Dedekind's Proof of the Irreducibility of $\Phi_{n}(x)$.

Problem 1. Gauss' Lemma. Given $f(x)=\sum_{i} a_{i} x^{i} \in \mathbb{Z}[x]$ we define the content as the greatest common divisor of the coefficients:

$$
c(f)=c\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right):=\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{N} .
$$

(a) Let $d=\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ with $a_{i}=d a_{i}^{\prime}$ for all i. Prove that $\operatorname{gcd}\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=1$.

Proof. Since d is a common divisor of the a_{i} we have $a_{i}=d a_{i}^{\prime}$ for some integers $a_{i}^{\prime} \in \mathbb{Z}$. Now let $e \in \mathbb{N}$ be any common divisor of the a_{i}^{\prime}, so that $a_{i}=e a_{i}^{\prime \prime}$ for some integers $a_{i}^{\prime \prime} \in \mathbb{Z}$. But then we have $a_{i}=(d e) a_{i}^{\prime \prime}$ and hence $d e$ is a common divisor of the original a_{i}. Since d is the greatest common divisor we conclude that

$$
\begin{aligned}
d e & \leq d \\
e & \leq 1 .
\end{aligned}
$$

(b) If $f(x) \in \mathbb{Q}[x]$ is monic, prove that there exists an integer $k \in \mathbb{N}$ with $k f(x) \in \mathbb{Z}[x]$ and $c(k f)=1$. [Hint: Choose any $n \in \mathbb{N}$ such that $n f(x) \in \mathbb{Z}[x]$ and let $d=c(n f)$.]

Proof. Suppose that $f(x) \in \mathbb{Q}[x]$ is monic and let $n \in \mathbb{N}$ be the product of the denominators of the coefficients, so that $n f(x) \in \mathbb{Z}[x]$. Now let $d=c(n f)$, so from part (a) we have $c\left(\frac{n}{d} f\right)=1$. On the other hand, since d divides every coefficient of $n f(x)$ we have $\frac{n}{d} f(x) \in \mathbb{Z}[x]$ and since n is the leading coefficient of $n f(x)$ - indeed, $f(x)$ is monic - we conclude that $d \mid n$ and hence $k:=n / d \in \mathbb{Z}$.
(c) For all $f(x), g(x) \in \mathbb{Z}[x]$ prove that $c(f)=c(g)=1$ implies $c(f g)=1$. [Hint: For any prime p we know that f and g each have a coefficient not divisible by p. Show that $f g$ also has a coefficient not divisible by p.]

Gauss' Proof ${ }^{1}$ Suppose that $f(x)=\sum a_{i} x^{i}$ and $g(x)=\sum b_{j} x^{j}$. If $c(f)=c(g)=1$ then for any prime p there exists a smallest i such that $p \nmid a_{i}$ and a smallest j such that $p \nmid b_{j}$. Now let $k:=i+j$ and consider the coefficient of x^{k} in the product $f(x) g(x)$:

$$
a_{0} b_{i+j}+\cdots+a_{i-1} b_{j+1}+a_{i} b_{j}+a_{i+1} b_{j-1}+\cdots+a_{i+j} b_{0} .
$$

By assumption p divides every term except $a_{i} b_{j}$, hence it follows that p does not divide the whole sum. In other words, there exists a coefficient of $f(x) g(x)$ that is not divisible by p. Since this is true for any prime p be conclude that $c(f g)=1$.

[^0]Modern Proof. Let p be prime and let $f(x) \mapsto \bar{f}(x)$ be the ring homomorphism $\mathbb{Z}[x] \rightarrow$ $\mathbb{Z} / p \mathbb{Z}[x]$ defined by reducing each coefficient $\bmod p$. Since $c(f)=c(g)=1$ we have $\bar{f}(x) \neq 0$ and $\bar{g}(x) \neq 0$. Then since $\mathbb{Z} / p \mathbb{Z}[x]$ is an integral domain we have

$$
\overline{f g}(x)=\bar{f}(x) \bar{g}(x) \neq 0,
$$

which implies that $f(x) g(x)$ has a coefficient not divisible by p.
(d) If $f(x), g(x) \in \mathbb{Q}[x]$ are monic with $f(x) g(x) \in \mathbb{Z}[x]$, prove that $f(x), g(x) \in \mathbb{Z}[x]$. [Hint: From (b) we have $k, \ell \in \mathbb{N}$ with $k f(x), \ell g(x) \in \mathbb{Z}[x]$ and $c(k f)=c(\ell g)=1$. Use (c) to show that $k \ell=1$.]

