**1.** (Finite Implies Algebraic) Consider a field extension  $L \supseteq K$ . Recall that we say  $\alpha \in L$  is algebraic over K if there exists nonzero  $f(x) \in K[x]$  such that  $f(\alpha) = 0$ . We say that the field extension  $K \subseteq L$  is algebraic if every element of L is algebraic over K. Prove that if  $[L:K] < \infty$  (i.e. if L is finite dimensional as a vector space over K) then  $L \supseteq K$  is algebraic. [Hint: Given any  $\alpha \in L$  the set  $1, \alpha, \alpha^2, \ldots$  is linearly **dependent** over K.]

*Proof.* Suppose that  $[L : K] < \infty$ . Then for any  $\alpha \in L$  the set  $\{1, \alpha, \alpha^2, \ldots\}$  is linearly dependent over K. That is, there exist some elements  $a_0, \ldots, a_n \in K$  not all zero such that

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n = 0.$$

Define the polynomial  $f(x) := a_0 + a_1 x + \dots + a_n x^n \in K[x]$ . Since  $f \neq 0$  and  $f(\alpha) = 0$  we conclude that  $\alpha$  is algebraic over K. Since this is true for all  $\alpha \in L$  we conclude that L is algebraic over K.

**2.** (Algebraic Closure) Given a field extension  $L \supseteq K$ , define the set

 $\bar{K} := \{ \alpha \in L : \alpha \text{ is algebraic over } K \} \subseteq L,$ 

called the algebraic closure of K in L. Prove that  $\overline{K}$  is a field. [Hint: Given  $\alpha, \beta \in \overline{K}$  we want to show that  $\alpha - \beta, \alpha\beta^{-1} \in \overline{K}$ . Since  $\alpha - \beta, \alpha\beta^{-1} \in K(\alpha, \beta)$  it suffices by Problem 1 to show that  $K(\alpha, \beta) \supseteq K$  is a finite dimensional extension. Use the Tower Law.]

Proof. Consider a field extension  $L \supseteq K$  and let  $\alpha, \beta \in L$  be algebraic over K. We want to show that both  $\alpha - \beta$  and  $\alpha\beta^{-1}$  are algebraic over K. So consider  $K(\alpha, \beta) \subseteq L$  which is the smallest subfield of L containing  $K \cup \{\alpha, \beta\}$ . Because  $\alpha$  is algebraic over K we know that  $K(\alpha) = K[\alpha]$  has finite dimension over K. Then since  $\beta$  is algebraic over K (hence also over  $K(\alpha)$ ) we know that  $K(\alpha)(\beta) = K(\alpha)[\beta]$  has finite dimension over  $K(\alpha)$ . It is straightforward to check that  $K(\alpha, \beta)$  and  $K(\alpha)(\beta)$  are the same thing, so by the Tower Law for field extensions we have

$$[K(\alpha,\beta):K] = [K(\alpha)(\beta):K] = [K(\alpha)(\beta):K(\alpha)] \cdot [K(\alpha):K] < \infty.$$

Since  $\alpha - \beta$  and  $\alpha \beta^{-1}$  are in  $K(\alpha, \beta)$ , we conclude from Problem 1 that they are both algebraic over K.

[Remark: Given  $\alpha, \beta \in L$  satisfying  $f(\alpha) = g(\beta) = 0$  for some  $f, g \in K[x]$ , it is possible to prove that  $\alpha - \beta$  and  $\alpha\beta^{-1}$  are algebraic by using f, g to explicitly construct polynomials that they must satisfy. However this method of proof is much more difficult than the nonconstructive method given above.]

**3.** (Characteristic of a Domain) Let R be a domain.

- (a) Show that there exists a unique ring homomorphism  $\varphi : \mathbb{Z} \to R$ . [Hint:  $\varphi(2_{\mathbb{Z}}) = \varphi(1_{\mathbb{Z}} + 1_{\mathbb{Z}}) = \varphi(1_{\mathbb{Z}}) + \varphi(1_{\mathbb{Z}}) = 1_R + 1_R$ .]
- (b) Show that  $\ker(\varphi) = (p) < \mathbb{Z}$ , where p = 0 or p is prime. This p is called the characteristic of the domain R.
- (c) If R is finite, show that its characteristic is not 0.

