
Math 562 Spring 2014
Homework 3 Drew Armstrong

Let R be a ring. We say that R is a domain if for all a, b ∈ R we have

ab = 0 =⇒ a = 0 or b = 0,

that is, if the ring has no zerodivisors.

1. Prime Ideals. Given an ideal I ≤ R in a general ring R we say that I is prime if for all
a, b ∈ R we have

ab ∈ I =⇒ a ∈ I or b ∈ I.
(a) If I ≤ R is a prime ideal, prove that R/I is a domain.
(b) If R/I is a domain, prove that I is a prime ideal.
(c) Prove that every maximal ideal is prime. [Hint: Every field is a domain.]

Proof. For part (a), let I ≤ R be a prime ideal. To show that R/I is a domain we consider
a+ I and b+ I in R/I such that (a+ I)(b+ I) = ab+ I = 0 + I (the zero coset). If ab+ I = I
then we have ab ∈ I. Since I is prime this implies that a ∈ I (i.e. a + I = I) or b ∈ I (i.e.
b+ I = I). We have shown that

(a+ I)(b+ I) = I =⇒ a+ I = I or b+ I = I,

and hence R/I is a domain.
For part (b), let R/I be a domain and consider a, b ∈ R such that ab ∈ I (i.e. ab+ I = I).

Since R/I is a domain the fact that (a + I)(b + I) = ab + I = I implies that a + I = I (i.e.
a ∈ I) or b+ I = I (i.e. b ∈ I). We have shown that

ab ∈ I =⇒ a ∈ I or b ∈ I,

hence I ≤ R is a prime ideal.
For part (c), let I ≤ R be a maximal ideal. In class we saw that this implies that the

quotient ring R/I is a field. Hence R/I is a domain (every field is a domain). Then by part
(b) we conclude that I ≤ R is a prime ideal. �

[Maximal always implies prime but not the other way around. However, in some very special rings
it may be true that prime implies maximal. See Problem 3 below.]

2. Domain = Subring of a Field. In this problem you will prove that R is a domain if
and only if R is a subring of a field.

(a) If R is a subring of a field K, prove that R is a domain.
(b) Let R be a domain and define the set of fractions:

Frac(R) :=
{[a
b

]
: a, b ∈ R, b 6= 0

}
.

At first these are just abstract symbols. We define a relation on Frac(R) by saying
that

[
a
b

]
=
[
c
d

]
if and only if ad = bc. Prove that this is an equivalence relation.

(c) Now we define “multiplication” and “addition” of fractions by:[a
b

]
·
[ c
d

]
:=
[ac
bd

]
and

[a
b

]
+
[ c
d

]
:=

[
ad+ bc

bd

]
.

Prove that these operations are well-defined.



(d) It follows that Frac(R) is a field (you don’t need to check this) since for all nonzero[
a
b

]
we have

[
a
b

]−1
=
[
b
a

]
. Prove that the map ι : R→ Frac(R) defined by ι(a) :=

[
a
1

]
is an injective ring homomorphism. Use the First Isomorphism Theorem to conclude
that R is isomorphic to a subring of its field of fractions Frac(R).

Proof. For part (a), let R be a subring of a field K. Suppose for contradiction that we have
a, b ∈ R with ab = 0 and a, b 6= 0. Since 0 6= a ∈ K there exists a−1 ∈ K (maybe not in R)
such that a−1a = 1. But then

ab = 0

a−1ab = a−10

b = 0.

Contradiction.
For part (b), consider the relation on fractions defined by

[
a
b

]
=
[
c
d

]
if and only if ad = bc.

To see that the relation is reflexive note that for all a, b ∈ R with b 6= 0 we have ab = ba and
hence

[
a
b

]
=
[
a
b

]
. To see that the relation is symmetric, consider a, b, c, d ∈ R with b, d 6= 0

such that
[
a
b

]
=
[
c
d

]
, i.e., ad = bc. Since the usual equals sign is symmetric this implies that

cb = da and hence
[
c
d

]
=
[
a
b

]
. To show that the relation is transitive, consider a, b, c, d, e, f ∈ R

with b, d, f 6= 0 and assume that
[
a
b

]
=
[
c
d

]
and

[
c
d

]
=
[
e
f

]
, i.e., ad = bc and cf = de. It

follows that

c(af − be) = c(af)− c(be)
= a(cf)− (bc)e

= a(de)− (ad)e

= 0.

