1. The Definition of PIDs is Good. For any ring R prove that

$$
(R \text { is a field }) \quad \Longleftrightarrow \quad(R[x] \text { is a PID })
$$

2. Quadratic Field Extensions, Part II. Let $\mathbb{E}=\mathbb{F}(\iota) \supseteq \mathbb{F}$ for some element $\iota \in \mathbb{E}$ satisfying $\iota \notin \mathbb{F}$ and $\iota^{2} \in \mathbb{F}$. Recall that the vector space \mathbb{E} / \mathbb{F} has basis $\{1, \iota\}$ and the Galois $\operatorname{group} \operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is generated by the "conjugation" automorphism $(a+b \iota)^{*}:=a-b \iota$.
(a) For any $\alpha \in \mathbb{E}$ show that $\alpha \in \mathbb{F}$ if and only if $\alpha^{*}=\alpha$. Use this to show that $\alpha \alpha^{*}$ and $\alpha+\alpha^{*}$ are in \mathbb{F} for all $\alpha \in \mathbb{E}$.
(b) For any polynomial $f(x)=\sum_{i} \alpha_{i} x^{i} \in \mathbb{E}[x]$ we define $f^{*}(x):=\sum_{i} \alpha_{i}^{*} x^{i}$. Show that this is a ring automorphism $*: \mathbb{E}[x] \rightarrow \mathbb{E}[x]$. Use this to prove that $f(x) f^{*}(x)$ and $f(x)+f^{*}(x)$ are in $\mathbb{F}[x]$ for all $f(x) \in \mathbb{E}[x]$.
(c) For all $f(x) \in \mathbb{F}[x]$ show that the roots of $f(x)$ in $\mathbb{E}-\mathbb{F}$ come in conjugate pairs.
(d) Application. Let $f(x) \in \mathbb{F}[x]$ have degree 3. If f has a root in \mathbb{E}, prove that f also has a root in \mathbb{F}. [Hint: Use Descartes' Factor Theorem.]
3. Wilson's Theorem. We saw in the previous problem that any ring homomorphism $\varphi: R \rightarrow S$ extends to a ring homomorphism $\varphi: R[x] \rightarrow S[x]$ by acting on coefficients. Now let $p \in \mathbb{Z}$ be prime and consider the following polynomial with integer coefficients:

$$
f(x):=x^{p-1}-1-\prod_{k=1}^{p-1}(x-k) \in \mathbb{Z}[x]
$$

(a) Let $\pi: \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ be the quotient homomorphism. Prove that the polynomial $f^{\pi}(x) \in$ $\mathbb{Z} / p \mathbb{Z}[x]$ has $p-1$ distinct roots and degree $<p-1$. [Hint: Fermat's Little Theorem.]
(b) Use Descartes' Factor Theorem to show that every coefficient of $f(x) \in \mathbb{Z}[x]$ is a multiple of p. Show that this implies $(p-1)!=-1 \bmod p$.
4. Gaussian Integers (Optional). The following theorem is due to Fermat:

An integer $n \in \mathbb{N}$ is a sum of two squares if and only if any prime factor $p \mid n$ satisfying $p=3 \bmod 4$ occurs to an even power.
In this problem we will give an algebraic proof due to Gauss. Let $i \in \mathbb{C}$ be a fixed square root of -1 and consider the following ring extension of \mathbb{Z}, called the ring of Gaussian integers:

$$
\mathbb{Z} \subseteq \mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}
$$

(a) Let $N: \mathbb{Z}[i] \rightarrow \mathbb{N}$ be the "norm" function defined by $N(a+i b):=a^{2}+b^{2}$. Prove that $(\mathbb{Z}[i], N)$ is a Euclidean domain, hence $\mathbb{Z}[i]$ is a UFD. [Hint: For any $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$, the ideal $\beta \mathbb{Z}[i]$ is the set of vertices of a square grid in \mathbb{C} with (squared) side length $N(\beta)$. Let $\beta \zeta$ be the closest element of $\beta \mathbb{Z}[i]$ to α and observe that $N(\alpha-\beta \zeta)<$ $N(\beta)$.
(b) For all $\alpha, \beta \in \mathbb{Z}[i]$ prove that $N(\alpha \beta)=N(\alpha) N(\beta)$. Use this to show that

$$
\mathbb{Z}[i]^{\times}=\{\alpha \in \mathbb{Z}[i]: N(\alpha)=1\}=\{ \pm 1, \pm i\}
$$

