Problems on Integers.

1. $\mathbb{Z}[\sqrt{-1}]$ is Euclidean. Historically, the first Euclidean domain considered (by Gauss) beyond \mathbb{Z} and $\mathbb{Q}[x]$ was the ring of Gaussian integers:

$$\mathbb{Z}[\sqrt{-1}] := \{a + b\sqrt{-1} : a, b \in \mathbb{Z}\}.$$

- (a) We can think of $\mathbb{Z}[\sqrt{-1}]$ as a "square lattice" in the complex plane \mathbb{C} . Draw it.
- (b) Given $0 \neq \beta \in \mathbb{Z}[\sqrt{-1}]$ we can think of the principal ideal $(\beta) = \{\mu \alpha : \mu \in \mathbb{Z}[\sqrt{-1}]\}$ as a "square sublattice" of $\mathbb{Z}[\sqrt{-1}]$. Draw the ideal $(2 + \sqrt{-1})$.
- (c) Consider the "size function" $\sigma : \mathbb{Z}[\sqrt{-1}] \to \mathbb{N}$ defined by $\sigma(a+b\sqrt{-1}) := |a+b\sqrt{-1}|^2 = a^2 + b^2$. Given any $\alpha, \beta \in \mathbb{Z}[\sqrt{-1}]$ with $\beta \neq 0$, show that we can find an element $\mu\beta$ of the lattice (β) such that $\sigma(\alpha \mu\beta) < \sigma(\beta)$. [Hint: α lies in some square of the square lattice (β) .]
- (d) Conclude that $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain with size function σ .

Proof. For parts (a) and (b) consider the following picture.

The vertices are the Gaussian integers in the complex plane. The white vertices are the elements of the principal ideal

$$(2 + \sqrt{-1}) = \{(2 + \sqrt{-1})(a + b\sqrt{-1}) : a, b \in \mathbb{Z}\}\$$
$$= \{(2a - b) + (a + 2b)\sqrt{-1} : a, b \in \mathbb{Z}\}.$$

One can show more generally that for any nonzero $\beta \in \mathbb{Z}[\sqrt{-1}]$, the principal ideal $(\beta) \leq \mathbb{Z}[\sqrt{-1}]$ is a square lattice consisting of integer translations of the square with vertices

$$\{0,\beta,\beta\sqrt{-1},\beta(1+\sqrt{-1})\}.$$

(Why do these four vertices form a square?)

For parts (c) and (d), consider any $\alpha, \beta \in \mathbb{Z}[\sqrt{-1}]$ with $\beta \neq 0$. We want to find $\mu, \rho \in \mathbb{Z}[\sqrt{-1}]$ such that

- $\alpha = \mu\beta + \rho$,
- $\rho = 0$ or $\sigma(\rho) < \sigma(\beta)$.

Choose $\mu \in \mathbb{Z}[\sqrt{-1}]$ such that $|\alpha - \mu\beta|$ is a minimum (this μ might not be unique) and let $\rho := \alpha - \mu\beta$. We want to show that $\rho = 0$ or $\sigma(\rho) < \sigma(\beta)$. Since $\beta \neq 0$, we know that (β) is a square lattice so that the α lies inside or on the boundary of some square. The worst case scenario is when α is at the exact center of a square (which may or may not be an element of $\mathbb{Z}[\sqrt{-1}]$, depending on what β is). Since each square has side length $|\beta|$ this implies that

$$|\rho| = |\alpha - \mu\beta| \le \frac{\sqrt{2}|\beta|}{2} = \frac{1}{\sqrt{2}}|\beta|.$$

If $\rho = 0$ we are done, otherwise we have $1 \leq |\rho|$ and we can square both sides of the above inequality to get

$$\sigma(\rho) = |\rho|^2 \le \frac{1}{2}|\beta|^2 < |\beta|^2 = \sigma(\beta),$$

as desired.

[Consider the ring $\mathbb{Z}[\sqrt{-2}]$ with size function $\sigma(a + b\sqrt{-2}) := |a + b\sqrt{-2}|^2 = a^2 + 2b^2$. Each nonzero principal ideal (β) now looks like a lattice of **rectangles** of dimension $|\beta| \times \sqrt{2}|\beta|$. Given $\alpha \in \mathbb{Z}[\sqrt{-2}]$, choose $\mu \in \mathbb{Z}[\sqrt{-2}]$ such that $|\alpha - \mu\beta|$ is minimal. The worst case scenario is when α is at the exact center of a rectangle, in which case $|\alpha - \mu\beta| \leq \frac{\sqrt{3}}{2}|\beta|$. In other words, $\sigma(\alpha - \mu\beta) \leq \frac{3}{4}\sigma(\beta) < \sigma(\beta)$, which is good. However, if you try to extend this proof to $\mathbb{Z}[\sqrt{-3}]$, something bad happens because the center of a $1 \times \sqrt{3}$ rectangle is exactly 1 unit from each vertex, which is not close enough! Indeed, we will see in the next problem that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, so it can't be Euclidean.]

