Let R be a ring. We say that R is a domain if for all $a, b \in R$ we have

$$
a b=0 \quad \Longrightarrow \quad a=0 \text { or } b=0,
$$

that is, if the ring has no zerodivisors.

1. Prime Ideals. Given an ideal $I \leq R$ in a general ring R we say that I is prime if for all $a, b \in R$ we have

$$
a b \in I \quad \Longrightarrow \quad a \in I \text { or } b \in I .
$$

(a) If $I \leq R$ is a prime ideal, prove that R / I is a domain.
(b) If R / I is a domain, prove that I is a prime ideal.
(c) Prove that every maximal ideal is prime. [Hint: Every field is a domain.]

Proof. For part (a), let $I \leq R$ be a prime ideal. To show that R / I is a domain we consider $a+I$ and $b+I$ in R / I such that $(a+I)(b+I)=a b+I=0+I$ (the zero coset). If $a b+I=I$ then we have $a b \in I$. Since I is prime this implies that $a \in I$ (i.e. $a+I=I$) or $b \in I$ (i.e. $b+I=I)$. We have shown that

$$
(a+I)(b+I)=I \quad \Longrightarrow \quad a+I=I \text { or } b+I=I,
$$

and hence R / I is a domain.
For part (b), let R / I be a domain and consider $a, b \in R$ such that $a b \in I$ (i.e. $a b+I=I$). Since R / I is a domain the fact that $(a+I)(b+I)=a b+I=I$ implies that $a+I=I$ (i.e. $a \in I$) or $b+I=I$ (i.e. $b \in I$). We have shown that

$$
a b \in I \quad \Longrightarrow \quad a \in I \text { or } b \in I,
$$

hence $I \leq R$ is a prime ideal.
For part (c), let $I \leq R$ be a maximal ideal. In class we saw that this implies that the quotient ring R / I is a field. Hence R / I is a domain (every field is a domain). Then by part (b) we conclude that $I \leq R$ is a prime ideal.
[Maximal always implies prime but not the other way around. However, in some very special rings it may be true that prime implies maximal. See Problem 3 below.]
2. Domain $=$ Subring of a Field. In this problem you will prove that R is a domain if and only if R is a subring of a field.
(a) If R is a subring of a field K, prove that R is a domain.
(b) Let R be a domain and define the set of fractions:

$$
\operatorname{Frac}(R):=\left\{\left[\frac{a}{b}\right]: a, b \in R, b \neq 0\right\} .
$$

At first these are just abstract symbols. We define a relation on $\operatorname{Frac}(R)$ by saying that $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$ if and only if $a d=b c$. Prove that this is an equivalence relation.
(c) Now we define "multiplication" and "addition" of fractions by:

$$
\left[\frac{a}{b}\right] \cdot\left[\frac{c}{d}\right]:=\left[\frac{a c}{b d}\right] \quad \text { and } \quad\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]:=\left[\frac{a d+b c}{b d}\right] .
$$

Prove that these operations are well-defined.
(d) It follows that $\operatorname{Frac}(R)$ is a field (you don't need to check this) since for all nonzero $\left[\frac{a}{b}\right]$ we have $\left[\frac{a}{b}\right]^{-1}=\left[\frac{b}{a}\right]$. Prove that the map $\iota: R \rightarrow \operatorname{Frac}(R)$ defined by $\iota(a):=\left[\frac{a}{1}\right]$ is an injective ring homomorphism. Use the First Isomorphism Theorem to conclude that R is isomorphic to a subring of its field of fractions $\operatorname{Frac}(R)$.

Proof. For part (a), let R be a subring of a field K. Suppose for contradiction that we have $a, b \in R$ with $a b=0$ and $a, b \neq 0$. Since $0 \neq a \in K$ there exists $a^{-1} \in K$ (maybe not in R) such that $a^{-1} a=1$. But then

$$
\begin{aligned}
a b & =0 \\
a^{-1} a b & =a^{-1} 0 \\
b & =0 .
\end{aligned}
$$

Contradiction.
For part (b), consider the relation on fractions defined by $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$ if and only if $a d=b c$. To see that the relation is reflexive note that for all $a, b \in R$ with $b \neq 0$ we have $a b=b a$ and hence $\left[\frac{a}{b}\right]=\left[\frac{a}{b}\right]$. To see that the relation is symmetric, consider $a, b, c, d \in R$ with $b, d \neq 0$ such that $\left[\begin{array}{l}\left.\frac{a}{b}\right]\end{array}\right]\left[\begin{array}{c}c \\ d\end{array}\right]$, i.e., $a d=b c$. Since the usual equals sign is symmetric this implies that $c b=d a$ and hence $\left[\frac{c}{d}\right]=\left[\frac{a}{b}\right]$. To show that the relation is transitive, consider $a, b, c, d, e, f \in R$ with $b, d, f \neq 0$ and assume that $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$ and $\left[\frac{c}{d}\right]=\left[\frac{e}{f}\right]$, i.e., $a d=b c$ and $c f=d e$. It follows that

$$
\begin{aligned}
c(a f-b e) & =c(a f)-c(b e) \\
& =a(c f)-(b c) e \\
& =a(d e)-(a d) e \\
& =0 .
\end{aligned}
$$

