Math 562 Spring 2014
Homework 3 Drew Armstrong

Let R be a ring. We say that R is a domain if for all a,b € R we have
ab=0 =— a=0o0rb=0,

that is, if the ring has no zerodivisors.

1. Prime Ideals. Given an ideal I < R in a general ring R we say that I is prime if for all
a,b € R we have
abel =— aclorbel.

(a) If I < R is a prime ideal, prove that R/I is a domain.
(b) If R/I is a domain, prove that I is a prime ideal.
(c) Prove that every maximal ideal is prime. [Hint: Every field is a domain.]

Proof. For part (a), let I < R be a prime ideal. To show that R/I is a domain we consider
a+1I and b+ 1 in R/I such that (a+I)(b+1) =ab+1 =0+1I (the zero coset). If ab+1 =1
then we have ab € I. Since [ is prime this implies that a € I (i.e. a+ 1 =1)or b e I (ie.
b+ I =1). We have shown that

(a+D)b+1)=1 = a+I=Torb+I=1,

and hence R/I is a domain.

For part (b), let R/I be a domain and consider a,b € R such that ab € I (i.e. ab+ 1 =1).
Since R/I is a domain the fact that (a +I)(b+ 1) = ab+ I = I implies that a + 1 = I (i.e.
acl)orb+1=1 (ie. be ). We have shown that

abel =— a€clorbel,

hence I < R is a prime ideal.

For part (c), let I < R be a maximal ideal. In class we saw that this implies that the
quotient ring R/I is a field. Hence R/I is a domain (every field is a domain). Then by part
(b) we conclude that I < R is a prime ideal. O

[Maximal always implies prime but not the other way around. However, in some very special rings
it may be true that prime implies maximal. See Problem 3 below.]

2. Domain = Subring of a Field. In this problem you will prove that R is a domain if
and only if R is a subring of a field.

(a) If R is a subring of a field K, prove that R is a domain.
(b) Let R be a domain and define the set of fractions:

Frac(R) := {[%] ta,be R,b# 0}.

At first these are just abstract symbols. We define a relation on Frac(R) by saying

that [%] = [5] if and only if ad = be. Prove that this is an equivalence relation.

(¢) Now we define “multiplication” and “addition” of fractions by:

9 [ = 2] wma [2] 4[5 =[5

Prove that these operations are well-defined.




(d) It follows that Frac(R) is a field (you don’t need to check this) since for all nonzero

(4] we have [%]71 = [2]. Prove that the map ¢ : R — Frac(R) defined by t(a) := [¢]
is an injective ring homomorphism. Use the First Isomorphism Theorem to conclude

that R is isomorphic to a subring of its field of fractions Frac(R).

Proof. For part (a), let R be a subring of a field K. Suppose for contradiction that we have
a,b € R with ab =0 and a,b # 0. Since 0 # a € K there exists a~! € K (maybe not in R)
such that a~'a = 1. But then

ab=0
atab=a"10
b=0.

Contradiction.

For part (b), consider the relation on fractions defined by [¢] = [4] if and only if ad = be.
To see that the relation is reflexive note that for all a,b € R with b # 0 we have ab = ba and
hence [%} = [%] To see that the relation is symmetric, consider a,b,c,d € R with b,d # 0

such that [%] = [g], i.e., ad = bc. Since the usual equals sign is symmetric this implies that
¢b = da and hence [5] = [%] To show that the relation is transitive, consider a, b,c,d,e, f € R
with b,d, f # 0 and assume that [%] = [g] and [5] = [?], i.e., ad = bc and cf = de. It
follows that
claf —be) =claf) — c(be)
— alef) - (be)e
(

a
0.

Since R is a domain and ¢ # 0 this implies that af — be = 0, hence [%} = {?]

For part (c) we assume that [#] = [‘g—:} (i.e. ab' = a'b) and [§] = [g—l, (i.e. ed =d). To
see that multiplication is well-defined note that

hence

I
| —
| &
| S
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5 (3] = 3l =[]

To see that addition is well-defined note that

hence

5+ 13 =[] = 5] = 7]+ )



For part (d) consider a,b € R. Then we have

a0 - {1+ [ - [ < [5] on

)= [3] [3] = [5] = | = e

Since +(1) = [7] is the unit element of Frac(R) we conclude that ¢ : R — Frac(R) is a ring
homomorphism. To see that it is injective, suppose that ¢(a) = [%] = [%] = 1(b). By definition
of equivalence of fractions this implies that a = a-1 =1-b = b. Finally, recall that the image

im¢ is a subring of Frac(R). By the First Isomorphism Theorem we have

and

R R
R=— =™ ~im.C Frac(R).
0~ kers im¢ C Frac(R)
We conclude that R is isomorphic to a subring of the field Frac(R). O

3. Prime — Maximal in a PID. In Problem 1 we saw that every maximal ideal in a
general ring is prime. Now let R be a PID. We will see that every prime ideal in R is maximal.