(c) For all $n \in \mathbb{N}$ show that $n=3 \bmod 4 \operatorname{implies} n \notin \operatorname{im} N$. [Hint: What are the square elements of the ring $\mathbb{Z} / 4 \mathbb{Z}$?]
(d) Use induction on n to prove the following statement:

$$
n \in \operatorname{im} N \Rightarrow \text { (every prime } p \mid n \text { with } p=3 \bmod 4 \text { occurs to an even power). }
$$

[Hint: Let $n=a^{2}+b^{2} \in \operatorname{im} N$ and let $p \in \mathbb{Z}$ be prime. If $p=3 \bmod 4$ use (b) and (c) to show that p is irreducible in $\mathbb{Z}[i]$. Then if $p \mid n$ use (a) to show that $p \mid(a+b i)$ or $p \mid(a-b i)$ in $\mathbb{Z}[i]$. In either case show that $p \mid a$ and $p \mid b$, hence $n / p^{2} \in \operatorname{im} N$.]
(e) Conversely, for prime $p \in \mathbb{N}$ show that $p=1 \bmod 4$ implies $p \in \operatorname{im} N$. [Hint: Let $p=4 k+1$ and assume for contradiction that $p \notin \operatorname{im} N$. Use (a) and (b) to show that p is irreducible and hence prime in $\mathbb{Z}[i]$. On the other hand, set $m:=(2 k)!$ and use Wilson's Theorem to show that $p \mid(m-i)(m+i)$.]
(f) Finish the proof.
5. $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. Let $\sqrt{-3} \in \mathbb{C}$ be a fixed square root of -3 and consider the ring

$$
\mathbb{Z} \subseteq \mathbb{Z}[\sqrt{-3}]=\{a+b \sqrt{-3}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}
$$

(a) Let $N: \mathbb{Z}[\sqrt{-3}] \rightarrow \mathbb{N}$ be defined by $N(a+b \sqrt{-3}):=a^{2}+3 b^{2}$. For all $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$ prove that $N(\alpha \beta)=N(\alpha) N(\beta)$ and use this to show that

$$
\mathbb{Z}[\sqrt{-3}]^{\times}=\{\alpha \in \mathbb{Z}[\sqrt{-3}]: N(\alpha)=1\}=\{ \pm 1\} .
$$

(b) Prove that there is no element $\alpha \in \mathbb{Z}[\sqrt{-3}]$ with $N(\alpha)=2$. Use this to show that any element with $N(\alpha)=4$ is irreducible. In particular, $2 \in \mathbb{Z}[\sqrt{-3}]$ is irreducible.
(c) But show that $2 \in \mathbb{Z}[\sqrt{-3}]$ is not prime because

$$
2 \mid(1+\sqrt{-3})(1-\sqrt{-3}) \text { and } 2 \nmid(1+\sqrt{-3}) \text { and } 2 \nmid(1-\sqrt{-3}) .
$$

(d) Use this to prove that the following ideal is not principal:

$$
\{2 \alpha+(1+\sqrt{-3}) \beta: \alpha, \beta \in \mathbb{Z}[\sqrt{-3}]\} \subseteq \mathbb{Z}[\sqrt{-3}] .
$$

6. Field of Fractions. In this problem you will show that "integral domain" and "subring of a field" are the same concept. Let R be an integral domain and consider the following set of abstract symbols, called fractions:

$$
\operatorname{Frac}(R):=\left\{\frac{a}{b}: a, b \in R, b \neq 0\right\} .
$$

(a) Prove that the following relation is an equivalence on the set of fractions:

$$
\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}} \quad \Longleftrightarrow \quad a b^{\prime}=a^{\prime} b
$$

(b) Prove that the following operations are well-defined on equivalence classes:

$$
\frac{a}{b} \cdot \frac{c}{d}:=\frac{a c}{b d} \quad \text { and } \quad \frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d} .
$$

