1. (Finite Implies Algebraic) Consider a field extension $L \supseteq K$. Recall that we say $\alpha \in L$ is algebraic over K if there exists nonzero $f(x) \in K[x]$ such that $f(\alpha)=0$. We say that the field extension $K \subseteq L$ is algebraic if every element of L is algebraic over K. Prove that if $[L: K]<\infty$ (i.e. if L is finite dimensional as a vector space over K) then $L \supseteq K$ is algebraic. [Hint: Given any $\alpha \in L$ the set $1, \alpha, \alpha^{2}, \ldots$ is linearly dependent over K.]

Proof. Suppose that $[L: K]<\infty$. Then for any $\alpha \in L$ the set $\left\{1, \alpha, \alpha^{2}, \ldots\right\}$ is linearly dependent over K. That is, there exist some elements $a_{0}, \ldots, a_{n} \in K$ not all zero such that

$$
a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n} \alpha^{n}=0 .
$$

Define the polynomial $f(x):=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in K[x]$. Since $f \neq 0$ and $f(\alpha)=0$ we conclude that α is algebraic over K. Since this is true for all $\alpha \in L$ we conclude that L is algebraic over K.
2. (Algebraic Closure) Given a field extension $L \supseteq K$, define the set

$$
\bar{K}:=\{\alpha \in L: \alpha \text { is algebraic over } K\} \subseteq L,
$$

called the algebraic closure of K in L. Prove that \bar{K} is a field. [Hint: Given $\alpha, \beta \in \bar{K}$ we want to show that $\alpha-\beta, \alpha \beta^{-1} \in \bar{K}$. Since $\alpha-\beta, \alpha \beta^{-1} \in K(\alpha, \beta)$ it suffices by Problem 1 to show that $K(\alpha, \beta) \supseteq K$ is a finite dimensional extension. Use the Tower Law.]

Proof. Consider a field extension $L \supseteq K$ and let $\alpha, \beta \in L$ be algebraic over K. We want to show that both $\alpha-\beta$ and $\alpha \beta^{-1}$ are algebraic over K. So consider $K(\alpha, \beta) \subseteq L$ which is the smallest subfield of L containing $K \cup\{\alpha, \beta\}$. Because α is algebraic over K we know that $K(\alpha)=K[\alpha]$ has finite dimension over K. Then since β is algebraic over K (hence also over $K(\alpha)$) we know that $K(\alpha)(\beta)=K(\alpha)[\beta]$ has finite dimension over $K(\alpha)$. It is straightforward to check that $K(\alpha, \beta)$ and $K(\alpha)(\beta)$ are the same thing, so by the Tower Law for field extensions we have

$$
[K(\alpha, \beta): K]=[K(\alpha)(\beta): K]=[K(\alpha)(\beta): K(\alpha)] \cdot[K(\alpha): K]<\infty .
$$

Since $\alpha-\beta$ and $\alpha \beta^{-1}$ are in $K(\alpha, \beta)$, we conclude from Problem 1 that they are both algebraic over K.
[Remark: Given $\alpha, \beta \in L$ satisfying $f(\alpha)=g(\beta)=0$ for some $f, g \in K[x]$, it is possible to prove that $\alpha-\beta$ and $\alpha \beta^{-1}$ are algebraic by using f, g to explicitly construct polynomials that they must satisfy. However this method of proof is much more difficult than the nonconstructive method given above.]
3. (Characteristic of a Domain) Let R be a domain.
(a) Show that there exists a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$. [Hint: $\varphi\left(2_{\mathbb{Z}}\right)=$ $\left.\varphi\left(1_{\mathbb{Z}}+1_{\mathbb{Z}}\right)=\varphi\left(1_{\mathbb{Z}}\right)+\varphi\left(1_{\mathbb{Z}}\right)=1_{R}+1_{R}.\right]$
(b) Show that $\operatorname{ker}(\varphi)=(p)<\mathbb{Z}$, where $p=0$ or p is prime. This p is called the characteristic of the domain R.
(c) If R is finite, show that its characteristic is not 0 .