(a) Let I < R be a prime ideal. Since R is a PID we have I = (p) for some p € R. Show
that for all a,b € R we have

plab = pla or plb.

We say that p € R is a prime element.
(b) We say that a € R is an irreducible element if for all b,c € R we have

a=bc =— b or ¢ is a unit.

Prove that every prime element in a PID is irreducible.

(c) Use this to conclude that every prime ideal in a PID is maximal. [Hint: Let I < R be
a prime ideal. Then I = (p) for some prime element p € R. By part (c), this p is also
irreducible. Then what?]

Proof. For part (a), let I < R be a prime ideal. Since R is a PID we have I = (p) for some
p € R. Now let a,b € R such that p|ab, i.e., ab € (p). Since (p) is a prime ideal this implies
that a € (p) (i.e. pla) or b € (p) (i.e. p|b). We conclude that p € R is a prime element.

For part (b), let p € R be a prime element. We wish to show that p is irreducible. So
assume for contradiction that we have p = ab where a and b are both nonunits. In particular
we have p|ab, which implies that p|a or p|b since p is prime. Without loss of generality suppose
that pla, i.e., a = pu for some u € R. Substituting this into p = ab gives

p=ab
p = pub
p(1 —wub) =0.

Since R is a domain and p # 0 this implies that 1—ub = 0, and hence b is a unit. Contradiction.
[Note that part (b) only uses the fact that R is a domain. We will use the fact that R is a PID in
part (c).]

For part (c), let I < R be a prime ideal. By part (a) this implies that I = (p) for
some prime element p € R. Now we wish to show that (p) is a maximal ideal. Assume for
contradiction that there exists an ideal (p) < J < (1). Since R is a PID we have J = (a) for
some a € R. Then (p) < (a) implies that there exists b € R with p = ab where b is not a unit
(if b were a unit we would have a = pb~! € (p), hence (a) < (p)), and (a) < (1) implies that



a is not a unit (recall HW1.6). We have expressed p = ab as a product of nonunits, which
contradicts the fact that p is irreducible. Hence (p) is maximal. O

4. Polynomials Over a Domain. Let R be a domain and consider the ring R[z]. Given a
polynomial f(z) =3~ apx® € R[z] we define deg(f) to be the largest k such that aj, # 0.

(a) Given f,g € R[x] prove that deg(fg) = deg(f) + deg(g).

(b) Prove that R[z] is a domain.

(¢) Prove that the group of units is R[z]* = R*.

(d) Give a specific example to show that (c) can fail when R is not a domain. [Hint: Let
R = 7/AZ. Show that the polynomial 1 + 2z € (Z/47Z)[x] is a unit.]

Proof. For part (a), suppose that f(z) = >, axz® has degree m and g(z) = Y, bypa* has
degree n. Recall that the coefficient of z* in f(z)g(z) is > it j=k aibj. The coefficient of 2"
is amby, which is nonzero because a,, # 0 and b, # 0. Note that if K > m +n then i +j =k
implies that either ¢ > m (hence a; = 0) or j > n (hence b; = 0), and it follows that every term
in the sum »_,, ., a;b; is zero, hence the coefficient of ¥ in f(2)g(z) is zero. We conclude
that the degree of f(x)g(z) is m + n.

For part (b), consider f,g € R, both nonzero. We wish to show that fg is nonzero. If
deg(f) = deg(g) = 0 then f,g are constants and the fact that fg # 0 follows from the fact
that R is a domain. If either of deg(f),deg(g) is > 0 then deg(fg) = deg(f) + deg(g) > 0 and
we conclude that fg is not zero.

For part (c¢), we will abuse notation and identify the ring element a € R with the polynomial
a+0x+0z%+4--- € R[z]. I claim that the unit polynomials are just the polynomials a 4 0x +
022 + --- where a € R is a unit. Indeed, suppose that a € R* so there exists a~' € R. Then
a € Rx] is also a unit with

(a+0x+02°+--- ) t=at+0x+ 022+,

hence R* C R[x]*. Conversely, suppose that f(z) € R[z] is a unit, i.e., there exists g(z) € R[x]
such that f(z)g(x) = 1. Using part (a) gives

deg(f) + deg(g) = deg(fg) = deg(1) = 0.

