
Math 562/662 Spring 2019
Homework 3 Drew Armstrong

1. The Definition of PIDs is Good. For any ring R prove that

(R is a field) ⇐⇒ (R[x] is a PID).

2. Quadratic Field Extensions, Part II. Let E = F(ι) ⊇ F for some element ι ∈ E
satisfying ι 6∈ F and ι2 ∈ F. Recall that the vector space E/F has basis {1, ι} and the Galois
group Gal(E/F) is generated by the “conjugation” automorphism (a+ bι)∗ := a− bι.

(a) For any α ∈ E show that α ∈ F if and only if α∗ = α. Use this to show that αα∗ and
α+ α∗ are in F for all α ∈ E.

(b) For any polynomial f(x) =
∑

i αix
i ∈ E[x] we define f∗(x) :=

∑
i α
∗
i x
i. Show that

this is a ring automorphism ∗ : E[x] → E[x]. Use this to prove that f(x)f∗(x) and
f(x) + f∗(x) are in F[x] for all f(x) ∈ E[x].

(c) For all f(x) ∈ F[x] show that the roots of f(x) in E− F come in conjugate pairs.
(d) Application. Let f(x) ∈ F[x] have degree 3. If f has a root in E, prove that f also

has a root in F. [Hint: Use Descartes’ Factor Theorem.]

3. Wilson’s Theorem. We saw in the previous problem that any ring homomorphism
ϕ : R → S extends to a ring homomorphism ϕ : R[x] → S[x] by acting on coefficients. Now
let p ∈ Z be prime and consider the following polynomial with integer coefficients:

f(x) := xp−1 − 1−
p−1∏
k=1

(x− k) ∈ Z[x].

(a) Let π : Z→ Z/pZ be the quotient homomorphism. Prove that the polynomial fπ(x) ∈
Z/pZ[x] has p− 1 distinct roots and degree < p− 1. [Hint: Fermat’s Little Theorem.]

(b) Use Descartes’ Factor Theorem to show that every coefficient of f(x) ∈ Z[x] is a
multiple of p. Show that this implies (p− 1)! = −1 mod p.

4. Gaussian Integers (Optional). The following theorem is due to Fermat:

An integer n ∈ N is a sum of two squares if and only if any prime factor p|n
satisfying p = 3 mod 4 occurs to an even power.

In this problem we will give an algebraic proof due to Gauss. Let i ∈ C be a fixed square root
of −1 and consider the following ring extension of Z, called the ring of Gaussian integers:

Z ⊆ Z[i] = {a+ bi : a, b ∈ Z} ⊆ C.

(a) Let N : Z[i]→ N be the “norm” function defined by N(a+ ib) := a2 + b2. Prove that
(Z[i], N) is a Euclidean domain, hence Z[i] is a UFD. [Hint: For any α, β ∈ Z[i] with
β 6= 0, the ideal βZ[i] is the set of vertices of a square grid in C with (squared) side
length N(β). Let βζ be the closest element of βZ[i] to α and observe that N(α−βζ) <
N(β).]

(b) For all α, β ∈ Z[i] prove that N(αβ) = N(α)N(β). Use this to show that

Z[i]× = {α ∈ Z[i] : N(α) = 1} = {±1,±i}.

(c) For all n ∈ N show that n = 3 mod 4 implies n 6∈ imN . [Hint: What are the square
elements of the ring Z/4Z?]



(d) Use induction on n to prove the following statement:

n ∈ imN ⇒ (every prime p|n with p = 3 mod 4 occurs to an even power).

[Hint: Let n = a2 + b2 ∈ imN and let p ∈ Z be prime. If p = 3 mod 4 use (b) and
(c) to show that p is irreducible in Z[i]. Then if p|n use (a) to show that p|(a+ bi) or
p|(a− bi) in Z[i]. In either case show that p|a and p|b, hence n/p2 ∈ imN .]

(e) Conversely, for prime p ∈ N show that p = 1 mod 4 implies p ∈ imN . [Hint: Let
p = 4k + 1 and assume for contradiction that p 6∈ imN . Use (a) and (b) to show that
p is irreducible and hence prime in Z[i]. On the other hand, set m := (2k)! and use
Wilson’s Theorem to show that p|(m− i)(m+ i).]

(f) Finish the proof.

5. Z[
√
−3] is not a UFD. Let

√
−3 ∈ C be a fixed square root of −3 and consider the ring

Z ⊆ Z[
√
−3] = {a+ b

√
−3 : a, b ∈ Z} ⊆ C.

