
Math 562/662 Spring 2019
Homework 2 Drew Armstrong

1. Addition vs. Multiplication. Prove that following properties hold in any ring.

(a) 0a = 0,
(b) a(−b) = (−a)b = −(ab),
(c) (−a)(−b) = ab.

2. Characteristic of a Ring. Let R be a ring and let R′ ⊆ R be the smallest subring.
Recall that there exists a unique ring homomorphism ιR : Z→ R from the integers.

(a) Prove that R′ ∼= Z/nZ for some integer n ≥ 0, which we call the characteristic of R:

char(R) = n.

[Hint: Apply the First Isomorphism Theorem to ιR.]
(b) If ϕ : R → S is any ring homomorphism prove that char(S) divides char(R). [Hint:

By uniqueness we know that ιS = ϕ ◦ ιR. Consider the kernel.]
(c) Next let R be an integral domain, which means that R has no zero divisors:

∀a, b ∈ R, (ab = 0)⇒ (a = 0 or b = 0).

In this case prove that char(R) = 0 or char(R) = p for some prime p.
(d) Finally, let F ba a field and let F′ ⊆ F be the smallest subfield. Prove that

F′ ∼= Q or F′ ∼= Z/pZ for some prime p.

3. Chinese Remainder Theorem, Part II. Let R be a ring. For any ideals I, J ⊆ R we
define the product ideal:

IJ := intersection of all ideals that contain {ab : a ∈ I, b ∈ J}.

(a) Prove that IJ ⊆ I ∩ J .
(b) We say that I, J ⊆ R are coprime if I +J = R. In this case show that I ∩J ⊆ IJ , and

hence IJ = I ∩ J . [Hint: Since 1 ∈ I + J we have 1 = x+ y for some x ∈ I and y ∈ J .]
(c) If I, J ⊆ R are coprime, prove that the obvious map (a+ IJ) 7→ (a+ I, a+ J) defines

an isomorphism of rings:
R

IJ
∼=
R

I
× R

J
.

[Hint: The hardest part is surjectivity. Use the same trick that you used when R = Z.]

4. Ring Isomorphism Theorems. Let R be a ring and let I ⊆ R be an ideal.

(a) For any additive subgroup I ⊆ S ⊆ R prove that

S ⊆ R is a subring ⇐⇒ S/I ⊆ R/I is a subring.

(b) For any subring S ⊆ R prove that we have an isomorphism of rings:

S

S ∩ I
∼=
S + I

I
.

[Hint: Consider the ring homomorphism ϕ : S → R/I defined by ϕ(a) = a+ I.]



(c) For any additive subgroup I ⊆ J ⊆ R prove that

J ⊆ R is an ideal ⇐⇒ J/I ⊆ R/I is an ideal,

in which case we have an isomorphism of rings:

R/I

J/I
∼=
R

J
.

[Hint: Consider the ring homomorphism ϕ : R/I → R/J defined by ϕ(a+ I) = a+ J .]

5. Descartes’ Factor Theorem. Let E ⊇ R be any ring extension and let f(x) ∈ R[x] be
any polynomial with coefficients in R.

(a) For any element α ∈ E prove that f(α) = 0 if and only if there exists a polynomial
h(x) ∈ E[x] with coefficients in E such that f(x) = (x−α)h(x) and deg(h) = deg(f)−1.
[Hint: For all integers n ≥ 2 observe that

xn − αn = (x− α)(xn−1 + xn−2α+ · · ·+ xαn−2 + αn−1) ∈ E[x].

Now consider the polynomial f(x)− f(α) ∈ E[x].]
(b) Counting Roots. If E is an integral domain, use the result of part (a) to prove that

any polynomial f(x) ∈ R[x] has at most deg(f) distinct roots in E.
(c) A Non-Example. Let E = R = Z/8Z and consider the polynomial x2 − 1. How

many roots does this polynomial have? Why does this not contradict part (b)?

6. Prime and Maximal Ideals. Let R be a ring and let I ⊆ R be an ideal.

(a) We say that I is a maximal ideal if

for any ideal J ⊆ R we have (I ( J)⇒ (J = R).

Prove that R/I is a field if and only if I is maximal.
(b) We say that I is a prime ideal

for any a, b ∈ R we have (ab ∈ I)⇒ (a ∈ I or b ∈ I).

Prove that R/I is an integral domain if and only if I is prime.
(c) Prove that every maximal ideal is prime.
(d) Let Z[x] be the ring of polynomials over Z and consider the principal ideal

〈x〉 = {xf(x) : f(x) ∈ Z[x]}.
Prove that 〈x〉 is prime but not maximal. [Hint: Z[x]/〈x〉 ∼= Z.]