Since deg(f), deg(g) > 0 this implies that deg(f) = deg(g) = 0. Hence f is a constant and we
conclude that f € R*. Hence R[z]* C R*.

For part (d), consider the polynomial 1+ 2z € (Z/47Z)[z]. This polynomial is not constant
because 2 # 0 in Z/4Z. Nevertheless, it is a unit because

(1+22)(1+22) =144z +42® = 1 4+ 0z + 02% = 1 € (Z/47)[x].
O

[The general theorem says the following: The polynomial f(xz) € Rx] is a unit if and only if
its constant coefficient is a unit and every other coefficient is nilpotent in R. (For example, 2 is
nilpotent in Z/47 because 22 = 0.) Try to prove it if you want.]

5. Prime == Maximal in General.

(a) Let I < R be an ideal in a general ring and consider the map
@ : Rlz] = (R/T)[x]
defined by >, axx® + >, (ar + I)z*. Show that ¢ is a surjective ring homomorphism.



(b) Show that the kernel of ¢ is the set

I[z] := {Z arz® € Rlz] : ay, € I for all k‘} )

k

and hence I[z] < Rz] is an ideal.

(c) Use the First Isomorphism Theorem to conclude that (R/I)[z] ~ (R[z])/(I[z]).

(d) Consider the prime (hence maximal) ideal 3Z in the PID Z. Show that 3Z[x] is a prime
ideal of Z[x] that is not maximal. Conclude that Z[x] is not a PID. [Hint: Use Problem
4 to show that (Z/37Z)[x] is a domain but not a field. Use part (c¢) and Problem 1 to
conclude that 3Z[z| is prime but not maximal. Use Problem 3 to conclude that Z[z] is
not a PID.]

Proof. For part (a), consider polynomials f(z) = >, axz® and g(z) = 3, bpa® in R[z]. Then
we have

e(f+9)=¢ (Z(ak + bk)xk>

I
((a + bg) + I)2*

((ar + 1)+ (b + 1)) 2*

I
- - -

and

z+] k

Z (aibj +1) z*

I
ai\g

i+j=k
=> [ D @+ D +1) ]
k \itj=k
(Z ap + Iz ) (Z(bk + I)xk)
= so(;)w( )- k

Finally, ¢ sends the identify polynomial 1 + 0z + 0z2 + - -- in R[x] to the identity polynomial
(14+1)+ O+ Dz+(0+1)x2+--- in (R/I)[z]. Thus ¢ is a ring homomorphism. It is surjective
because the canonical map a — a + I is a surjection R — R/I.



For part (b), note that f(z) =", arz* € R[z] is in the kernel of ¢ if and only if 3, (ax +
I)x* is the zero polynomial in (R/I)[z]. In other words, we have f(z) € ker ¢ if and only if
ar+ 1 =1 (i.e. a; € I) for all k. It follows that ker ¢ = I[z] and that this set is an ideal.

For part (c), the First Isomorphism Theorem says that

R[z] R[z] .
— = ~ = I|x].
For part (d), consider the ideal 3Z < Z in the ring of integers. By part (c) we have
Z[z]
~ (7./37)|x].
o 23

Since 3Z < Z is a prime ideal (because 3 is a prime integer), Problem 1(a) says that Z/3Z
is a domain. Then Problem 4(b) says that (Z/3Z)[z] is a domain, and Problem 1(c) implies
that 3Z[z] < Z[x] is a prime ideal. However, note that (Z/3Z)[x] is not a field. Indeed,
the nonzero element = € (Z/3Z)[x] has no multiplicative inverse because for all polynomials
f(z) € (Z/3Z)[z] we have deg(xf(x)) = deg(z) + deg(f) = deg(f) +1 > 0 but deg(1) = 0.
Since Z[x]/3Z[x] is not a field, it follows that 3Z[z] < Z[z] is not a maximal ideal. We have
shown that 3Z[x] < Z[x] is a prime ideal that is not maximal. By Problem 3(c) it follows that
the domain Z[z] is not a PID. O

[We took a bit of a sneaky route to prove that Z[z] is not a PID. In particular, we showed that
nonprincipal ideals exist, but we didn't give an example of one. Here's an example: The set of
polynomials in Z[x] whose constant term is divisible by 3 is a nonprincipal ideal in Z[x] (i.e., it is
not of the form (f(x)) for any f(z) € Z[z]). But it is generated by the two elements 3 and x.
Try to prove that if you like. It turns out that every prime ideal of Z[x] can be generated by one
or two elements. So it's not very far from a PID.]