Proof. For part (a), let $\varphi: \mathbb{Z} \rightarrow R$ be any ring homomorphism, so that we have $\varphi\left(0_{\mathbb{Z}}\right)=0_{R}$ and $\varphi\left(1_{\mathbb{Z}}\right)=1_{R}$. For any integer $n>1$ we have

$$
\varphi(n)=\varphi\left(1_{\mathbb{Z}}+\cdots+1_{\mathbb{Z}}\right)=\varphi\left(1_{\mathbb{Z}}\right)+\cdots+\varphi\left(1_{\mathbb{Z}}\right)=1_{R}+\cdots+1_{R}=" n \cdot 1_{R} ",
$$

and for any integer $n<0$ we have

$$
\varphi(n)=-\varphi(-n)=-"(-n) \cdot 1_{R} " .
$$

Now the map is determined.
For part (b), note that $\operatorname{im} \varphi \subseteq R$ is a subring of a domain, hence is itself a domain. By the First Isomorphism Theorem we have $\mathbb{Z} / \operatorname{ker} \varphi \approx \operatorname{im} \varphi$ and then HW3.1 implies that $\operatorname{ker} \varphi$ is a prime ideal of \mathbb{Z}. Recall that the prime ideals of \mathbb{Z} are (0) and (p) for $p \in \mathbb{N}$ prime.

For part (c), let R be finite and assume for contradiction that $\operatorname{ker} \varphi=(0)$. Then since $\mathbb{Z} \approx \mathbb{Z} /(0) \approx \operatorname{im} \varphi$ we have

$$
\infty=|\mathbb{Z}|=|\operatorname{im} \varphi| \leq|R|<\infty .
$$

Contradiction.
[Remark: We just proved that the characteristic of a finite domain is a prime $p>0$. It is a bit silly to say it this way because any finite domain is actually a field. Indeed, let R be a finite domain. Then given any nonzero element $x \in R$ we consider the map $R \rightarrow R$ defined by $y \mapsto x y$. Since R is a domain this map is injective. Then since R is finite the map is also surjective, i.e., there exists $y \in R$ such that $x y=1$.]
4. (The Size of a Finite Field). Suppose that the field K is finite. By Problem 3, the unique ring map $\varphi: \mathbb{Z} \rightarrow K$ has kernel (p) for some prime $0 \neq p \in \mathbb{Z}$.
(a) Prove that the image $\varphi(\mathbb{Z}) \subseteq K$ is a subfield of K (called the prime subfield).
(b) Prove that K is a finite dimensional vector space over $\varphi(\mathbb{Z})$, say $[K: \varphi(\mathbb{Z})]=n<\infty$.
(c) Conclude that $|K|=p^{n}$.

Proof. Let K be a finite field of characteristic $p>0$. By Problem 3 this means that $\mathbb{Z} /(p) \approx$ $\varphi(\mathbb{Z}) \subseteq K$. But since \mathbb{Z} is a PID we know that the prime ideal $(p)<\mathbb{Z}$ is also maximal, hence $\mathbb{Z} /(p)$ is a field. This proves part (a).

For part (b) we consider K as a vector space over $\varphi(\mathbb{Z})$. Since K is finite it has a finite spanning set (K itself). Since any spanning set contains a basis we conclude that K has a finite basis over $\varphi(\mathbb{Z})$, say $[K: \varphi(\mathbb{Z})]=n$.

For part (c) note that every element of K can be written uniquely as an ordered n-tuple of elements of $\varphi(\mathbb{Z})$ (the coefficients when expanded in some basis). Thus we have

$$
|K|=|\varphi(\mathbb{Z})|^{n}=|\mathbb{Z} /(p)|^{n}=p^{n} .
$$

5. (Examples of Finite Fields) For all primes $p \in \mathbb{Z}$ we define

$$
\mathbb{F}_{p}:=\mathbb{Z} /(p)
$$

This a field of size p. However, it is not obvious that fields of size p^{n} exist for any $n>1$.
(a) Prove that the polynomial $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible.
(b) Prove that the ring $\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$ is a field of size 4 . We will call it \mathbb{F}_{4}.
(c) Let $\alpha:=x+\left(x^{2}+x+1\right) \in \mathbb{F}_{4}$. Explicitly write down the addition and multiplication tables of \mathbb{F}_{4} in terms of the ("imaginary") element α.

