1. (Finite Implies Algebraic) Consider a field extension $L \supseteq K$. Recall that we say $\alpha \in L$ is algebraic over K if there exists nonzero $f(x) \in K[x]$ such that $f(\alpha)=0$. We say that the field extension $K \subseteq L$ is algebraic if every element of L is algebraic over K. Prove that if $[L: K]<\infty$ (i.e. if L is finite dimensional as a vector space over K) then $L \supseteq K$ is algebraic. [Hint: Given any $\alpha \in L$ the set $1, \alpha, \alpha^{2}, \ldots$ is linearly dependent over K.]
2. (Algebraic Closure) Given a field extension $L \supseteq K$, define the set

$$
\bar{K}:=\{\alpha \in L: \alpha \text { is algebraic over } K\} \subseteq L,
$$

called the algebraic closure of K in L. Prove that \bar{K} is a field. [Hint: Given $\alpha, \beta \in \bar{K}$ we want to show that $\alpha-\beta, \alpha \beta^{-1} \in \bar{K}$. Since $\alpha-\beta, \alpha \beta^{-1} \in K(\alpha, \beta)$ it suffices by Problem 1 to show that $K(\alpha, \beta) \supseteq K$ is a finite dimensional extension. Use the Tower Law.]
3. (Characteristic of a Domain) Let R be a domain.
(a) Show that there exists a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$. [Hint: $\varphi\left(2_{\mathbb{Z}}\right)=$ $\left.\varphi\left(1_{\mathbb{Z}}+1_{\mathbb{Z}}\right)=\varphi\left(1_{\mathbb{Z}}\right)+\varphi\left(1_{\mathbb{Z}}\right)=1_{R}+1_{R}.\right]$
(b) Show that $\operatorname{ker}(\varphi)=(p)<\mathbb{Z}$, where $p=0$ or p is prime. This p is called the characteristic of the domain R.
(c) If R is finite, show that its characteristic is not 0 .
4. (The Size of a Finite Field). Suppose that the field K is finite. By Problem 3, the unique ring map $\varphi: \mathbb{Z} \rightarrow K$ has kernel (p) for some prime $0 \neq p \in \mathbb{Z}$.
(a) Prove that the image $\varphi(\mathbb{Z}) \subseteq K$ is a subfield of K (called the prime subfield).
(b) Prove that K is a finite dimensional vector space over $\varphi(\mathbb{Z})$, say $[K: \varphi(\mathbb{Z})]=n<\infty$.
(c) Conclude that $|K|=p^{n}$.
5. (Examples of Finite Fields) For all primes $p \in \mathbb{Z}$ we define

$$
\mathbb{F}_{p}:=\mathbb{Z} /(p)
$$

This a field of size p. However, it is not obvious that fields of size p^{n} exist for any $n>1$.
(a) Prove that the polynomial $f(x)=x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible.
(b) Prove that the ring $\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$ is a field of size 4 . We will call it \mathbb{F}_{4}.
(c) Let $\alpha:=x+\left(x^{2}+x+1\right) \in \mathbb{F}_{4}$. Explicitly write down the addition and multiplication tables of \mathbb{F}_{4} in terms of the ("imaginary") element α.
6. (A Special Polynomial) Let $n, p \in \mathbb{N}$ with p prime and consider the special polynomial $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$. If $f(x) \in \mathbb{F}_{p}[x]$ is irreducible of degree d, prove that

$$
f(x) \text { divides }\left(x^{p^{n}}-x\right) \text { in } \mathbb{F}_{p}[x] \Longleftrightarrow d \text { divides } n \text { in } \mathbb{Z} \text {. }
$$

[Hint: The group of units of the field $\mathbb{F}_{p}[x] /(f(x))$ has size $p^{d}-1$, hence Langrange's Theorem implies that $c^{p^{d}}=c$ for all $c \in \mathbb{F}_{p} /(f(x))$. If $n=d k$ then raising any $c \in \mathbb{F}_{p}[x] /(f(x))$ to the p^{d}-th power k successive times gives

$$
c=c^{p^{d}}=c^{p^{2 d}}=\cdots=c^{p^{k d}}=c^{p^{n}} .
$$

Now let $c=x+(f(x))$. Conversely, assume $f(x)$ divides $x^{p^{n}}-x$ and divide n by d to get $n=q d+r$ with $0 \leq r<d$. From above we know that $x^{p^{d}}=x \bmod f(x)$, and hence

$$
x=x^{p^{n}}=\left(x^{p^{q d}}\right)^{p^{r}}=x^{p^{r}} \bmod f(x) .
$$

Now recall the Freshman's Binomial Theorem which says that $(a+b)^{p}=a^{p}+b^{p} \bmod p$ for a, b in any ring. It follows that $g(x)^{p^{r}}=g(x) \bmod f(x)$ for any polynomial $g(x) \in \mathbb{F}_{p}[x]$. Thus every element of the field $\mathbb{F}_{p}[x] /(f(x))$ is a root of the polynomial $T^{p^{r}}-T \in \mathbb{F}_{p}[x] /(f(x))[T]$. If $r \neq 0$, use HW4.4 and Problem 4(b) to show that $p^{d} \leq p^{r}$, and hence $d \leq r$. This contradiction implies that $r=0$ as desired.]

7. (Gauss' Formula for Counting Irreducible Polynomials)

(a) Let K be a field. For all $f(x)=\sum_{k} a_{k} x^{k} \in K[x]$ we define the formal derivative:

$$
f^{\prime}(x):=\sum_{k} k a_{k} x^{k-1} .
$$

Prove that if $f(x)$ has a repeated factor then $f(x)$ and $f^{\prime}(x)$ are not coprime. [Hint: You can assume that the usual product rule holds.]
(b) Let $N_{p}(d)$ be the number of irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d and with leading coefficient 1. Use Problem 6 to prove Gauss' formula:

$$
p^{n}=\sum_{d \mid n} d N_{p}(d)
$$

[Hint: Show that the special polynomial $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ and its derivative are coprime, so every irreducible factor of $x^{p^{n}}-x$ occurs with multiplicity 1.]

