
Math 562 Spring 2014
Homework 4 Drew Armstrong

Problems on Integers.

1. Z[
√
−1] is Euclidean. Historically, the first Euclidean domain considered (by Gauss)

beyond Z and Q[x] was the ring of Gaussian integers:

Z[
√
−1] := {a+ b

√
−1 : a, b ∈ Z}.

(a) We can think of Z[
√
−1] as a “square lattice” in the complex plane C. Draw it.

(b) Given 0 6= β ∈ Z[
√
−1] we can think of the principal ideal (β) = {µα : µ ∈ Z[

√
−1]}

as a “square sublattice” of Z[
√
−1]. Draw the ideal (2 +

√
−1).

(c) Consider the “size function” σ : Z[
√
−1]→ N defined by σ(a+b

√
−1) := |a+b

√
−1|2 =

a2 + b2. Given any α, β ∈ Z[
√
−1] with β 6= 0, show that we can find an element µβ of

the lattice (β) such that σ(α− µβ) < σ(β). [Hint: α lies in some square of the square
lattice (β).]

(d) Conclude that Z[
√
−1] is a Euclidean domain with size function σ.

2. Z[
√
−3] is not Euclidean. Now consider the ring

Z[
√
−3] := {a+ b

√
−3 : a, b ∈ Z} ⊆ C.

(a) Define the “norm function” N : Z[
√
−3]→ N by

N(a+ b
√
−3) := |a+ b

√
−3|2 = a2 + 3b2.

Prove that for all α, β ∈ Z[
√
−3] we have N(αβ) = N(α)N(β).

(b) Prove that α ∈ Z[
√
−3] is a unit if and only if N(α) = 1. [Hint: Use part (a).]

(c) Use part (b) to show that Z[
√
−3]× = {±1}. [Hint: If a2 + 3b2 = 1 for a, b ∈ Z then

we must have b = 0.]
(d) Prove that there is no α ∈ Z[

√
−3] such that N(α) = 2. [Hint:

√
2 is not an integer.]

(e) If N(α) = 4, show that α is irreducible in Z[
√
−3]. [Hint: If α is reducible then by

part (a) it has a factor of norm 2. Then use part (d).]
(f) Finally, note that we can factor 4 ∈ Z[

√
−3] in two ways:

2 · 2 = 4 = (1 +
√
−3)(1−

√
−3).

Show that 2 and 1±
√
−3 are irreducible, but that 2 is not associate to 1±

√
−3. We

conclude that Z[
√
−3] is not a UFD, hence it is not a PID, hence it is not Euclidean.

[Hint: Use parts (c) and (e).]

Problems on Polynomials Over a Field.

3. Evaluating a Polynomial. Let K ⊆ L be a field extension. That is, let K,L be fields
such that L is a subring of L. For all α ∈ L we define a function evα : K[x]→ L by∑

k

akx
k 7→

∑
k

akα
k.

We will often write f(α) := evα(f(x)) for simplicity.

(a) Prove that evα : K[x]→ L is a ring homomorphism.



(b) Since K[x] is a PID, the kernel of the evaluation is generated by a single polynomial

ker(evα) = (mα(x)) = {mα(x)f(x) : f(x) ∈ K[x]} .
We call mα(x) the minimal polynomial of α over K. (It is unique up to a nonzero
constant multiple.) Prove that mα(x) is irreducible. [Hint: Assume that mα(x) =
f(x)g(x). Evaluate at α to conclude that f(α) = 0 or g(α) = 0. Then what?]

(c) The image of the evaluation K[α] := im (evα) is called “K adjoin α”. It is the smallest
subring of L that contains K and α. If evα is not injective, prove that K[α] is a field.
[Hint: Show that the ideal (mα(x)) is maximal.]

4. Counting Roots. Let K ⊆ L be a field extension and consider a polynomial f(x) ∈ K[x].
We say that α ∈ L is a root of f(x) if f(α) = 0. (Recall the evaluation morphism from
Problem 3.) You showed on HW1 that

α ∈ L is a root of f(x) ⇐⇒ (x− α)|f(x) in L[x].

If f(x) ∈ K[x] has degree n, prove that f has at most n distinct roots in any field extension.
[Hint: Use induction on n. Recall that deg(fg) = deg(f) + deg(g).]