Proof. For part (a) suppose for contradiction that we can write

$$
x^{2}+x+1=f(x) g(x)
$$

where $f, g \in \mathbb{F}_{2}[x]$ have degree strictly between 0 and 2 . Then we have $f(x)=\alpha+\beta x$ for some $\alpha, \beta \in \mathbb{F}_{2}$ with $\beta \neq 0$ and hence $-\alpha / \beta \in \mathbb{F}_{2}$ is a root of $x^{2}+x+1$. But this polynomial has no roots in \mathbb{F}_{2} because $1^{2}+1+1=3=1 \neq 0$ and $0^{2}+0+1=1 \neq 0$. We conclude that $x^{2}+x+1$ is irreducible over \mathbb{F}_{2}. [Remark: It is relatively easy to determine if a polynomial of degree ≤ 3 is irreducible. It is relatively hard to determine if a polynomial of degree ≥ 4 is irreducible.]

For part (b) note that the ideal $\left(x^{2}+x+1\right)<\mathbb{F}_{2}[x]$ is maximal among principal ideals because $x^{2}+x+1$ is irreducible. Since $\mathbb{F}_{2}[x]$ is a PID this implies that $\left(x^{2}+x+1\right)$ is maximal among all ideals and hence $K:=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$ is a field. In fact we saw in class that K can be thought of as a field extension of \mathbb{F}_{2} that contains an element $\alpha \in K$ such that $\alpha^{2}+\alpha+1=0$. (To see this we show that the map $\mathbb{F}_{2} \rightarrow K$ defined by $a \mapsto a+\left(x^{2}+x+1\right)$ is injective and note that $\alpha:=x+\left(x^{2}+x+1\right) \in K$ satisfies $\alpha^{2}+\alpha+1=0$ in the field K.)

For part (c) we note that $x^{2}+x+1$ is the minimal polynomial of $\alpha \in K$ over \mathbb{F}_{2}. Indeed, if $m_{\alpha}(x) \in \mathbb{F}_{2}[x]$ is the minimal polynomial then $m_{\alpha}(x)$ divides $x^{2}+x+1$ over \mathbb{F}_{2}. But we saw in part (a) that $x^{2}+x+1$ is irreducible over \mathbb{F}_{2}, hence $m_{\alpha}(x)=x^{2}+x+1$. By a result from class this implies that $K \approx \mathbb{F}_{2}[\alpha]=\left\{a+b \alpha: a, b \in \mathbb{F}_{2}\right\}$. Note that this field has 4 elements:

$$
\mathbb{F}_{2}[\alpha]=\{0,1, \alpha, 1+\alpha\} .
$$

Finally, using the fact that $\alpha^{2}+\alpha+1=0$, we can explicitly write down the addition and multiplication tables:

+	0	1	α	$1+\alpha$
0	0	1	α	$1+\alpha$
1	1	0	$1+\alpha$	α
α	α	$1+\alpha$	0	1
$1+\alpha$	$1+\alpha$	α	1	0

\times	0	1	α	$1+\alpha$
0	0	0	0	0
1	0	1	α	$1+\alpha$
α	0	α	$1+\alpha$	1
$1+\alpha$	0	$1+\alpha$	1	α

[Remark: It's just like working with complex numbers.]
6. (A Special Polynomial) Let $n, p \in \mathbb{N}$ with p prime and consider the special polynomial $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$. If $f(x) \in \mathbb{F}_{p}[x]$ is irreducible of degree d, prove that

$$
f(x) \text { divides }\left(x^{p^{n}}-x\right) \text { in } \mathbb{F}_{p}[x] \Longleftrightarrow d \text { divides } n \text { in } \mathbb{Z} .
$$

