MTH 562/662 Spring 2019
Exam 1 — Wed Feb 20 Drew Armstrong

Problem 1. Let R be a ring and let I C R be an additive subgroup.

(a) State what it means for I to be an ideal.
We say that I C R is an ideal if for all a € I and b € R we have ab € 1.
(b) If ¢ : R — S is a ring homomorphism prove that ker ¢ C R is an ideal.

Proof. Let a € ker ¢ and b € R. Then we have

p(ab) = p(a)p(b) = 0p(b) =0,
and hence ab € ker ¢ O

(c) If I is an ideal, prove that the following binary operation on R/I is well-defined:
(a+1)(b+1):=(ab) +I.

Proof. Assume that a4+ 1 =a'+ 1 and b+ I = b + I. By definition this means that
a—a €I andb—V € 1. But then since I is an ideal we have

ab—a't =ab—ab +ab' —d't' =a(b—V)+ (a —d )b €1,
and it follows that ab+ I = a'b’ + I. O

Problem 2. Let R be a ring.

(a) Let I C R be an ideal. Prove that I = R if and only if I contains a unit.

Proof. If I = R then we have 1 € R. Conversely, suppose that v € I for some unit
u € R. Since I is an ideal this implies that 1 = uvu~! € I and then for all a € R we
have a = la € I. It follows that I = R. O

(b) Prove that R is a field if and only if it has exactly two ideals.

Proof. First assume that R is a field and let I be any ideal. If I # OR then there exists
some nonzero element a € I. Since R is a field we know that a is a unit and then we
have I = 1R. Finally, since 0 # 1 in a field we conclude that OR # 1R are the only
two ideals of R. Conversely, suppose that OR # 1R are the only two ideals of R. Now
let @ € R be any nonzero element and consider the nonzero principal ideal aR # OR.
Since R has exactly two ideals we must have aR = 1R and then it follows from part
(a) that a is a unit. Hence R is a field. O

Problem 3. Let I C R be an ideal and let I C A C R be an additive subgroup.

(a) If A C R is an ideal, prove that A/I C R/I is an ideal.

Proof. Let A C R be an ideal and consider elements a + 1 € A/l and b+ I € R/I.
Since a € A and b € R and since A is an ideal we have ab € A. It follows that
(a+I)(b+1I)=ab+ 1€ A/I as desired. O



(b)

If A/I C R/I is an ideal, prove that A C R is an ideal.

Proof. Let A/I C R/I be an ideal and consider elements a € A and b € R. Since a+1 €
A/I and b+ I € R/I and since A/I is an ideal we have ab+ 1 = (a+I)(b+1) € A/I.
This means that ab+1 = c+ 1 for some ¢ € A. In summary we have ab—c € I C A and
¢ € A. Then since A is closed under addition we conclude that ab = (ab—c¢)+c€ A
as desired. (]

Prove that R/I is a field if and only if I is a maximal ideal. [Hint: You may assume
the Correspondence Theorem for abelian groups.]
Proof. From 3(a), 3(b) and the Correspondence Theorem for groups we have a bijection
{ideals between I and R} <— {ideals of R/I}.
Then from 2(b) we have
I C R is maximal <= #{ideals between I and R} = 2
<= #{ideals of R/I} =2
<= R/I is a field.

Problem 4.

(a)

If R is an integral domain, prove that we have deg(fg) = deg(f)-+deg(g) for all nonzero
polynomials f(x),g(z) € R[x].

Proof. Suppose that deg(f) = m and deg(g) = n. By definition this means that
f(
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for some a,, by, € R with a,,, # 0 and b, # 0. Multiplying these polynomials gives

x) = amz™ + lower terms,
x) = bpz™ + lower terms,
f(2)g(x) = amb,z™ ™™ + lower terms.

Then since R is a domain we have a,,b, # 0 and it follows that deg(fg) =m +n. O
[Remark: If we define deg(0) = —oo then the same result holds for all polynomials.]

Give an explicit example of a ring R and polynomials f(z),g(z) € R[z] such that
deg(fg) < deg(f) + deg(g)-

Consider the polynomials f(z) = 2z +1 and g(z) = 3z + 1 in the ring Z/6Z[z], so that
f(x)g(z) = 622 + 52 +1 = 022 + 52 + 1 = 52 + 1. Note that deg(fg) =1<1+1=

deg(f) + deg(g)-

Give an explicit example of a ring R and polynomials f(z),g(x) € R[x] satisfying
deg(f) = deg(g) =1 and f(z)g(x) = 0.

Consider the polynomials f(x) = 2z and ¢g(zr) = 3z in the ring Z/6Z[z|, so that
f(z)g(z) = 622 = 02? = 0. If you accept the definition deg(0) = —oo then this
example also works for part (b).



