
MTH 562/662 Spring 2019
Exam 1 — Wed Feb 20 Drew Armstrong

Problem 1. Let R be a ring and let I ⊆ R be an additive subgroup.

(a) State what it means for I to be an ideal.

We say that I ⊆ R is an ideal if for all a ∈ I and b ∈ R we have ab ∈ I.

(b) If ϕ : R→ S is a ring homomorphism prove that kerϕ ⊆ R is an ideal.

Proof. Let a ∈ kerϕ and b ∈ R. Then we have

ϕ(ab) = ϕ(a)ϕ(b) = 0ϕ(b) = 0,

and hence ab ∈ kerϕ �

(c) If I is an ideal, prove that the following binary operation on R/I is well-defined:

(a + I)(b + I) := (ab) + I.

Proof. Assume that a + I = a′ + I and b + I = b′ + I. By definition this means that
a− a′ ∈ I and b− b′ ∈ I. But then since I is an ideal we have

ab− a′b′ = ab− ab′ + ab′ − a′b′ = a(b− b′) + (a− a′)b′ ∈ I,

and it follows that ab + I = a′b′ + I. �

Problem 2. Let R be a ring.

(a) Let I ⊆ R be an ideal. Prove that I = R if and only if I contains a unit.

Proof. If I = R then we have 1 ∈ R. Conversely, suppose that u ∈ I for some unit
u ∈ R. Since I is an ideal this implies that 1 = uu−1 ∈ I and then for all a ∈ R we
have a = 1a ∈ I. It follows that I = R. �

(b) Prove that R is a field if and only if it has exactly two ideals.

Proof. First assume that R is a field and let I be any ideal. If I 6= 0R then there exists
some nonzero element a ∈ I. Since R is a field we know that a is a unit and then we
have I = 1R. Finally, since 0 6= 1 in a field we conclude that 0R 6= 1R are the only
two ideals of R. Conversely, suppose that 0R 6= 1R are the only two ideals of R. Now
let a ∈ R be any nonzero element and consider the nonzero principal ideal aR 6= 0R.
Since R has exactly two ideals we must have aR = 1R and then it follows from part
(a) that a is a unit. Hence R is a field. �

Problem 3. Let I ⊆ R be an ideal and let I ⊆ A ⊆ R be an additive subgroup.

(a) If A ⊆ R is an ideal, prove that A/I ⊆ R/I is an ideal.

Proof. Let A ⊆ R be an ideal and consider elements a + I ∈ A/I and b + I ∈ R/I.
Since a ∈ A and b ∈ R and since A is an ideal we have ab ∈ A. It follows that
(a + I)(b + I) = ab + I ∈ A/I as desired. �



(b) If A/I ⊆ R/I is an ideal, prove that A ⊆ R is an ideal.

Proof. Let A/I ⊆ R/I be an ideal and consider elements a ∈ A and b ∈ R. Since a+I ∈
A/I and b+ I ∈ R/I and since A/I is an ideal we have ab+ I = (a+ I)(b+ I) ∈ A/I.
This means that ab+I = c+I for some c ∈ A. In summary we have ab−c ∈ I ⊆ A and
c ∈ A. Then since A is closed under addition we conclude that ab = (ab − c) + c ∈ A
as desired. �

(c) Prove that R/I is a field if and only if I is a maximal ideal. [Hint: You may assume
the Correspondence Theorem for abelian groups.]

Proof. From 3(a), 3(b) and the Correspondence Theorem for groups we have a bijection

{ideals between I and R} ←→ {ideals of R/I}.
Then from 2(b) we have

I ⊆ R is maximal⇐⇒ #{ideals between I and R} = 2

⇐⇒ #{ideals of R/I} = 2

⇐⇒ R/I is a field.

�

Problem 4.

(a) If R is an integral domain, prove that we have deg(fg) = deg(f)+deg(g) for all nonzero
polynomials f(x), g(x) ∈ R[x].

Proof. Suppose that deg(f) = m and deg(g) = n. By definition this means that

f(x) = amxm + lower terms,

g(x) = bnx
n + lower terms,

for some am, bn ∈ R with am 6= 0 and bn 6= 0. Multiplying these polynomials gives

f(x)g(x) = ambnx
m+n + lower terms.

Then since R is a domain we have ambn 6= 0 and it follows that deg(fg) = m + n. �

[Remark: If we define deg(0) = −∞ then the same result holds for all polynomials.]

(b) Give an explicit example of a ring R and polynomials f(x), g(x) ∈ R[x] such that
deg(fg) < deg(f) + deg(g).

Consider the polynomials f(x) = 2x+ 1 and g(x) = 3x+ 1 in the ring Z/6Z[x], so that
f(x)g(x) = 6x2 + 5x + 1 = 0x2 + 5x + 1 = 5x + 1. Note that deg(fg) = 1 < 1 + 1 =
deg(f) + deg(g).

(c) Give an explicit example of a ring R and polynomials f(x), g(x) ∈ R[x] satisfying
deg(f) = deg(g) = 1 and f(x)g(x) = 0.

Consider the polynomials f(x) = 2x and g(x) = 3x in the ring Z/6Z[x], so that
f(x)g(x) = 6x2 = 0x2 = 0. If you accept the definition deg(0) = −∞ then this
example also works for part (b).