Proof. Let $f(x), g(x) \in \mathbb{Q}[x]$ be monic with $f(x) g(x) \in \mathbb{Z}[x]$. From (b) we have $k, \ell \in \mathbb{N}$ such that $k f(x), \ell g(x) \in \mathbb{Z}[x]$ and $c(k f)=c(\ell g)=1$. Then from (c) we have $c((k f)(\ell g))=c((k \ell)(f g))=1$. Since every coefficient of $k \ell f(x) g(x) \in \mathbb{Z}[x]$ is divisible by $k \ell$ we conclude that $k \ell=1$. It follows that $k=\ell=1$ and hence $f(x), g(x) \in \mathbb{Z}[x]$.

Problem 2. Two More Lemmas. Let p be prime and let $f(x) \mapsto \bar{f}(x)$ denote the ring homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z} / p \mathbb{Z}[x]$ defined by reducing each coefficient $\bmod p$.
(a) For any polynomial $g(x) \in \mathbb{Z}[x]$ show that $\bar{g}\left(x^{p}\right)=\bar{g}(x)^{p}$. [Hint: Frobenius.]

Proof. Since $\mathbb{Z} / p \mathbb{Z}[x]$ is is a ring of characteristic p we know that the function $\alpha \mapsto \alpha^{p}$ defines a ring homomorphism $\mathbb{Z} / p \mathbb{Z}[x] \rightarrow \mathbb{Z} / p \mathbb{Z}[x]$, called the Frobenius endomorphism. Furthermore, if $\bar{g}(x)=\sum a_{i} x^{i} \in \mathbb{Z} / p \mathbb{Z}[x]$ then from Fermat's Little Theorem we have $a_{i}^{p}=a_{i}$ for all p. It follows that

$$
\bar{g}\left(x^{p}\right)=\sum a_{i}\left(x^{p}\right)^{i}=\sum\left(a_{i} x^{i}\right)^{p}=\sum \varphi\left(a_{i} x^{i}\right)=\varphi\left(\sum a_{i} x^{i}\right)=\bar{g}(x)^{p} .
$$

(b) If p is prime and $p \nmid n$ show that $x^{n}-1$ has no repeated factor in $\mathbb{Z} / p \mathbb{Z}[x]$. [Hint: Any repeated factor is also a factor of the derivative.]

Proof. Suppose that $x^{n}-1=f(x)^{2} g(x)$ for some polynomials $f(x), g(x) \in \mathbb{Z} / p \mathbb{Z}[x]$. Then we have $D\left(x^{n}-1\right)=f(x)[2 D f(x) g(x)+f(x) D g(x)]$, so that $f(x)$ is a common factor of $x^{n}-1$ and $D\left(x^{n}-1\right)$. On the other hand, we know that $D\left(x^{n}-1\right)=n x^{n-1} \in$ $\mathbb{Z} / p \mathbb{Z}[x]$. If $p \nmid n$ and hence $n \neq 0 \in \mathbb{Z} / p \mathbb{Z}$ then this implies that the only factors of $D\left(x^{n}-1\right)$ are powers of x. But no power of x divides $x^{n}-1$.

Problem 3. The Proof. Let $\omega=e^{2 \pi i / n}$ and recall that $\Phi_{n}(x)=\Pi\left(x-\omega^{k}\right)$, where the product is over $0 \leq k<n$ such that $\operatorname{gcd}(k, n)=1$. You proved on the homework that $\Phi_{n}(x)$ has integer coefficients. Now you will prove that $\Phi_{n}(x)$ is irreducible over \mathbb{Q}.
(a) Let $\Phi_{n}(x)=f(x) g(x)$ with $f(x), g(x) \in \mathbb{Q}[x]$ monic and $f(x)$ irreducible. In this case prove that $f(x), g(x) \in \mathbb{Z}[x]$. [Hint: Problem 1.]

Proof. This follows immediately from 1(d).
(b) Suppose that $f\left(\omega^{k}\right)=0 \Rightarrow f\left(\omega^{k p}\right)=0$ for all $\operatorname{gcd}(k, n)=1$ and for all primes $p \nmid n$. In this case prove that $f(x)=\Phi_{n}(x)$ and hence $\Phi_{n}(x)$ is irreducible. [Hint: Show that $f\left(\omega^{\ell}\right)=0$ for all $\operatorname{gcd}(\ell, n)=1$.]