[Hint: The group of units of the field $\mathbb{F}_{p}[x] /(f(x))$ has size $p^{d}-1$, hence Langrange's Theorem implies that $c^{p^{d}}=c$ for all $c \in \mathbb{F}_{p}[x] /(f(x))$. If $n=d k$ then raising any $c \in \mathbb{F}_{p}[x] /(f(x))$ to the p^{d}-th power k successive times gives

$$
c=c^{p^{d}}=c^{p^{2 d}}=\cdots=c^{p^{k d}}=c^{p^{n}} .
$$

Now let $c=x+(f(x))$. Conversely, assume $f(x)$ divides $x^{p^{n}}-x$ and divide n by d to get $n=q d+r$ with $0 \leq r<d$. From above we know that $x^{p^{d}}=x \bmod f(x)$, and hence

$$
x=x^{p^{n}}=\left(x^{p^{q d}}\right)^{p^{r}}=x^{p^{r}} \bmod f(x) .
$$

Now recall the Freshman's Binomial Theorem which says that $(a+b)^{p}=a^{p}+b^{p} \bmod p$ for a, b in any ring. It follows that $g(x)^{p^{r}}=g(x) \bmod f(x)$ for any polynomial $g(x) \in \mathbb{F}_{p}[x]$. Thus every element of the field $\mathbb{F}_{p}[x] /(f(x))$ is a root of the polynomial $T^{p^{r}}-T \in \mathbb{F}_{p}[x] /(f(x))[T]$. If $r \neq 0$, use HW4.4 and Problem 4(b) to show that $p^{d} \leq p^{r}$, and hence $d \leq r$. This contradiction implies that $r=0$ as desired.]

Proof. Let $f(x) \in \mathbb{F}_{p}[x]$ be irreducible of degree d.
Using the same argument as Problem 5 we can show that $\mathbb{F}_{p}[x] /(f(x))$ is a field of size p^{d}. This field has group of units of size $p^{d}-1$ and hence for all nonzero $c \in \mathbb{F}_{p}[x] /(f(x))$ Lagrange's Theorem implies that $c^{p^{d}-1}=1$. Then multiplying by c gives $c^{p^{d}}=c$ for any element c (even zero). Now suppose that $n=d k$ for some $k \in \mathbb{N}$. Raising any $c \in \mathbb{F}_{p}[x] /(f(x))$ to the p^{d}-th power k successive times gives

$$
c=c^{p^{d}}=\left(c^{p^{d}}\right)^{p^{d}}=c^{p^{p^{d}}}=\cdots=c^{p^{k d}}=c^{p^{n}} .
$$

Finally, taking $c=x+(f(x))$ gives $x+(f(x))=(x+(f(x)))^{p^{n}}=x^{p^{n}}+(f(x))$, hence $x^{p^{n}}-x=0+(f(x))$. We conclude that $f(x)$ divides $x^{p^{n}}-x$ over \mathbb{F}_{p}.

Conversely, suppose that $f(x)$ divides $x^{p^{n}}-x$ over \mathbb{F}_{p}, i.e., suppose that $x=x^{p^{n}}$ in $\mathbb{F}_{p}[x] /(f(x))$. Divide n by d to get $n=q d+r$ with $0 \leq r<d$. Using Lagrange's Theorem again shows that $x^{p^{d}}=x$ in $\mathbb{F}_{p}[x] /(f(x))$ and taking the p^{d}-th power k successive times gives $x^{p^{k d}}=x$ for any $k \in \mathbb{N}$. This implies that

$$
x=x^{p^{n}}=x^{p^{q d+r}}=x^{p^{q d} p^{r}}=\left(x^{p^{q d}}\right)^{p^{r}}=x^{p^{r}} \quad \text { in } \mathbb{F}_{p}[x] /(f(x)) .
$$

Now recall that $(a+b)^{p}=a^{p}+b^{p} \bmod p$ for a, b in any ring because the binomial coefficient $\binom{p}{k}=\frac{p!}{k!(p-k)!}$ is divisible by p when $0<k<p$ (in this case p divides the numerator and not the denominator). Let $g(x)=\sum_{k} a_{k} x^{k} \in \mathbb{F}_{p}[x]$ be any polynomial. If we raise $g(x)$ to the p-th power r successive times and use the Freshman's Binomial Theorem each time we get

$$
\left(\sum_{k} a_{k} x^{k}\right)^{p^{r}}=\sum_{k}\left(a_{k}\right)^{p^{r}}\left(x^{k}\right)^{p^{r}}=\sum_{k}\left(a_{k}\right)^{p^{r}}\left(x^{p^{r}}\right)^{k}=\sum_{k}\left(a_{k}\right)^{p^{r}} x^{k} .
$$

