1. Addition vs. Multiplication. Prove that following properties hold in any ring.
(a) $0 a=0$,
(b) $a(-b)=(-a) b=-(a b)$,
(c) $(-a)(-b)=a b$.
2. Characteristic of a Ring. Let R be a ring and let $R^{\prime} \subseteq R$ be the smallest subring. Recall that there exists a unique ring homomorphism $\iota_{R}: \mathbb{Z} \rightarrow R$ from the integers.
(a) Prove that $R^{\prime} \cong \mathbb{Z} / n \mathbb{Z}$ for some integer $n \geq 0$, which we call the characteristic of R :

$$
\operatorname{char}(R)=n .
$$

[Hint: Apply the First Isomorphism Theorem to ι_{R}.]
(b) If $\varphi: R \rightarrow S$ is any ring homomorphism prove that $\operatorname{char}(S)$ divides $\operatorname{char}(R)$. [Hint: By uniqueness we know that $\iota_{S}=\varphi \circ \iota_{R}$. Consider the kernel.]
(c) Next let R be an integral domain, which means that R has no zero divisors:

$$
\forall a, b \in R,(a b=0) \Rightarrow(a=0 \text { or } b=0) .
$$

In this case prove that $\operatorname{char}(R)=0$ or $\operatorname{char}(R)=p$ for some prime p.
(d) Finally, let \mathbb{F} ba a field and let $\mathbb{F}^{\prime} \subseteq \mathbb{F}$ be the smallest subfield. Prove that

$$
\mathbb{F}^{\prime} \cong \mathbb{Q} \quad \text { or } \quad \mathbb{F}^{\prime} \cong \mathbb{Z} / p \mathbb{Z} \text { for some prime } p .
$$

3. Chinese Remainder Theorem, Part II. Let R be a ring. For any ideals $I, J \subseteq R$ we define the product ideal:

$$
I J:=\text { intersection of all ideals that contain }\{a b: a \in I, b \in J\} .
$$

(a) Prove that $I J \subseteq I \cap J$.
(b) We say that $I, J \subseteq R$ are coprime if $I+J=R$. In this case show that $I \cap J \subseteq I J$, and hence $I J=I \cap J$. [Hint: Since $1 \in I+J$ we have $1=x+y$ for some $x \in I$ and $y \in J$.]
(c) If $I, J \subseteq R$ are coprime, prove that the obvious map $(a+I J) \mapsto(a+I, a+J)$ defines an isomorphism of rings:

$$
\frac{R}{I J} \cong \frac{R}{I} \times \frac{R}{J}
$$

[Hint: The hardest part is surjectivity. Use the same trick that you used when $R=\mathbb{Z}$.]
4. Ring Isomorphism Theorems. Let R be a ring and let $I \subseteq R$ be an ideal.
(a) For any additive subgroup $I \subseteq S \subseteq R$ prove that

$$
S \subseteq R \text { is a subring } \quad \Longleftrightarrow \quad S / I \subseteq R / I \text { is a subring. }
$$

(b) For any subring $S \subseteq R$ prove that we have an isomorphism of rings:

$$
\frac{S}{S \cap I} \cong \frac{S+I}{I} .
$$

[Hint: Consider the ring homomorphism $\varphi: S \rightarrow R / I$ defined by $\varphi(a)=a+I$.]
(c) For any additive subgroup $I \subseteq J \subseteq R$ prove that

$$
J \subseteq R \text { is an ideal } \quad \Longleftrightarrow J / I \subseteq R / I \text { is an ideal, }
$$

in which case we have an isomorphism of rings:

$$
\frac{R / I}{J / I} \cong \frac{R}{J} .
$$

[Hint: Consider the ring homomorphism $\varphi: R / I \rightarrow R / J$ defined by $\varphi(a+I)=a+J$.]
5. Descartes' Factor Theorem. Let $E \supseteq R$ be any ring extension and let $f(x) \in R[x]$ be any polynomial with coefficients in R.
(a) For any element $\alpha \in E$ prove that $f(\alpha)=0$ if and only if there exists a polynomial $h(x) \in E[x]$ with coefficients in E such that $f(x)=(x-\alpha) h(x)$ and $\operatorname{deg}(h)=\operatorname{deg}(f)-1$. [Hint: For all integers $n \geq 2$ observe that

$$
x^{n}-\alpha^{n}=(x-\alpha)\left(x^{n-1}+x^{n-2} \alpha+\cdots+x \alpha^{n-2}+\alpha^{n-1}\right) \in E[x] .
$$

Now consider the polynomial $f(x)-f(\alpha) \in E[x]$.]
(b) Counting Roots. If E is an integral domain, use the result of part (a) to prove that any polynomial $f(x) \in R[x]$ has at $\operatorname{most} \operatorname{deg}(f)$ distinct roots in E.
(c) A Non-Example. Let $E=R=\mathbb{Z} / 8 \mathbb{Z}$ and consider the polynomial $x^{2}-1$. How many roots does this polynomial have? Why does this not contradict part (b)?
6. Prime and Maximal Ideals. Let R be a ring and let $I \subseteq R$ be an ideal.
(a) We say that I is a maximal ideal if

$$
\text { for any ideal } J \subseteq R \text { we have }(I \subsetneq J) \Rightarrow(J=R)
$$

Prove that R / I is a field if and only if I is maximal.
(b) We say that I is a prime ideal

$$
\text { for any } a, b \in R \text { we have }(a b \in I) \Rightarrow(a \in I \text { or } b \in I) \text {. }
$$

Prove that R / I is an integral domain if and only if I is prime.
(c) Prove that every maximal ideal is prime.
(d) Let $\mathbb{Z}[x]$ be the ring of polynomials over \mathbb{Z} and consider the principal ideal

$$
\langle x\rangle=\{x f(x): f(x) \in \mathbb{Z}[x]\} .
$$

Prove that $\langle x\rangle$ is prime but not maximal. [Hint: $\mathbb{Z}[x] /\langle x\rangle \cong \mathbb{Z}$.]