Since R is a domain and c 6= 0 this implies that af − be = 0, hence
[
a
b

]
=
[
e
f

]
.

For part (c) we assume that
[
a
b

]
=
[
a′

b′

]
(i.e. ab′ = a′b) and

[
c
d

]
=
[
c′

d′

]
(i.e. cd′ = c′d). To

see that multiplication is well-defined note that

(ac)(b′d′) = (ab′)(cd′)

= (a′b)(c′d)

= (bd)(a′c′),

hence [a
b

] [ c
d

]
=
[ac
bd

]
=

[
a′c′

b′d′

]
=

[
a′

b′

] [
c′

d′

]
.

To see that addition is well-defined note that

(ad+ bc)(b′d′) = (ad)(b′d′) + (bc)(b′d′)

= (ab′)(dd′) + (bb′)(cd′)

= (a′b)(dd′) + (bb′)(c′d)

= (bd)(a′d′) + (bd)(b′c′)

= (bd)(a′d′ + b′c′),

hence [a
b

]
+
[ c
d

]
=

[
ad+ bc

bd

]
=

[
a′d′ + b′c′

b′d′

]
=

[
a′

b′

]
+

[
c′

d′

]
.



For part (d) consider a, b ∈ R. Then we have

ι(a) + ι(b) =
[a

1

]
+

[
b

1

]
=

[
a · 1 + 1 · b

1 · 1

]
=

[
a+ b

1

]
= ι(a+ b),

and

ι(a)ι(b) =
[a

1

] [ b
1

]
=

[
ab

1 · 1

]
=

[
ab

1

]
= ι(ab).

Since ι(1) =
[
1
1

]
is the unit element of Frac(R) we conclude that ι : R → Frac(R) is a ring

homomorphism. To see that it is injective, suppose that ι(a) =
[
a
1

]
=
[
b
1

]
= ι(b). By definition

of equivalence of fractions this implies that a = a · 1 = 1 · b = b. Finally, recall that the image
im ι is a subring of Frac(R). By the First Isomorphism Theorem we have

R =
R

(0)
=

R

ker ι
≈ im ι ⊆ Frac(R).

We conclude that R is isomorphic to a subring of the field Frac(R). �

3. Prime =⇒ Maximal in a PID. In Problem 1 we saw that every maximal ideal in a
general ring is prime. Now let R be a PID. We will see that every prime ideal in R is maximal.

(a) Let I ≤ R be a prime ideal. Since R is a PID we have I = (p) for some p ∈ R. Show
that for all a, b ∈ R we have

p|ab =⇒ p|a or p|b.
We say that p ∈ R is a prime element.

(b) We say that a ∈ R is an irreducible element if for all b, c ∈ R we have

a = bc =⇒ b or c is a unit.

Prove that every prime element in a PID is irreducible.
(c) Use this to conclude that every prime ideal in a PID is maximal. [Hint: Let I ≤ R be

a prime ideal. Then I = (p) for some prime element p ∈ R. By part (c), this p is also
irreducible. Then what?]

Proof. For part (a), let I ≤ R be a prime ideal. Since R is a PID we have I = (p) for some
p ∈ R. Now let a, b ∈ R such that p|ab, i.e., ab ∈ (p). Since (p) is a prime ideal this implies
that a ∈ (p) (i.e. p|a) or b ∈ (p) (i.e. p|b). We conclude that p ∈ R is a prime element.

For part (b), let p ∈ R be a prime element. We wish to show that p is irreducible. So
assume for contradiction that we have p = ab where a and b are both nonunits. In particular
we have p|ab, which implies that p|a or p|b since p is prime. Without loss of generality suppose
that p|a, i.e., a = pu for some u ∈ R. Substituting this into p = ab gives

p = ab

p = pub

p(1− ub) = 0.

Since R is a domain and p 6= 0 this implies that 1−ub = 0, and hence b is a unit. Contradiction.
[Note that part (b) only uses the fact that R is a domain. We will use the fact that R is a PID in
part (c).]