*Proof.* For part (a), let  $\varphi : \mathbb{Z} \to R$  be any ring homomorphism, so that we have  $\varphi(0_{\mathbb{Z}}) = 0_R$  and  $\varphi(1_{\mathbb{Z}}) = 1_R$ . For any integer n > 1 we have

$$\varphi(n) = \varphi(1_{\mathbb{Z}} + \dots + 1_{\mathbb{Z}}) = \varphi(1_{\mathbb{Z}}) + \dots + \varphi(1_{\mathbb{Z}}) = 1_R + \dots + 1_R = "n \cdot 1_R",$$

and for any integer n < 0 we have

$$\varphi(n) = -\varphi(-n) = -"(-n) \cdot 1_R".$$

Now the map is determined.

For part (b), note that im  $\varphi \subseteq R$  is a subring of a domain, hence is itself a domain. By the First Isomorphism Theorem we have  $\mathbb{Z}/\ker \varphi \approx \operatorname{im} \varphi$  and then HW3.1 implies that  $\ker \varphi$  is a prime ideal of  $\mathbb{Z}$ . Recall that the prime ideals of  $\mathbb{Z}$  are (0) and (p) for  $p \in \mathbb{N}$  prime.

For part (c), let R be finite and assume for contradiction that ker  $\varphi = (0)$ . Then since  $\mathbb{Z} \approx \mathbb{Z}/(0) \approx \operatorname{im} \varphi$  we have

$$\infty = |\mathbb{Z}| = |\mathrm{im}\,\varphi| \le |R| < \infty.$$

Contradiction.

[Remark: We just proved that the characteristic of a finite domain is a prime p > 0. It is a bit silly to say it this way because any finite domain is actually a field. Indeed, let R be a finite domain. Then given any nonzero element  $x \in R$  we consider the map  $R \to R$  defined by  $y \mapsto xy$ . Since R is a domain this map is injective. Then since R is finite the map is also surjective, i.e., there exists  $y \in R$  such that xy = 1.]

**4.** (The Size of a Finite Field). Suppose that the field K is finite. By Problem 3, the unique ring map  $\varphi : \mathbb{Z} \to K$  has kernel (p) for some prime  $0 \neq p \in \mathbb{Z}$ .

- (a) Prove that the image  $\varphi(\mathbb{Z}) \subseteq K$  is a subfield of K (called the prime subfield).
- (b) Prove that K is a finite dimensional vector space over  $\varphi(\mathbb{Z})$ , say  $[K:\varphi(\mathbb{Z})] = n < \infty$ .
- (c) Conclude that  $|K| = p^n$ .

*Proof.* Let K be a finite field of characteristic p > 0. By Problem 3 this means that  $\mathbb{Z}/(p) \approx \varphi(\mathbb{Z}) \subseteq K$ . But since  $\mathbb{Z}$  is a PID we know that the prime ideal  $(p) < \mathbb{Z}$  is also maximal, hence  $\mathbb{Z}/(p)$  is a field. This proves part (a).

For part (b) we consider K as a vector space over  $\varphi(\mathbb{Z})$ . Since K is finite it has a finite spanning set (K itself). Since any spanning set contains a basis we conclude that K has a finite basis over  $\varphi(\mathbb{Z})$ , say  $[K : \varphi(\mathbb{Z})] = n$ .

For part (c) note that every element of K can be written uniquely as an ordered n-tuple of elements of  $\varphi(\mathbb{Z})$  (the coefficients when expanded in some basis). Thus we have

$$|K| = |\varphi(\mathbb{Z})|^n = |\mathbb{Z}/(p)|^n = p^n.$$

5. (Examples of Finite Fields) For all primes  $p \in \mathbb{Z}$  we define

$$\mathbb{F}_p := \mathbb{Z}/(p)$$

This a field of size p. However, it is not obvious that fields of size  $p^n$  exist for any n > 1.

- (a) Prove that the polynomial  $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$  is irreducible.
- (b) Prove that the ring  $\mathbb{F}_2[x]/(x^2+x+1)$  is a field of size 4. We will call it  $\mathbb{F}_4$ .
- (c) Let  $\alpha := x + (x^2 + x + 1) \in \mathbb{F}_4$ . Explicitly write down the addition and multiplication tables of  $\mathbb{F}_4$  in terms of the ("imaginary") element  $\alpha$ .