2. $\mathbb{Z}[\sqrt{-3}]$ is not Euclidean. Now consider the ring

$$\mathbb{Z}[\sqrt{-3}] := \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

(a) Define the "norm function" $N: \mathbb{Z}[\sqrt{-3}] \to \mathbb{N}$ by

$$N(a + b\sqrt{-3}) := |a + b\sqrt{-3}|^2 = a^2 + 3b^2.$$

Prove that for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$ we have $N(\alpha\beta) = N(\alpha)N(\beta)$.

- (b) Prove that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is a unit if and only if $N(\alpha) = 1$. [Hint: Use part (a).]
- (c) Use part (b) to show that $\mathbb{Z}[\sqrt{-3}]^{\times} = \{\pm 1\}$. [Hint: If $a^2 + 3b^2 = 1$ for $a, b \in \mathbb{Z}$ then we must have b = 0.]
- (d) Prove that there is no $\alpha \in \mathbb{Z}[\sqrt{-3}]$ such that $N(\alpha) = 2$. [Hint: $\sqrt{2}$ is not an integer.]
- (e) If $N(\alpha) = 4$, show that α is irreducible in $\mathbb{Z}[\sqrt{-3}]$. [Hint: If α is **reducible** then by part (a) it has a factor of norm 2. Then use part (d).]
- (f) Finally, note that we can factor $4 \in \mathbb{Z}[\sqrt{-3}]$ in two ways:

$$2 \cdot 2 = 4 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

Show that 2 and $1\pm\sqrt{-3}$ are **irreducible**, but that 2 is **not associate** to $1\pm\sqrt{-3}$. We conclude that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, hence it is not a PID, hence it is not Euclidean. [Hint: Use parts (c) and (e).]

Proof. For part (a) let $\alpha = a + b\sqrt{-3}$ and $\beta = c + d\sqrt{-3}$, so that $\alpha\beta = (a + b\sqrt{-3})(c + d\sqrt{-3}) = (ac - 3bd) + (ad + bc)\sqrt{-3}$. Now observe that

$$N(\alpha)N(\beta) = (a^2 + 3b^2)(c^2 + 3d^2)$$

= $a^2c^2 + 3a^2d^2 + 3b^2c^2 + 9b^2d^2$,

and that

$$N(\alpha\beta) = (ac - 3bd)^2 + 3(ad + bc)^2$$

= $a^2c^2 - 6abcd + 9b^2d^2 + 3a^2d^2 + 6abcd + 3b^2d^2$
= $a^2c^2 + 3a^2d^2 + 3b^2c^2 + 9b^2d^2$
= $N(\alpha)N(\beta)$.

Alternatively, you could just say that the absolute value of complex numbers is multiplicative, but **someone** needed to prove that once upon a time (it was Diophantus).

For part (b) assume that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is a unit, i.e., assume there exists $\beta \in \mathbb{Z}[\sqrt{-3}]$ such that $\alpha\beta = 1$. Then by part (a) we have

$$N(\alpha)N(\beta) = N(\alpha\beta) = N(1) = 1.$$

Since $N(\alpha), N(\beta)$ are nonnegative integers this implies that $N(\alpha) = N(\beta) = 1$. Conversely, consider $\alpha = a + b\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ with $N(\alpha) = a^2 + 3b^2 = 1$. Note that the complex conjugate $\bar{\alpha} = a - b\sqrt{-3}$ is also in $\mathbb{Z}[\sqrt{-3}]$ and we have

$$\alpha \bar{\alpha} = |\alpha|^2 = N(\alpha) = 1.$$

It follows that α is a unit with inverse $\bar{\alpha}$.

For part (c), let $\alpha = a + b\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ be a unit so that $N(\alpha) = a^2 + 3b^2 = 1$ by part (b). If $b \neq 0$ then we have $b^2 \geq 1$ and hence

$$1 = a^2 + 3b^2 \ge a^2 + 3 \ge 3.$$

This contradiction shows that b = 0, and then $a^2 + 0 = 1$ implies that $a = \pm 1$. That is, the only possible units of $\mathbb{Z}[\sqrt{-3}]$ are ± 1 . Since both of these **are** units, we conclude that $\mathbb{Z}[\sqrt{-3}]^{\times} = \{\pm 1\}$.