But note that for all $a \in \mathbb{F}_{p}$ we have $a^{p}=a$ (again by Lagrange's Theorem) and so $a=a^{p}=$ $\left(a^{p}\right)^{p}=a^{p^{2}}=\cdots=a^{p^{r}}$. We conclude that $g(x)^{p^{r}}=g(x)$ in $\mathbb{F}_{p}[x] /(f(x))$ for any polynomial $g(x) \in \mathbb{F}_{p}[x]$, hence every element of the field $\mathbb{F}_{p}[x] /(f(x))$ is a root of the polynomial $T^{p^{r}}-T \in$ $\mathbb{F}_{p}[x] /(f(x))[T]$. If $r \neq 0$ then $T^{p^{r}}-T$ has degree p^{r}, so it can have at most p^{r} distinct roots in any field extension. Since the field $\mathbb{F}_{p}[x] /(f(x))$ has p^{d} elements we conclude that $p^{d} \leq p^{r}$, and since $p \geq 1$ (in fact $p \geq 2$) this implies that $d \leq r$. This contradicts the fact that $r<d$. Hence $r=0$ as desired.
[Remark: That polynomial is pretty special, right?]

7. (Gauss' Formula for Counting Irreducible Polynomials)

(a) Let K be a field. For all $f(x)=\sum_{k} a_{k} x^{k} \in K[x]$ we define the formal derivative:

$$
f^{\prime}(x):=\sum_{k} k a_{k} x^{k-1} .
$$

Prove that if $f(x)$ has a repeated factor then $f(x)$ and $f^{\prime}(x)$ are not coprime. [Hint: You can assume that the usual product rule holds.]
(b) Let $N_{p}(d)$ be the number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d and with leading coefficient 1. Use Problem 6 to prove Gauss' formula:

$$
p^{n}=\sum_{d \mid n} d N_{p}(d) .
$$

[Hint: Show that the special polynomial $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ and its derivative are coprime, so every irreducible factor of $x^{p^{n}}-x$ occurs with multiplicity 1.]

Proof. For part (a), suppose that $f(x) \in K[x]$ has a nontrivial repeated factor, say $f(x)=$ $g(x)^{r} h(x)$ with $\operatorname{deg}(g) \geq 1$ and $r \geq 2$. Taking the derivative and using the product rule gives

$$
f^{\prime}(x)=r g(x)^{r-1} h(x)+g(x)^{r} h^{\prime}(x)=g(x)\left(g(x)^{r-2} h(x)+g(x)^{r-1} h^{\prime}(x)\right) .
$$

We conclude that $f(x)$ and $f^{\prime}(x)$ share the nontrivial factor $g(x)$.
For part (b), let $N_{p}(d)$ be the number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d and with leading coefficient 1 . (The total number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d equals $(p-1) N_{p}(d)$ because we can multiply by any nonzero constant.) Now suppose we have factored the special polynomial $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ into irreducibles. We may assume all the factors have leading coefficient 1 by collecing units. By Problem 6, each irreducible factor has degree d dividing n, and every irreducible polynomial with degree dividing n occurs in the factorization at least once. Note that the derivative $\left(x^{p^{n}}-x\right)^{\prime}=p^{n} x^{p^{n}-1}-1=0-1=-1$ has no nontrivial factor and so $x^{p^{n}}-x$ has no repeated factor by part (a). We conclude that $x^{p^{n}}-x$ can be expressed as the product of all irreducible polynomials in $\mathbb{F}_{p}[x]$ with leading coefficient 1 and degree d dividing n, each appearing once. Comparing degrees on both sides of the factorization gives Gauss' formula:

$$
p^{n}=\sum_{d \mid n} d N_{p}(d) .
$$

[Remark: Gauss' formula is more often written as

$$
N_{p}(n)=\frac{1}{n} \sum_{d \mid n} \mu(n / d) p^{d},
$$

but to make sense of this we would need to discuss the number-theoretic möbius function $\mu: \mathbb{N} \rightarrow$ $\{-1,0,1\}$, and we don't have time for that. If you will allow me to suppose that the coefficients are indeed in $\{-1,0,1\}$ then we can use Gauss' formula to prove that $N_{p}(n)>0$ (see course notes). Thus there exist finite fields of all sizes p^{n}.]