*Proof.* For part (a) suppose for contradiction that we can write

$$x^2 + x + 1 = f(x)g(x)$$

where  $f, g \in \mathbb{F}_2[x]$  have degree strictly between 0 and 2. Then we have  $f(x) = \alpha + \beta x$  for some  $\alpha, \beta \in \mathbb{F}_2$  with  $\beta \neq 0$  and hence  $-\alpha/\beta \in \mathbb{F}_2$  is a root of  $x^2 + x + 1$ . But this polynomial has no roots in  $\mathbb{F}_2$  because  $1^2 + 1 + 1 = 3 = 1 \neq 0$  and  $0^2 + 0 + 1 = 1 \neq 0$ . We conclude that  $x^2 + x + 1$  is irreducible over  $\mathbb{F}_2$ . [Remark: It is relatively easy to determine if a polynomial of degree  $\leq 3$  is irreducible. It is relatively hard to determine if a polynomial of degree  $\geq 4$  is irreducible.]

For part (b) note that the ideal  $(x^2 + x + 1) < \mathbb{F}_2[x]$  is maximal among principal ideals because  $x^2 + x + 1$  is irreducible. Since  $\mathbb{F}_2[x]$  is a PID this implies that  $(x^2 + x + 1)$  is maximal among **all** ideals and hence  $K := \mathbb{F}_2[x]/(x^2 + x + 1)$  is a field. In fact we saw in class that K can be thought of as a field extension of  $\mathbb{F}_2$  that contains an element  $\alpha \in K$  such that  $\alpha^2 + \alpha + 1 = 0$ . (To see this we show that the map  $\mathbb{F}_2 \to K$  defined by  $a \mapsto a + (x^2 + x + 1)$ is injective and note that  $\alpha := x + (x^2 + x + 1) \in K$  satisfies  $\alpha^2 + \alpha + 1 = 0$  in the field K.)

For part (c) we note that  $x^2 + x + 1$  is the minimal polynomial of  $\alpha \in K$  over  $\mathbb{F}_2$ . Indeed, if  $m_{\alpha}(x) \in \mathbb{F}_2[x]$  is the minimal polynomial then  $m_{\alpha}(x)$  divides  $x^2 + x + 1$  over  $\mathbb{F}_2$ . But we saw in part (a) that  $x^2 + x + 1$  is irreducible over  $\mathbb{F}_2$ , hence  $m_{\alpha}(x) = x^2 + x + 1$ . By a result from class this implies that  $K \approx \mathbb{F}_2[\alpha] = \{a + b\alpha : a, b \in \mathbb{F}_2\}$ . Note that this field has 4 elements:

$$\mathbb{F}_2[\alpha] = \{0, 1, \alpha, 1 + \alpha\}.$$

Finally, using the fact that  $\alpha^2 + \alpha + 1 = 0$ , we can explicitly write down the addition and multiplication tables:

| +            | 0                                                             | 1            | $\alpha$     | $1 + \alpha$ | ×            | 0 | 1            | $\alpha$     | $1 + \alpha$                                 |
|--------------|---------------------------------------------------------------|--------------|--------------|--------------|--------------|---|--------------|--------------|----------------------------------------------|
| 0            | $\begin{array}{c} 0 \\ 1 \\ \alpha \\ 1 + \alpha \end{array}$ | 1            | $\alpha$     | $1 + \alpha$ | 0            | 0 | 0            | 0            | 0                                            |
| 1            | 1                                                             | 0            | $1 + \alpha$ | $\alpha$     | 1            | 0 | 1            | $\alpha$     | $\begin{array}{c} 0\\ 1+lpha\\ 1\end{array}$ |
| $\alpha$     | $\alpha$                                                      | $1 + \alpha$ | 0            | 1            | $\alpha$     | 0 | $\alpha$     | $1 + \alpha$ | 1                                            |
| $1 + \alpha$ | $1 + \alpha$                                                  | $\alpha$     | 1            | 0            | $1 + \alpha$ | 0 | $1 + \alpha$ | 1            | $\alpha$                                     |
|              | I                                                             |              |              |              | ľ            |   |              |              |                                              |

[Remark: It's just like working with complex numbers.]

**6.** (A Special Polynomial) Let  $n, p \in \mathbb{N}$  with p prime and consider the special polynomial  $x^{p^n} - x \in \mathbb{F}_p[x]$ . If  $f(x) \in \mathbb{F}_p[x]$  is irreducible of degree d, prove that

$$f(x)$$
 divides  $(x^{p^n} - x)$  in  $\mathbb{F}_p[x] \iff d$  divides  $n$  in  $\mathbb{Z}$ .