For part (d), suppose for contradiction that we have $N(a + b\sqrt{-3}) = a^2 + 3b^2 = 2$. If $b \neq 0$ then we have $b^2 \geq 1$ and hence

$$2 = a^2 + 3b^2 \ge a^2 + 3 \ge 3,$$

contradiction. Otherwise we have b = 0 and hence $a^2 = 2$. But this is impossible because $\sqrt{2}$ is not an integer. Thus there is no element of norm 2.

For part (e), consider $\alpha \in \mathbb{Z}[\sqrt{-3}]$ with $N(\alpha) = 4$ and assume for contradiction that α is **reducible**, so we have $\alpha = \beta \gamma$ where β and γ are not units. By part (a) we have $N(\alpha) = N(\beta)N(\gamma)$ and by part (b) we know that $N(\beta) \neq 1$ and $N(\gamma) \neq 1$. It follows that $N(\beta) = N(\gamma) = 2$, which is imossible by part (d).

For part (f), consider the factorizations $2 \cdot 2 = 4 = (1 + \sqrt{-3})(1 - \sqrt{3})$. Since

$$N(2) = N(1 \pm \sqrt{-3}) = 4,$$

we know from part (e) that 2 and $1 \pm \sqrt{-3}$ are irreducible. We also know from part (c) that the only associates of 2 are ± 2 and hence 2 is not associate to either of $1 \pm \sqrt{-3}$. We conclude that 4 has two **different** irreducible factorizations. Thus number theory is more difficult/interesting than one might expect.

Problems on Polynomials Over a Field.

3. Evaluating a Polynomial. Let $K \subseteq L$ be a field extension. That is, let K, L be fields such that L is a subring of L. For all $\alpha \in L$ we define a function $ev_{\alpha} : K[x] \to L$ by

$$\sum_{k} a_k x^k \mapsto \sum_{k} a_k \alpha^k.$$

We will often write $f(\alpha) := ev_{\alpha}(f(x))$ for simplicity.

- (a) Prove that $ev_{\alpha}: K[x] \to L$ is a ring homomorphism.
- (b) Since K[x] is a PID, the kernel of the evaluation is generated by a single polynomial

$$\operatorname{ker}(\operatorname{ev}_{\alpha}) = (m_{\alpha}(x)) = \{m_{\alpha}(x)f(x) : f(x) \in K[x]\}$$

We call $m_{\alpha}(x)$ the minimal polynomial of α over K. (It is unique up to a nonzero constant multiple.) Prove that $m_{\alpha}(x)$ is irreducible. [Hint: Assume that $m_{\alpha}(x) = f(x)g(x)$. Evaluate at α to conclude that $f(\alpha) = 0$ or $g(\alpha) = 0$. Then what?]

(c) The image of the evaluation $K[\alpha] := \operatorname{im}(\operatorname{ev}_{\alpha})$ is called "K adjoin α ". It is the smallest subring of L that contains K and α . If $\operatorname{ev}_{\alpha}$ is not injective, prove that $K[\alpha]$ is a field. [Hint: Show that the ideal $(m_{\alpha}(x))$ is maximal.]

Proof. For part (a), first note that $ev_{\alpha}(1) = 1$. Then for any $f(x) = \sum_{k} a_k x^k$ and $g(x) = \sum_k b_k x^k$ in K[x] note that

$$\operatorname{ev}_{\alpha}(f+g) = \operatorname{ev}_{\alpha}\left(\sum_{k} (a_{k}+b_{k})x^{k}\right)$$
$$= \sum_{k} (a_{k}+b_{k})\alpha^{k}$$
$$= \sum_{k} a_{k}\alpha^{k} + \sum_{k} b_{k}\alpha^{k}$$
$$= \operatorname{ev}_{\alpha}(f) + \operatorname{ev}_{\alpha}(g)$$

and

$$\operatorname{ev}_{\alpha}(fg) = \operatorname{ev}_{\alpha}\left(\sum_{k} \left(\sum_{i+j=k} a_{i}b_{j}\right) x^{k}\right)$$
$$= \sum_{k} \left(\sum_{i+j=k} a_{i}b_{j}\right) \alpha^{k}$$
$$= \sum_{k} a_{k}\alpha^{k} \cdot \sum_{k} b_{k}\alpha^{k}$$
$$= \operatorname{ev}_{\alpha}(f) \cdot \operatorname{ev}_{\alpha}(g).$$

[Notice that we needed the fact that K is commutative in the proof of $ev_{\alpha}(fg) = ev_{\alpha}(f)ev_{\alpha}(g)$. So be careful when evaluating polynomials over noncommutative rings.]