It follows that the set of equivalence classes $\operatorname{Frac}(R) / \sim$ is a field. Following tradition, we will just call it $\operatorname{Frac}(R)$ and we will write $=$ instead of \sim. Furthermore, we will write $R \subseteq \operatorname{Frac}(R)$ for the image of the injective ring homomorphism $a \mapsto a / 1$.
(c) Universal Property. Let \mathbb{F} be a field and let $\varphi: R \rightarrow \mathbb{F}$ be any ring homomorphism. Prove that this extends to a unique ring homomorphism $\varphi: \operatorname{Frac}(R) \rightarrow \mathbb{F}$, which is injective if and only if φ is. [Hint: Show that $\varphi(a / b):=\varphi(a) / \varphi(b)$ is well-defined.]
7. Newton's Theorem on Symmetric Polynomials. Given a ring R and a set of "independent variables" $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ we define multivariate polynomials by induction:

$$
R[\mathbf{x}]=R\left[x_{1}, \ldots, x_{n}\right]:=R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]=\left\{f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}: a_{\mathbf{k}} \in R\right\} .
$$

To save space we use the notations $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{k}$ and $\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$. We assume that all but finitely many of the coefficients $a_{\mathbf{k}} \in R$ are zero.
(a) We say that a polynomial $f(\mathbf{x})=R[\mathbf{x}]$ is symmetric if for all $\sigma \in S_{n}$ we have

$$
f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=f\left(x_{1}, \ldots, x_{n}\right) .
$$

Observe that the symmetric polynomials are a subring of $R[\mathbf{x}]$.
(b) Newton's Theorem. Recall the definition of the elementary symmetric polynomials:

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}} .
$$

For convenience, let's define $\mathbf{e}^{\mathbf{k}}:=e_{1}^{k_{1}} \cdots e_{n}^{k_{n}}$. For any symmetric polynomial $f(\mathbf{x})=$ $\sum_{\mathbf{k}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \in R[\mathbf{x}]$, prove that there exist some $b_{\mathbf{k}} \in R$ such that $f(x)=\sum_{\mathbf{k}} b_{\mathbf{k}} \mathbf{e}^{\mathbf{k}}$. [Hint: Order the degree vectors $\mathbf{k} \in \mathbb{N}^{n}$ by "dictionary order" and let $a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ be the "leading term." By symmetry of f we must have $k_{1} \geq k_{2} \geq \cdots \geq k_{n}$. Show that there exists $\mathbf{k}^{\prime} \in \mathbb{N}^{k}$ so that $a_{\mathbf{k}} \mathbf{e}^{\mathbf{k}^{\prime}}$ has the same leading term, hence $f(\mathbf{x})-a_{\mathbf{k}} \mathbf{e}^{\mathbf{k}^{\prime}}$ is a symmetric polynomial of "smaller degree."]
(c) Important Corollary. Suppose that a polynomial $f(x) \in R[x]$ of degree n splits in some ring extension $E \supseteq R$. That is, suppose that we have

$$
f(x)=x^{n}-e_{1} x^{n-1}+e_{2} x^{n-2}-\cdots+(-1)^{n} e_{n}=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right) \in E[x] .
$$

Prove that any "symmetric expression of the roots" is in R.
(d) Application: Discriminant of a Cubic. Let $f(x)=x^{3}+a x^{2}+b x+c \in R[x]$ and let $E \supseteq R$ be a ring extension such that

$$
x^{3}+a x^{2}+b x+c=(x-\alpha)(x-\beta)(x-\gamma) \in E[x] .
$$

From part (c) we know that the following element of E (called the discriminant of f) is actually in R :

$$
\operatorname{Disc}(f):=(\alpha-\beta)^{2}(\alpha-\gamma)^{2}(\beta-\gamma)^{2} .
$$

Use the algorithm from part (b) to express $\operatorname{Disc}(f)$ as a specific polynomial in the coefficients. [I'll get you started: Note that $\operatorname{Disc}(f)=\left(\alpha^{4} \beta^{2}+\right.$ lower terms $)$ and $a^{2} b^{2}=\left(\alpha^{4} \beta^{2}+\right.$ lower terms $)$. Now find the leading term of $\operatorname{Disc}(f)-a^{2} b^{2}$.]