Proof. For any $\operatorname{gcd}(k, n)=1$ we have $f\left(\omega^{k}\right) g\left(\omega^{k}\right)=\Phi_{n}\left(\omega^{k}\right)=0$ and hence $f\left(\omega^{k}\right)=0$ or $g\left(\omega^{k}\right)=0$. If $g\left(\omega^{k}\right)=0$ for all $\operatorname{gcd}(k, n)=1$ then from Descartes' Factor Theorem we would have $g(x)=\Phi_{n}(x)$, which contradicts the fact that $f(x)$ is irreducible. Therefore we must have $f\left(\omega^{k}\right)=0$ for some $\operatorname{gcd}(k, n)=1$.
In this case I claim that we also have $f\left(\omega^{\ell}\right)=0$ for all $\operatorname{gcd}(\ell, n)=1$. Indeed, since k, ℓ are coprime to n there exists some $\operatorname{gcd}(m, n)=1$ such that $k m=\ell \bmod n$. Furthermore, since $\operatorname{gcd}(m, n)=1$ we can factor $m=p_{1} \cdots p_{r}$ into primes such that $p_{i} \nmid n$ for all i. Then by repeatedly applying the supposition we conclude that

$$
f\left(\omega^{k}\right)=0 \Rightarrow f\left(\omega^{k p_{1}}\right)=0 \Rightarrow \cdots \Rightarrow f\left(\omega^{k p_{1} \cdots p_{r}}\right)=f\left(\omega^{k m}\right)=0 \Rightarrow f\left(\omega^{\ell}\right)=0 .
$$

It follows from Descartes' Factor Theorem that $f(x)=\Phi_{n}(x)$.
(c) Otherwise we must have $f\left(\omega^{k}\right)=0$ and $g\left(\omega^{k p}\right)=0$ for some $\operatorname{gcd}(k, n)=1$ and some prime $p \nmid n$. In this case prove that $g\left(x^{p}\right)=f(x) h(x)$ for some $h(x) \in \mathbb{Z}[x]$. [Hint: Show that $f(x)$ is the minimal polynomial of ω^{k} over \mathbb{Q}.]

Proof. Let $G(x)=g\left(x^{p}\right) \in \mathbb{Z}[x]$. Since $f\left(\omega^{k}\right)=0$ with $f(x)$ monic and irreducible in $\mathbb{Q}[x]$ we know that $f(x)$ is the minimal polynomial for ω^{k} / \mathbb{Q}. Then since $G\left(\omega^{k}\right)=0$ we know that $f(x) \mid G(x)$ in $\mathbb{Q}[x]$, say $G(x)=f(x) h(x)$ for some $h(x) \in \mathbb{Q}[x]$. Finally, since $G(x), f(x) \in \mathbb{Z}[x]$ we conclude by uniqueness of quotients that $h(x) \in \mathbb{Z}[x]$.
(d) It follows from 2(a) that $\bar{f}(x) \bar{h}(x)=\bar{g}(x)^{p}$ in $\mathbb{Z} / p \mathbb{Z}[x]$. Use the fact that $\mathbb{Z} / p \mathbb{Z}[x]$ is a UFD to prove that $\bar{f}(x)$ and $\bar{g}(x)$ have a common factor in $\mathbb{Z} / p \mathbb{Z}[x]$.

Proof. Thus from 2(a) we have $\bar{f}(x) \bar{h}(x)=\bar{g}(x)^{p}$ in $\mathbb{Z} / p \mathbb{Z}[x]$. Since $\mathbb{Z} / p \mathbb{Z}$ is a field we know that $\mathbb{Z} / p \mathbb{Z}[x]$ is a UFD. It follows that any irreducible factor of $\bar{f}(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$ is also a factor of $\bar{g}(x)$.
(e) Use (d) to show that $x^{n}-1$ has a multiple factor in $\mathbb{Z} / p \mathbb{Z}[x]$, contradicting $2(\mathrm{~b})$.

Proof. But then $x^{n}-1=\prod_{d \mid n} \bar{\Phi}_{d}(n)=\bar{f}(x) \bar{g}(x) \cdot \prod_{d \mid n, d \neq n} \bar{\Phi}_{d}(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ has a multiple factor in $\mathbb{Z} / p \mathbb{Z}[x]$, contradicting 2(b). It follows that the situation of 3(b) must hold, and hence the cyclotomic polynomial $\Phi_{n}(x)$ is irreducible in $\mathbb{Q}[x]$.

[^0]: ${ }^{1}$ Article 42 of the Disquisitiones.