(a) Let N : Z[
√
−3] → N be defined by N(a + b

√
−3) := a2 + 3b2. For all α, β ∈ Z[

√
−3]

prove that N(αβ) = N(α)N(β) and use this to show that

Z[
√
−3]× = {α ∈ Z[

√
−3] : N(α) = 1} = {±1}.

(b) Prove that there is no element α ∈ Z[
√
−3] with N(α) = 2. Use this to show that any

element with N(α) = 4 is irreducible. In particular, 2 ∈ Z[
√
−3] is irreducible.

(c) But show that 2 ∈ Z[
√
−3] is not prime because

2|(1 +
√
−3)(1−

√
−3) and 2 - (1 +

√
−3) and 2 - (1−

√
−3).

(d) Use this to prove that the following ideal is not principal:

{2α+ (1 +
√
−3)β : α, β ∈ Z[

√
−3]} ⊆ Z[

√
−3].

6. Field of Fractions. In this problem you will show that “integral domain” and “subring
of a field” are the same concept. Let R be an integral domain and consider the following set
of abstract symbols, called fractions:

Frac(R) :=
{a
b

: a, b ∈ R, b 6= 0
}
.

(a) Prove that the following relation is an equivalence on the set of fractions:

a

b
∼ a′

b′
⇐⇒ ab′ = a′b.

(b) Prove that the following operations are well-defined on equivalence classes:

a

b
· c
d

:=
ac

bd
and

a

b
+
c

d
:=

ad+ bc

bd
.

It follows that the set of equivalence classes Frac(R)/∼ is a field. Following tradition,
we will just call it Frac(R) and we will write = instead of ∼. Furthermore, we will
write R ⊆ Frac(R) for the image of the injective ring homomorphism a 7→ a/1.

(c) Universal Property. Let F be a field and let ϕ : R→ F be any ring homomorphism.
Prove that this extends to a unique ring homomorphism ϕ : Frac(R) → F, which is
injective if and only if ϕ is. [Hint: Show that ϕ(a/b) := ϕ(a)/ϕ(b) is well-defined.]



7. Newton’s Theorem on Symmetric Polynomials. Given a ring R and a set of
“independent variables” x = {x1, . . . , xn} we define multivariate polynomials by induction:

R[x] = R[x1, . . . , xn] := R[x1, . . . , xn−1][xn] =

{
f(x) =

∑
k∈Nn

akxk : ak ∈ R

}
.

To save space we use the notations k = (k1, . . . , kn) ∈ Nk and xk = xk11 · · ·xknn . We assume
that all but finitely many of the coefficients ak ∈ R are zero.

(a) We say that a polynomial f(x) = R[x] is symmetric if for all σ ∈ Sn we have

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn).

Observe that the symmetric polynomials are a subring of R[x].
(b) Newton’s Theorem. Recall the definition of the elementary symmetric polynomials:

ek(x1, . . . , xn) :=
∑

1≤i1<···<ik≤n
xi1 · · ·xik .

For convenience, let’s define ek := ek11 · · · eknn . For any symmetric polynomial f(x) =∑
k akxk ∈ R[x], prove that there exist some bk ∈ R such that f(x) =

∑
k bkek. [Hint:

Order the degree vectors k ∈ Nn by “dictionary order” and let akxk be the “leading
term.” By symmetry of f we must have k1 ≥ k2 ≥ · · · ≥ kn. Show that there exists
k′ ∈ Nk so that akek

′
has the same leading term, hence f(x) − akek

′
is a symmetric

polynomial of “smaller degree.”]
(c) Important Corollary. Suppose that a polynomial f(x) ∈ R[x] of degree n splits in

some ring extension E ⊇ R. That is, suppose that we have

f(x) = xn − e1xn−1 + e2x
n−2 − · · ·+ (−1)nen = (x− α1) · · · (x− αn) ∈ E[x].

Prove that any “symmetric expression of the roots” is in R.
(d) Application: Discriminant of a Cubic. Let f(x) = x3 + ax2 + bx+ c ∈ R[x] and

let E ⊇ R be a ring extension such that

x3 + ax2 + bx+ c = (x− α)(x− β)(x− γ) ∈ E[x].

From part (c) we know that the following element of E (called the discriminant of f)
is actually in R:

Disc(f) := (α− β)2(α− γ)2(β − γ)2.

Use the algorithm from part (b) to express Disc(f) as a specific polynomial in the
coefficients. [I’ll get you started: Note that Disc(f) = (α4β2 + lower terms) and
a2b2 = (α4β2 + lower terms). Now find the leading term of Disc(f)− a2b2.]