[Hint: The group of units of the field  $\mathbb{F}_p[x]/(f(x))$  has size  $p^d - 1$ , hence Langrange's Theorem implies that  $c^{p^d} = c$  for all  $c \in \mathbb{F}_p[x]/(f(x))$ . If n = dk then raising any  $c \in \mathbb{F}_p[x]/(f(x))$  to the  $p^d$ -th power k successive times gives

$$c = c^{p^d} = c^{p^{2d}} = \dots = c^{p^{kd}} = c^{p^n}.$$

Now let c = x + (f(x)). Conversely, assume f(x) divides  $x^{p^n} - x$  and divide n by d to get n = qd + r with  $0 \le r < d$ . From above we know that  $x^{p^d} = x \mod f(x)$ , and hence

$$x = x^{p^n} = (x^{p^{qd}})^{p^r} = x^{p^r} \mod f(x).$$

Now recall the Freshman's Binomial Theorem which says that  $(a + b)^p = a^p + b^p \mod p$  for a, b in any ring. It follows that  $g(x)^{p^r} = g(x) \mod f(x)$  for any polynomial  $g(x) \in \mathbb{F}_p[x]$ . Thus every element of the field  $\mathbb{F}_p[x]/(f(x))$  is a root of the polynomial  $T^{p^r} - T \in \mathbb{F}_p[x]/(f(x))[T]$ . If  $r \neq 0$ , use HW4.4 and Problem 4(b) to show that  $p^d \leq p^r$ , and hence  $d \leq r$ . This contradiction implies that r = 0 as desired.]

*Proof.* Let  $f(x) \in \mathbb{F}_p[x]$  be irreducible of degree d.

Using the same argument as Problem 5 we can show that  $\mathbb{F}_p[x]/(f(x))$  is a field of size  $p^d$ . This field has group of units of size  $p^d - 1$  and hence for all nonzero  $c \in \mathbb{F}_p[x]/(f(x))$  Lagrange's Theorem implies that  $c^{p^d-1} = 1$ . Then multiplying by c gives  $c^{p^d} = c$  for any element c (even zero). Now suppose that n = dk for some  $k \in \mathbb{N}$ . Raising any  $c \in \mathbb{F}_p[x]/(f(x))$  to the  $p^d$ -th power k successive times gives

$$c = c^{p^d} = (c^{p^d})^{p^d} = c^{p^{2d}} = \dots = c^{p^{kd}} = c^{p^n}.$$

Finally, taking c = x + (f(x)) gives  $x + (f(x)) = (x + (f(x)))^{p^n} = x^{p^n} + (f(x))$ , hence  $x^{p^n} - x = 0 + (f(x))$ . We conclude that f(x) divides  $x^{p^n} - x$  over  $\mathbb{F}_p$ . Conversely, suppose that f(x) divides  $x^{p^n} - x$  over  $\mathbb{F}_p$ , i.e., suppose that  $x = x^{p^n}$  in

Conversely, suppose that f(x) divides  $x^{p^n} - x$  over  $\mathbb{F}_p$ , i.e., suppose that  $x = x^{p^n}$  in  $\mathbb{F}_p[x]/(f(x))$ . Divide n by d to get n = qd + r with  $0 \le r < d$ . Using Lagrange's Theorem again shows that  $x^{p^d} = x$  in  $\mathbb{F}_p[x]/(f(x))$  and taking the  $p^d$ -th power k successive times gives  $x^{p^{kd}} = x$  for any  $k \in \mathbb{N}$ . This implies that

$$x = x^{p^n} = x^{p^{qd+r}} = x^{p^{qd}p^r} = (x^{p^{qd}})^{p^r} = x^{p^r}$$
 in  $\mathbb{F}_p[x]/(f(x))$ .

