
Math 562/662 Spring 2019
Homework 4 Drew Armstrong

1. Computing Minimal Polynomials. Define α := 3
√

2 ∈ R and ω := e2πi/3 ∈ C.

(a) Prove that x3 − 2 is the minimal polynomial for α over Q(ω).
(b) Prove that x2 + x+ 1 is the minimal polynomial for ω over Q(αω).
(c) Prove that x2 + (αω)x+ (αω)2 is the minimal polynomial for α over Q(αω).

[Hint: Consider any β ∈ E ⊇ F and let f(x) ∈ F[x] be a polynomial satisfying deg(f) = [E/F].
Suppose also that f(x) is monic and satisfies f(β) = 0, hence mβ/F(x)|f(x). Then since
mβ/F(x) and f(x) are monic of the same degree we conclude that mβ/F(x) = f(x).]

2. Repeated Roots. If F is a field then we can think of the ring of polynomials F[x] as
an infinite dimensional F-vector space with basis {1, x, x2, . . .}. Let D : F[x] → F[x] be the
unique F-linear function defined by

D(xn) = nxn−1 for all n ≥ 0.

(a) For all polynomials f(x), g(x) ∈ F[x] prove that the product rule holds:

D(fg) = f ·Dg +Df · g.

[Hint: Show that each side is an F-bilinear function of f and g. Thus it suffices to
check the case when f = xm and g = xn are basis elements.]

(b) Consider a polynomial f(x) ∈ F[x] and a field extension E ⊇ F. We say that α ∈ E is
a repeated root of f when f(x) = (x − α)2g(x) for some polynomial g(x) ∈ E[x]. Use
part (a) to prove that

α is a repeated root of f ⇐⇒ f(α) = 0 and Df(α) = 0.

3. Cyclotomic Polynomials. Fix an integer n and consider the polynomial xn − 1 ∈ Z[x].

(a) Factor xn − 1 into irreducible polynomials over C. [Hint: Let ω := e2π/n.]
(b) Factor xn − 1 into irreducible polynomials over R. [Hint: For all integers k ∈ Z we

have ωk + ω−k = 2 cos(2πk/n).]
(c) We define the n-th cyclotomic polynomial Φn(x) ∈ C[x] as follows:

Φn(x) :=
∏
ω∈Ω′

n

(x− ω) where Ω′n := {e2πik/n : 0 ≤ k < n, gcd(k, n) = 1}.

Prove that

xn − 1 =
∏
d|n

Φd(x) =
∏
d|n

Φn/d(x).

[Hint: The elements of Ω′n are called the primitive nth roots of unity. Prove that the
set of all nth roots of unity can be expressed as a disjoint union

∐
d|n Ω′d.]

(d) Use part (c) and induction to prove that actually Φn(x) ∈ Z[x]. [Hint: For any
f(x), g(x) ∈ Z[x] with g(x) monic there exist unique polynomials q(x), r(x) ∈ Z[x]
such that f(x) = q(x)g(x) + r(x) and deg(r) < deg(g).]

4. Impossible Constructions. We say that a number α ∈ R is constructible over Q if there
exists a chain of field extensions

α ∈ Fk ⊇ Fk−1 ⊇ · · · ⊇ F1 ⊇ F0 = Q



such that [Fi+1/Fi] = 2 for all i. [Reason: A point of R2 is “constructible with straightedge
and compass” if and only if both of its coordinates are constructible in the above sense. This
follows from the fact that intersections of lines and circles are solutions to quadratic equations.]

(a) Let f(x) ∈ Q[x] be any polynomial of degree 3. Prove that

f has a constructible root α ∈ R =⇒ f has a root in Q.

[Hint: You proved the induction step on the previous homework.]
(b) Prove that the real numbers 3

√
2, cos(2π/18) and cos(2π/7) are not constructible. It

follows from this that the classical problems of “doubling the cube,” “trisecting the
angle,” and “constructing the regular heptagon” are impossible. [Hint: Show that each
is a root of some irreducible polynomial f(x) ∈ Q[x] of degree 3.]

5. Primitive Root Theorem. If F is a finite field then the group of units F× is cyclic.

(a) Consider m,n ∈ Z with gcd(m,n) = 1. If m|nk for some k ∈ Z, prove that m|k. If
m|k and n|k for some k ∈ Z prove that mn|k. [Hint: Write mx+ ny = 1.]

(b) Let A be an abelian group. If elements a, b ∈ A have orders m,n with gcd(m,n) = 1,
prove that ab has order mn. [Hint: Show that (ab)k = ε implies m|k and n|k.]

(c) Let A be an abelian group. If m is the maximal order of an element, prove that
every element has order dividing m. [Hint: Let a, b ∈ A have orders `,m with ` - m.
Then for some prime p we have ` = pi`′ and m = pjm′ with p - `′,m′ and i > j. Use

(b) to show that a`
′
bp

j
has order greater than m.]

(d) If α ∈ F× is an element of maximal order m, prove that F× = {1, α, . . . , αm−1}.
[Hint: If not then the polynomial xm − 1 ∈ F[x] has too many roots. Use (c).]

6. Laplace’s Proof of the FTA. The FTA is easily proved with complex analysis. However,
it is still nice to have an elementary proof that is mostly algebraic. The following proof from
Laplace (1795) builds on earlier ideas of Euler (1749) and Lagrange (1770). A logical gap in
the proof was later filled by Kronecker’s Theorem (1887). Specifically, we will prove that

every non-constant polynomial f(x) ∈ R[x] has a root in C.

(a) Observe that every polynomial f(x) ∈ R[x] of odd degree has a root in R.
(b) Now let f(x) ∈ R[x] have degree n = 2em with e ≥ 1 and m odd. Consider f(x) as an

element of C[x] and let E ⊇ C be a splitting field:

f(x) = (x− α1)(x− α2) · · · (x− αn) ∈ E[x].

Now for any real number λ ∈ R we define the polynomial

gλ(x) :=
∏

1≤i<j≤n
(x− βijλ) ∈ E[x] with βijλ := αi + αj + λαiαj ∈ E.

Prove that gλ(x) ∈ R[x] and deg(gλ) = 2e−1m′ with m′ odd. [Hint: Newton.]
(c) By induction on e we can assume that gλ(x) has a complex root βijλ ∈ C. If we apply

this argument for more than
(
n
2

)
different values of λ ∈ R then we will find specific

indices i < j and real numbers λ 6= µ such that βijλ and βijµ are both in C. In this
case prove that αi and αj are in C, hence f(x) has a complex root.