For part (c), let I ≤ R be a prime ideal. By part (a) this implies that I = (p) for
some prime element p ∈ R. Now we wish to show that (p) is a maximal ideal. Assume for
contradiction that there exists an ideal (p) < J < (1). Since R is a PID we have J = (a) for
some a ∈ R. Then (p) < (a) implies that there exists b ∈ R with p = ab where b is not a unit
(if b were a unit we would have a = pb−1 ∈ (p), hence (a) ≤ (p)), and (a) < (1) implies that



a is not a unit (recall HW1.6). We have expressed p = ab as a product of nonunits, which
contradicts the fact that p is irreducible. Hence (p) is maximal. �

4. Polynomials Over a Domain. Let R be a domain and consider the ring R[x]. Given a
polynomial f(x) =

∑
k≥0 akx

k ∈ R[x] we define deg(f) to be the largest k such that ak 6= 0.

(a) Given f, g ∈ R[x] prove that deg(fg) = deg(f) + deg(g).
(b) Prove that R[x] is a domain.
(c) Prove that the group of units is R[x]× = R×.
(d) Give a specific example to show that (c) can fail when R is not a domain. [Hint: Let

R = Z/4Z. Show that the polynomial 1 + 2x ∈ (Z/4Z)[x] is a unit.]

Proof. For part (a), suppose that f(x) =
∑

k akx
k has degree m and g(x) =

∑
k bkx

k has

degree n. Recall that the coefficient of xk in f(x)g(x) is
∑

i+j=k aibj . The coefficient of xm+n

is ambn which is nonzero because am 6= 0 and bn 6= 0. Note that if k > m+ n then i+ j = k
implies that either i > m (hence ai = 0) or j > n (hence bj = 0), and it follows that every term

in the sum
∑

i+j=k aibj is zero, hence the coefficient of xk in f(x)g(x) is zero. We conclude

that the degree of f(x)g(x) is m+ n.
For part (b), consider f, g ∈ R, both nonzero. We wish to show that fg is nonzero. If

deg(f) = deg(g) = 0 then f, g are constants and the fact that fg 6= 0 follows from the fact
that R is a domain. If either of deg(f), deg(g) is > 0 then deg(fg) = deg(f) + deg(g) > 0 and
we conclude that fg is not zero.

For part (c), we will abuse notation and identify the ring element a ∈ R with the polynomial
a+ 0x+ 0x2 + · · · ∈ R[x]. I claim that the unit polynomials are just the polynomials a+ 0x+
0x2 + · · · where a ∈ R is a unit. Indeed, suppose that a ∈ R× so there exists a−1 ∈ R. Then
a ∈ R[x] is also a unit with

(a+ 0x+ 0x2 + · · · )−1 = a−1 + 0x+ 0x2 + · · · ,

hence R× ⊆ R[x]×. Conversely, suppose that f(x) ∈ R[x] is a unit, i.e., there exists g(x) ∈ R[x]
such that f(x)g(x) = 1. Using part (a) gives

deg(f) + deg(g) = deg(fg) = deg(1) = 0.

Since deg(f), deg(g) ≥ 0 this implies that deg(f) = deg(g) = 0. Hence f is a constant and we
conclude that f ∈ R×. Hence R[x]× ⊆ R×.

For part (d), consider the polynomial 1 + 2x ∈ (Z/4Z)[x]. This polynomial is not constant
because 2 6= 0 in Z/4Z. Nevertheless, it is a unit because

(1 + 2x)(1 + 2x) = 1 + 4x+ 4x2 = 1 + 0x+ 0x2 = 1 ∈ (Z/4Z)[x].

�

[The general theorem says the following: The polynomial f(x) ∈ R[x] is a unit if and only if
its constant coefficient is a unit and every other coefficient is nilpotent in R. (For example, 2 is
nilpotent in Z/4Z because 22 = 0.) Try to prove it if you want.]

5. Prime 6=⇒ Maximal in General.

(a) Let I ≤ R be an ideal in a general ring and consider the map

ϕ : R[x]→ (R/I)[x]

defined by
∑

k akx
k 7→

∑
k(ak + I)xk. Show that ϕ is a surjective ring homomorphism.



