t forget, we are working mod 3.