Now recall that  $(a + b)^p = a^p + b^p \mod p$  for a, b in any ring because the binomial coefficient  $\binom{p}{k} = \frac{p!}{k!(p-k)!}$  is divisible by p when 0 < k < p (in this case p divides the numerator and not the denominator). Let  $g(x) = \sum_k a_k x^k \in \mathbb{F}_p[x]$  be any polynomial. If we raise g(x) to the p-th power r successive times and use the Freshman's Binomial Theorem each time we get

$$(\sum_{k} a_k x^k)^{p^r} = \sum_{k} (a_k)^{p^r} (x^k)^{p^r} = \sum_{k} (a_k)^{p^r} (x^{p^r})^k = \sum_{k} (a_k)^{p^r} x^k.$$

But note that for all  $a \in \mathbb{F}_p$  we have  $a^p = a$  (again by Lagrange's Theorem) and so  $a = a^p = (a^p)^p = a^{p^2} = \cdots = a^{p^r}$ . We conclude that  $g(x)^{p^r} = g(x)$  in  $\mathbb{F}_p[x]/(f(x))$  for any polynomial  $g(x) \in \mathbb{F}_p[x]$ , hence **every** element of the field  $\mathbb{F}_p[x]/(f(x))$  is a root of the polynomial  $T^{p^r} - T \in \mathbb{F}_p[x]/(f(x))[T]$ . If  $r \neq 0$  then  $T^{p^r} - T$  has degree  $p^r$ , so it can have at most  $p^r$  distinct roots in any field extension. Since the field  $\mathbb{F}_p[x]/(f(x))$  has  $p^d$  elements we conclude that  $p^d \leq p^r$ , and since  $p \geq 1$  (in fact  $p \geq 2$ ) this implies that  $d \leq r$ . This contradicts the fact that r < d. Hence r = 0 as desired.

[Remark: That polynomial is pretty special, right?]

## 7. (Gauss' Formula for Counting Irreducible Polynomials)

(a) Let K be a field. For all  $f(x) = \sum_k a_k x^k \in K[x]$  we define the formal derivative:

$$f'(x) := \sum_{k} k a_k x^{k-1}$$

Prove that if f(x) has a repeated factor then f(x) and f'(x) are not coprime. [Hint: You can assume that the usual product rule holds.]

(b) Let  $N_p(d)$  be the number of irreducible polynomials in  $\mathbb{F}_p[x]$  of degree d and with leading coefficient 1. Use Problem 6 to prove Gauss' formula:

$$p^n = \sum_{d|n} dN_p(d).$$

[Hint: Show that the special polynomial  $x^{p^n} - x \in \mathbb{F}_p[x]$  and its derivative are coprime, so every irreducible factor of  $x^{p^n} - x$  occurs with multiplicity 1.]

*Proof.* For part (a), suppose that  $f(x) \in K[x]$  has a nontrivial repeated factor, say  $f(x) = g(x)^r h(x)$  with deg $(g) \ge 1$  and  $r \ge 2$ . Taking the derivative and using the product rule gives

 $f'(x) = rg(x)^{r-1}h(x) + g(x)^r h'(x) = g(x)(g(x)^{r-2}h(x) + g(x)^{r-1}h'(x)).$ 

We conclude that f(x) and f'(x) share the nontrivial factor g(x).

For part (b), let  $N_p(d)$  be the number of irreducible polynomials in  $\mathbb{F}_p[x]$  of degree d and with leading coefficient 1. (The total number of irreducible polynomials in  $\mathbb{F}_p[x]$  of degree d equals  $(p-1)N_p(d)$  because we can multiply by any nonzero constant.) Now suppose we have factored the special polynomial  $x^{p^n} - x \in \mathbb{F}_p[x]$  into irreducibles. We may assume all the factors have leading coefficient 1 by collecing units. By Problem 6, each irreducible factor has degree d dividing n, and every irreducible polynomial with degree dividing n occurs in the factorization at least once. Note that the derivative  $(x^{p^n} - x)' = p^n x^{p^n-1} - 1 = 0 - 1 = -1$ has no nontrivial factor and so  $x^{p^n} - x$  has no repeated factor by part (a). We conclude that  $x^{p^n} - x$  can be expressed as the product of all irreducible polynomials in  $\mathbb{F}_p[x]$  with leading coefficient 1 and degree d dividing n, each appearing once. Comparing degrees on both sides of the factorization gives Gauss' formula:

$$p^n = \sum_{d|n} dN_p(d).$$

[Remark: Gauss' formula is more often written as

$$N_p(n) = \frac{1}{n} \sum_{d|n} \mu(n/d) p^d$$

but to make sense of this we would need to discuss the number-theoretic möbius function  $\mu : \mathbb{N} \to \{-1, 0, 1\}$ , and we don't have time for that. If you will allow me to suppose that the coefficients are indeed in  $\{-1, 0, 1\}$  then we can use Gauss' formula to prove that  $N_p(n) > 0$  (see course notes). Thus there exist finite fields of all sizes  $p^n$ .]