(b) Show that the kernel of ϕ is the set

I[x] :=

{∑
k

akx
k ∈ R[x] : ak ∈ I for all k

}
,

and hence I[x] ≤ R[x] is an ideal.
(c) Use the First Isomorphism Theorem to conclude that (R/I)[x] ≈ (R[x])/(I[x]).
(d) Consider the prime (hence maximal) ideal 3Z in the PID Z. Show that 3Z[x] is a prime

ideal of Z[x] that is not maximal. Conclude that Z[x] is not a PID. [Hint: Use Problem
4 to show that (Z/3Z)[x] is a domain but not a field. Use part (c) and Problem 1 to
conclude that 3Z[x] is prime but not maximal. Use Problem 3 to conclude that Z[x] is
not a PID.]

Proof. For part (a), consider polynomials f(x) =
∑

k akx
k and g(x) =

∑
k bkx

k in R[x]. Then
we have

ϕ(f + g) = ϕ

(∑
k

(ak + bk)xk

)
=
∑
k

((ak + bk) + I)xk

=
∑
k

((ak + I) + (bk + I))xk

=
∑
k

(ak + I)xk +
∑
k

(bk + I)xk

= ϕ(f) + ϕ(g),

and

ϕ(fg) = ϕ

∑
k

 ∑
i+j=k

aibj

xk


=
∑
k

 ∑
i+j=k

aibj

+ I

xk

=
∑
k

 ∑
i+j=k

(aibj + I)

xk

=
∑
k

 ∑
i+j=k

(ai + I)(bj + I)

xk

=

(∑
k

(ak + I)xk

)(∑
k

(bk + I)xk

)
= ϕ(f)ϕ(g).

Finally, ϕ sends the identify polynomial 1 + 0x+ 0x2 + · · · in R[x] to the identity polynomial
(1+I)+(0+I)x+(0+I)x2+ · · · in (R/I)[x]. Thus ϕ is a ring homomorphism. It is surjective
because the canonical map a 7→ a+ I is a surjection R→ R/I.



For part (b), note that f(x) =
∑

k akx
k ∈ R[x] is in the kernel of ϕ if and only if

∑
k(ak +

I)xk is the zero polynomial in (R/I)[x]. In other words, we have f(x) ∈ kerϕ if and only if
ak + I = I (i.e. ak ∈ I) for all k. It follows that kerϕ = I[x] and that this set is an ideal.

For part (c), the First Isomorphism Theorem says that

R[x]

I[x]
=
R[x]

kerϕ
≈ imϕ = (R/I)[x].

For part (d), consider the ideal 3Z ≤ Z in the ring of integers. By part (c) we have

Z[x]

3Z[x]
≈ (Z/3Z)[x].

Since 3Z ≤ Z is a prime ideal (because 3 is a prime integer), Problem 1(a) says that Z/3Z
is a domain. Then Problem 4(b) says that (Z/3Z)[x] is a domain, and Problem 1(c) implies
that 3Z[x] ≤ Z[x] is a prime ideal. However, note that (Z/3Z)[x] is not a field. Indeed,
the nonzero element x ∈ (Z/3Z)[x] has no multiplicative inverse because for all polynomials
f(x) ∈ (Z/3Z)[x] we have deg(xf(x)) = deg(x) + deg(f) = deg(f) + 1 > 0 but deg(1) = 0.
Since Z[x]/3Z[x] is not a field, it follows that 3Z[x] ≤ Z[x] is not a maximal ideal. We have
shown that 3Z[x] ≤ Z[x] is a prime ideal that is not maximal. By Problem 3(c) it follows that
the domain Z[x] is not a PID. �

[We took a bit of a sneaky route to prove that Z[x] is not a PID. In particular, we showed that
nonprincipal ideals exist, but we didn’t give an example of one. Here’s an example: The set of
polynomials in Z[x] whose constant term is divisible by 3 is a nonprincipal ideal in Z[x] (i.e., it is
not of the form (f(x)) for any f(x) ∈ Z[x]). But it is generated by the two elements 3 and x.
Try to prove that if you like. It turns out that every prime ideal of Z[x] can be generated by one
or two elements. So it’s not very far from a PID.]


