Problem 1. Let R be a ring and let $I \subseteq R$ be an additive subgroup.
(a) State what it means for I to be an ideal.

We say that $I \subseteq R$ is an ideal if for all $a \in I$ and $b \in R$ we have $a b \in I$.
(b) If $\varphi: R \rightarrow S$ is a ring homomorphism prove that $\operatorname{ker} \varphi \subseteq R$ is an ideal.

Proof. Let $a \in \operatorname{ker} \varphi$ and $b \in R$. Then we have

$$
\varphi(a b)=\varphi(a) \varphi(b)=0 \varphi(b)=0,
$$

and hence $a b \in \operatorname{ker} \varphi$
(c) If I is an ideal, prove that the following binary operation on R / I is well-defined:

$$
(a+I)(b+I):=(a b)+I .
$$

Proof. Assume that $a+I=a^{\prime}+I$ and $b+I=b^{\prime}+I$. By definition this means that $a-a^{\prime} \in I$ and $b-b^{\prime} \in I$. But then since I is an ideal we have

$$
a b-a^{\prime} b^{\prime}=a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime}=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \in I,
$$

and it follows that $a b+I=a^{\prime} b^{\prime}+I$.
Problem 2. Let R be a ring.
(a) Let $I \subseteq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.

Proof. If $I=R$ then we have $1 \in R$. Conversely, suppose that $u \in I$ for some unit $u \in R$. Since I is an ideal this implies that $1=u u^{-1} \in I$ and then for all $a \in R$ we have $a=1 a \in I$. It follows that $I=R$.
(b) Prove that R is a field if and only if it has exactly two ideals.

Proof. First assume that R is a field and let I be any ideal. If $I \neq 0 R$ then there exists some nonzero element $a \in I$. Since R is a field we know that a is a unit and then we have $I=1 R$. Finally, since $0 \neq 1$ in a field we conclude that $0 R \neq 1 R$ are the only two ideals of R. Conversely, suppose that $0 R \neq 1 R$ are the only two ideals of R. Now let $a \in R$ be any nonzero element and consider the nonzero principal ideal $a R \neq 0 R$. Since R has exactly two ideals we must have $a R=1 R$ and then it follows from part (a) that a is a unit. Hence R is a field.

Problem 3. Let $I \subseteq R$ be an ideal and let $I \subseteq A \subseteq R$ be an additive subgroup.
(a) If $A \subseteq R$ is an ideal, prove that $A / I \subseteq R / I$ is an ideal.

Proof. Let $A \subseteq R$ be an ideal and consider elements $a+I \in A / I$ and $b+I \in R / I$. Since $a \in A$ and $b \in R$ and since A is an ideal we have $a b \in A$. It follows that $(a+I)(b+I)=a b+I \in A / I$ as desired.
(b) If $A / I \subseteq R / I$ is an ideal, prove that $A \subseteq R$ is an ideal.

Proof. Let $A / I \subseteq R / I$ be an ideal and consider elements $a \in A$ and $b \in R$. Since $a+I \in$ A / I and $b+I \in R / I$ and since A / I is an ideal we have $a b+I=(a+I)(b+I) \in A / I$. This means that $a b+I=c+I$ for some $c \in A$. In summary we have $a b-c \in I \subseteq A$ and $c \in A$. Then since A is closed under addition we conclude that $a b=(a b-c)+c \in A$ as desired.
(c) Prove that R / I is a field if and only if I is a maximal ideal. [Hint: You may assume the Correspondence Theorem for abelian groups.]

Proof. From 3(a), 3(b) and the Correspondence Theorem for groups we have a bijection \{ideals between I and $R\} \longleftrightarrow$ \{ideals of $R / I\}$.
Then from 2(b) we have

$$
\begin{aligned}
I \subseteq R \text { is maximal } & \Longleftrightarrow \#\{\text { ideals between } I \text { and } R\}=2 \\
& \Longleftrightarrow \#\{\text { ideals of } R / I\}=2 \\
& \Longleftrightarrow R / I \text { is a field. }
\end{aligned}
$$

Problem 4.

(a) If R is an integral domain, prove that we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for all nonzero polynomials $f(x), g(x) \in R[x]$.

Proof. Suppose that $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n$. By definition this means that

$$
\begin{aligned}
& f(x)=a_{m} x^{m}+\text { lower terms }, \\
& g(x)=b_{n} x^{n}+\text { lower terms },
\end{aligned}
$$

for some $a_{m}, b_{n} \in R$ with $a_{m} \neq 0$ and $b_{n} \neq 0$. Multiplying these polynomials gives

$$
f(x) g(x)=a_{m} b_{n} x^{m+n}+\text { lower terms } .
$$

Then since R is a domain we have $a_{m} b_{n} \neq 0$ and it follows that $\operatorname{deg}(f g)=m+n$.
[Remark: If we define $\operatorname{deg}(0)=-\infty$ then the same result holds for all polynomials.]
(b) Give an explicit example of a ring R and polynomials $f(x), g(x) \in R[x]$ such that $\operatorname{deg}(f g)<\operatorname{deg}(f)+\operatorname{deg}(g)$.

Consider the polynomials $f(x)=2 x+1$ and $g(x)=3 x+1$ in the ring $\mathbb{Z} / 6 \mathbb{Z}[x]$, so that $f(x) g(x)=6 x^{2}+5 x+1=0 x^{2}+5 x+1=5 x+1$. Note that $\operatorname{deg}(f g)=1<1+1=$ $\operatorname{deg}(f)+\operatorname{deg}(g)$.
(c) Give an explicit example of a ring R and polynomials $f(x), g(x) \in R[x]$ satisfying $\operatorname{deg}(f)=\operatorname{deg}(g)=1$ and $f(x) g(x)=0$.

Consider the polynomials $f(x)=2 x$ and $g(x)=3 x$ in the ring $\mathbb{Z} / 6 \mathbb{Z}[x]$, so that $f(x) g(x)=6 x^{2}=0 x^{2}=0$. If you accept the definition $\operatorname{deg}(0)=-\infty$ then this example also works for part (b).

