Problems on Integers.

1. $\mathbb{Z}[\sqrt{-1}]$ is Euclidean. Historically, the first Euclidean domain considered (by Gauss) beyond \mathbb{Z} and $\mathbb{Q}[x]$ was the ring of Gaussian integers:

$$
\mathbb{Z}[\sqrt{-1}]:=\{a+b \sqrt{-1}: a, b \in \mathbb{Z}\} .
$$

(a) We can think of $\mathbb{Z}[\sqrt{-1}]$ as a "square lattice" in the complex plane \mathbb{C}. Draw it.
(b) Given $0 \neq \beta \in \mathbb{Z}[\sqrt{-1}]$ we can think of the principal ideal $(\beta)=\{\mu \alpha: \mu \in \mathbb{Z}[\sqrt{-1}]\}$ as a "square sublattice" of $\mathbb{Z}[\sqrt{-1}]$. Draw the ideal $(2+\sqrt{-1})$.
(c) Consider the "size function" $\sigma: \mathbb{Z}[\sqrt{-1}] \rightarrow \mathbb{N}$ defined by $\sigma(a+b \sqrt{-1}):=|a+b \sqrt{-1}|^{2}=$ $a^{2}+b^{2}$. Given any $\alpha, \beta \in \mathbb{Z}[\sqrt{-1}]$ with $\beta \neq 0$, show that we can find an element $\mu \beta$ of the lattice (β) such that $\sigma(\alpha-\mu \beta)<\sigma(\beta)$. [Hint: α lies in some square of the square lattice (β).]
(d) Conclude that $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain with size function σ.
2. $\mathbb{Z}[\sqrt{-3}]$ is not Euclidean. Now consider the ring

$$
\mathbb{Z}[\sqrt{-3}]:=\{a+b \sqrt{-3}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C} .
$$

(a) Define the "norm function" $N: \mathbb{Z}[\sqrt{-3}] \rightarrow \mathbb{N}$ by

$$
N(a+b \sqrt{-3}):=|a+b \sqrt{-3}|^{2}=a^{2}+3 b^{2} .
$$

Prove that for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$ we have $N(\alpha \beta)=N(\alpha) N(\beta)$.
(b) Prove that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is a unit if and only if $N(\alpha)=1$. [Hint: Use part (a).]
(c) Use part (b) to show that $\mathbb{Z}[\sqrt{-3}]^{\times}=\{ \pm 1\}$. [Hint: If $a^{2}+3 b^{2}=1$ for $a, b \in \mathbb{Z}$ then we must have $b=0$.]
(d) Prove that there is no $\alpha \in \mathbb{Z}[\sqrt{-3}]$ such that $N(\alpha)=2$. [Hint: $\sqrt{2}$ is not an integer.]
(e) If $N(\alpha)=4$, show that α is irreducible in $\mathbb{Z}[\sqrt{-3}]$. [Hint: If α is reducible then by part (a) it has a factor of norm 2. Then use part (d).]
(f) Finally, note that we can factor $4 \in \mathbb{Z}[\sqrt{-3}]$ in two ways:

$$
2 \cdot 2=4=(1+\sqrt{-3})(1-\sqrt{-3}) .
$$

Show that 2 and $1 \pm \sqrt{-3}$ are irreducible, but that 2 is not associate to $1 \pm \sqrt{-3}$. We conclude that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, hence it is not a PID, hence it is not Euclidean. [Hint: Use parts (c) and (e).]

Problems on Polynomials Over a Field.

3. Evaluating a Polynomial. Let $K \subseteq L$ be a field extension. That is, let K, L be fields such that L is a subring of L. For all $\alpha \in L$ we define a function $\mathrm{ev}_{\alpha}: K[x] \rightarrow L$ by

$$
\sum_{k} a_{k} x^{k} \mapsto \sum_{k} a_{k} \alpha^{k} .
$$

We will often write $f(\alpha):=\operatorname{ev}_{\alpha}(f(x))$ for simplicity.
(a) Prove that $\mathrm{ev}_{\alpha}: K[x] \rightarrow L$ is a ring homomorphism.
(b) Since $K[x]$ is a PID, the kernel of the evaluation is generated by a single polynomial

$$
\operatorname{ker}\left(\operatorname{ev}_{\alpha}\right)=\left(m_{\alpha}(x)\right)=\left\{m_{\alpha}(x) f(x): f(x) \in K[x]\right\}
$$

We call $m_{\alpha}(x)$ the minimal polynomial of α over K. (It is unique up to a nonzero constant multiple.) Prove that $m_{\alpha}(x)$ is irreducible. [Hint: Assume that $m_{\alpha}(x)=$ $f(x) g(x)$. Evaluate at α to conclude that $f(\alpha)=0$ or $g(\alpha)=0$. Then what?]
(c) The image of the evaluation $K[\alpha]:=\operatorname{im}\left(\operatorname{ev}_{\alpha}\right)$ is called " K adjoin α ". It is the smallest subring of L that contains K and α. If ev_{α} is not injective, prove that $K[\alpha]$ is a field. [Hint: Show that the ideal $\left(m_{\alpha}(x)\right)$ is maximal.]
4. Counting Roots. Let $K \subseteq L$ be a field extension and consider a polynomial $f(x) \in K[x]$. We say that $\alpha \in L$ is a root of $f(x)$ if $f(\alpha)=0$. (Recall the evaluation morphism from Problem 3.) You showed on HW1 that

$$
\alpha \in L \text { is a root of } f(x) \Longleftrightarrow(x-\alpha) \mid f(x) \text { in } L[x] .
$$

If $f(x) \in K[x]$ has degree n, prove that f has at most n distinct roots in any field extension. [Hint: Use induction on n. Recall that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.]