For part (b) we suppose that $m_{\alpha}(x) \neq 0$. (Do you want to call the zero polynomial irreducible? I don't. Sorry, I probably should have mentioned that in the problem.) Now assume for contradiction that $m_{\alpha}(x)$ is **reducible**, i.e., assume we have

$$m_{\alpha}(x) = f(x)g(x)$$

where $f, g \in K[x]$ have degrees strictly between 1 and $\deg(m_{\alpha})$. Evaluating at α gives $0 = m_{\alpha}(\alpha) = f(\alpha)g(\alpha)$ and since K is a domain this implies that $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss of generality, suppose that $f(\alpha) = 0$, and hence $f \in \ker(\operatorname{ev}_{\alpha}) = (m_{\alpha})$. This implies that $m_{\alpha}(x)$ divides f(x) and hence $\deg(m_{\alpha}) \leq \deg(f)$, which contradicts the fact that $\deg(f) < \deg(m_{\alpha})$. We conclude that $m_{\alpha}(x)$ is irreducible.

For part (c) assume that $ev_{\alpha} : K[x] \to L$ is not injective, that is, assume that $ker(ev_{\alpha}) = (m_{\alpha}(x)) \neq (0)$. To show that $(m_{\alpha}(x))$ is maximal we assume for contradiction that there exists an ideal $(m_{\alpha}(x)) < J < K[x]$. Since K[x] is a PID we have J = (g(x)) for some

 $g(x) \in K[x]$. But then g(x) divides $m_{\alpha}(x)$ (because $(m_{\alpha}(x)) \leq (g(x))$); g(x) is not associate to $m_{\alpha}(x)$ (because $(m_{\alpha}(x)) \neq (g(x))$); and g(x) is not a unit (because $(g(x)) \neq K[x]$). Thus g(x) is a **proper divisor** of $m_{\alpha}(x)$, which contradicts the fact that $m_{\alpha}(x)$ is irreducible. We conclude that $(m_{\alpha}(x)) < K[x]$ is a maximal ideal. Finally, the First Isomosphism Theorem and a result from class imply that

$$K[\alpha] = \operatorname{im}(\operatorname{ev}_{\alpha}) \approx K[x]/\ker(\operatorname{ev}_{\alpha}) = K[x]/(m_{\alpha}(x))$$

is a field.

[For example, $\mathbb{R}[i] = \mathbb{C}$ is a field, but you already knew that. More interestingly, $\mathbb{Q}[\sqrt[3]{2}]$ is a field. How do you compute inverses in this field?]

4. Counting Roots. Let $K \subseteq L$ be a field extension and consider a polynomial $f(x) \in K[x]$. We say that $\alpha \in L$ is a root of f(x) if $f(\alpha) = 0$. (Recall the evaluation morphism from Problem 3.) You showed on HW1 that

$$\alpha \in L$$
 is a root of $f(x) \iff (x - \alpha)|f(x)$ in $L[x]$.

If $f(x) \in K[x]$ has degree *n*, prove that *f* has at most *n* distinct roots in any field extension. [Hint: Use induction on *n*. Recall that $\deg(fg) = \deg(f) + \deg(g)$.]

Proof. Assume for induction that a polynomial of degree n over a field has at most n roots in any field extension. Now let $L \supseteq K$ be a field extension and consider $f(x) \in K[x]$ of degree n + 1. We will show that f(x) has at most n + 1 roots in L. If f(x) has no roots in L we're done, so suppose that there exists $\alpha \in L$ such that $f(\alpha) = 0$. By Descartes' Factor Theorem we have

$$f(x) = (x - \alpha)g(x)$$

where $g(x) \in L[x]$. Since $n + 1 = \deg(f) = \deg(x - \alpha) + \deg(g) = 1 + \deg(g)$ we conclude that $\deg(g) = n$. Now let $\beta \in L$ be any **other** root of f(x). That is, assume that $\beta \neq \alpha$ and $f(\beta) = 0$. Then we have

$$0 = f(\beta) = (\beta - \alpha)g(\beta).$$

Since $\beta - \alpha \neq 0$ this implies that $g(\beta) = 0$. But by induction g(x) has at most n distinct roots in L. We conclude that f(x) has at most n + 1 roots in L.

[The most common application of this is the following: Let f(x) be a polynomial and suppose that f(x) has infinitely many roots. Then f(x) is the zero polynomial. This result fails over noncommutative rings. For example, the polynomial $f(x) = x^2 \in \mathbb{R}[x]$ has infinitely many roots in the ring of 2×2 matrices:

$$\begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ for all } \alpha \in \mathbb{R}.$$

പ

Where did the proof go wrong?]