- 1. Addition vs. Multiplication. Prove that following properties hold in any ring.
 - (a) 0a = 0,
 - (b) a(-b) = (-a)b = -(ab),
 - (c) (-a)(-b) = ab.

2. Characteristic of a Ring. Let R be a ring and let $R' \subseteq R$ be the smallest subring. Recall that there exists a unique ring homomorphism $\iota_R : \mathbb{Z} \to R$ from the integers.

(a) Prove that $R' \cong \mathbb{Z}/n\mathbb{Z}$ for some integer $n \ge 0$, which we call the *characteristic* of R:

 $\operatorname{char}(R) = n.$

[Hint: Apply the First Isomorphism Theorem to ι_R .]

- (b) If $\varphi : R \to S$ is any ring homomorphism prove that $\operatorname{char}(S)$ divides $\operatorname{char}(R)$. [Hint: By uniqueness we know that $\iota_S = \varphi \circ \iota_R$. Consider the kernel.]
- (c) Next let R be an *integral domain*, which means that R has no zero divisors:

$$\forall a, b \in R, (ab = 0) \Rightarrow (a = 0 \text{ or } b = 0).$$

In this case prove that char(R) = 0 or char(R) = p for some prime p.

(d) Finally, let \mathbb{F} be a field and let $\mathbb{F}' \subseteq \mathbb{F}$ be the smallest subfield. Prove that

 $\mathbb{F}' \cong \mathbb{Q}$ or $\mathbb{F}' \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p.

3. Chinese Remainder Theorem, Part II. Let *R* be a ring. For any ideals $I, J \subseteq R$ we define the *product ideal*:

IJ := intersection of all ideals that contain $\{ab : a \in I, b \in J\}$.

- (a) Prove that $IJ \subseteq I \cap J$.
- (b) We say that $I, J \subseteq R$ are *coprime* if I + J = R. In this case show that $I \cap J \subseteq IJ$, and hence $IJ = I \cap J$. [Hint: Since $1 \in I + J$ we have 1 = x + y for some $x \in I$ and $y \in J$.]
- (c) If $I, J \subseteq R$ are coprime, prove that the obvious map $(a + IJ) \mapsto (a + I, a + J)$ defines an isomorphism of rings:

$$\frac{R}{IJ} \cong \frac{R}{I} \times \frac{R}{J}.$$

[Hint: The hardest part is surjectivity. Use the same trick that you used when $R = \mathbb{Z}$.]

- **4.** Ring Isomorphism Theorems. Let *R* be a ring and let $I \subseteq R$ be an ideal.
 - (a) For any additive subgroup $I \subseteq S \subseteq R$ prove that

 $S \subseteq R$ is a subring $\iff S/I \subseteq R/I$ is a subring.

(b) For any subring $S \subseteq R$ prove that we have an isomorphism of rings:

$$\frac{S}{S \cap I} \cong \frac{S+I}{I}.$$

[Hint: Consider the ring homomorphism $\varphi: S \to R/I$ defined by $\varphi(a) = a + I$.]

(c) For any additive subgroup $I \subseteq J \subseteq R$ prove that

 $J \subseteq R$ is an ideal $\iff J/I \subseteq R/I$ is an ideal,

in which case we have an isomorphism of rings:

$$\frac{R/I}{J/I} \cong \frac{R}{J}.$$

[Hint: Consider the ring homomorphism $\varphi: R/I \to R/J$ defined by $\varphi(a+I) = a+J$.]

5. Descartes' Factor Theorem. Let $E \supseteq R$ be any ring extension and let $f(x) \in R[x]$ be any polynomial with coefficients in R.

(a) For any element $\alpha \in E$ prove that $f(\alpha) = 0$ if and only if there exists a polynomial $h(x) \in E[x]$ with coefficients in E such that $f(x) = (x-\alpha)h(x)$ and $\deg(h) = \deg(f)-1$. [Hint: For all integers $n \ge 2$ observe that

$$x^{n} - \alpha^{n} = (x - \alpha)(x^{n-1} + x^{n-2}\alpha + \dots + x\alpha^{n-2} + \alpha^{n-1}) \in E[x].$$

Now consider the polynomial $f(x) - f(\alpha) \in E[x]$.]

- (b) **Counting Roots.** If E is an *integral domain*, use the result of part (a) to prove that any polynomial $f(x) \in R[x]$ has at most deg(f) distinct roots in E.
- (c) A Non-Example. Let $E = R = \mathbb{Z}/8\mathbb{Z}$ and consider the polynomial $x^2 1$. How many roots does this polynomial have? Why does this not contradict part (b)?

6. Prime and Maximal Ideals. Let R be a ring and let $I \subseteq R$ be an ideal.

(a) We say that I is a maximal ideal if

for any ideal $J \subseteq R$ we have $(I \subsetneq J) \Rightarrow (J = R)$.

Prove that R/I is a field if and only if I is maximal.

(b) We say that I is a prime ideal

for any $a, b \in R$ we have $(ab \in I) \Rightarrow (a \in I \text{ or } b \in I)$.

Prove that R/I is an integral domain if and only if I is prime.

- (c) Prove that every maximal ideal is prime.
- (d) Let $\mathbb{Z}[x]$ be the ring of polynomials over \mathbb{Z} and consider the principal ideal

$$\langle x \rangle = \{ x f(x) : f(x) \in \mathbb{Z}[x] \}$$

Prove that $\langle x \rangle$ is prime but not maximal. [Hint: $\mathbb{Z}[x]/\langle x \rangle \cong \mathbb{Z}$.]