Since R is a domain and $c \neq 0$ this implies that $a f-b e=0$, hence $\left[\frac{a}{b}\right]=\left[\frac{e}{f}\right]$.
For part (c) we assume that $\left[\frac{a}{b}\right]=\left[\begin{array}{c}a^{\prime} \\ b^{\prime}\end{array}\right]$ (i.e. $a b^{\prime}=a^{\prime} b$) and $\left[\frac{c}{d}\right]=\left[\frac{c^{\prime}}{d^{\prime}}\right]$ (i.e. $c d^{\prime}=c^{\prime} d$). To see that multiplication is well-defined note that

$$
\begin{aligned}
(a c)\left(b^{\prime} d^{\prime}\right) & =\left(a b^{\prime}\right)\left(c d^{\prime}\right) \\
& =\left(a^{\prime} b\right)\left(c^{\prime} d\right) \\
& =(b d)\left(a^{\prime} c^{\prime}\right),
\end{aligned}
$$

hence

$$
\left[\frac{a}{b}\right]\left[\frac{c}{d}\right]=\left[\frac{a c}{b d}\right]=\left[\frac{a^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}\right]=\left[\frac{a^{\prime}}{b^{\prime}}\right]\left[\frac{c^{\prime}}{d^{\prime}}\right] .
$$

To see that addition is well-defined note that

$$
\begin{aligned}
(a d+b c)\left(b^{\prime} d^{\prime}\right) & =(a d)\left(b^{\prime} d^{\prime}\right)+(b c)\left(b^{\prime} d^{\prime}\right) \\
& =\left(a b^{\prime}\right)\left(d d^{\prime}\right)+\left(b b^{\prime}\right)\left(c d^{\prime}\right) \\
& =\left(a^{\prime} b\right)\left(d d^{\prime}\right)+\left(b b^{\prime}\right)\left(c^{\prime} d\right) \\
& =(b d)\left(a^{\prime} d^{\prime}\right)+(b d)\left(b^{\prime} c^{\prime}\right) \\
& =(b d)\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right),
\end{aligned}
$$

hence

$$
\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]=\left[\frac{a d+b c}{b d}\right]=\left[\frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}\right]=\left[\frac{a^{\prime}}{b^{\prime}}\right]+\left[\frac{c^{\prime}}{d^{\prime}}\right] .
$$

For part (d) consider $a, b \in R$. Then we have

$$
\iota(a)+\iota(b)=\left[\frac{a}{1}\right]+\left[\frac{b}{1}\right]=\left[\frac{a \cdot 1+1 \cdot b}{1 \cdot 1}\right]=\left[\frac{a+b}{1}\right]=\iota(a+b),
$$

and

$$
\iota(a) \iota(b)=\left[\frac{a}{1}\right]\left[\frac{b}{1}\right]=\left[\frac{a b}{1 \cdot 1}\right]=\left[\frac{a b}{1}\right]=\iota(a b) .
$$

Since $\iota(1)=\left[\frac{1}{1}\right]$ is the unit element of $\operatorname{Frac}(R)$ we conclude that $\iota: R \rightarrow \operatorname{Frac}(R)$ is a ring homomorphism. To see that it is injective, suppose that $\iota(a)=\left[\frac{a}{1}\right]=\left[\frac{b}{1}\right]=\iota(b)$. By definition of equivalence of fractions this implies that $a=a \cdot 1=1 \cdot b=b$. Finally, recall that the image $\operatorname{im} \iota$ is a subring of $\operatorname{Frac}(R)$. By the First Isomorphism Theorem we have

$$
R=\frac{R}{(0)}=\frac{R}{\operatorname{ker} \iota} \approx \operatorname{im} \iota \subseteq \operatorname{Frac}(R) .
$$

We conclude that R is isomorphic to a subring of the field $\operatorname{Frac}(R)$.
3. Prime \Longrightarrow Maximal in a PID. In Problem 1 we saw that every maximal ideal in a general ring is prime. Now let R be a PID. We will see that every prime ideal in R is maximal.
(a) Let $I \leq R$ be a prime ideal. Since R is a PID we have $I=(p)$ for some $p \in R$. Show that for all $a, b \in R$ we have

$$
p|a b \quad \Longrightarrow \quad p| a \text { or } p \mid b .
$$

We say that $p \in R$ is a prime element.
(b) We say that $a \in R$ is an irreducible element if for all $b, c \in R$ we have

$$
a=b c \quad \Longrightarrow \quad b \text { or } c \text { is a unit. }
$$

Prove that every prime element in a PID is irreducible.
(c) Use this to conclude that every prime ideal in a PID is maximal. [Hint: Let $I \leq R$ be a prime ideal. Then $I=(p)$ for some prime element $p \in R$. By part (c), this p is also irreducible. Then what?]
Proof. For part (a), let $I \leq R$ be a prime ideal. Since R is a PID we have $I=(p)$ for some $p \in R$. Now let $a, b \in R$ such that $p \mid a b$, i.e., $a b \in(p)$. Since (p) is a prime ideal this implies that $a \in(p)$ (i.e. $p \mid a)$ or $b \in(p)$ (i.e. $p \mid b)$. We conclude that $p \in R$ is a prime element.

For part (b), let $p \in R$ be a prime element. We wish to show that p is irreducible. So assume for contradiction that we have $p=a b$ where a and b are both nonunits. In particular we have $p \mid a b$, which implies that $p \mid a$ or $p \mid b$ since p is prime. Without loss of generality suppose that $p \mid a$, i.e., $a=p u$ for some $u \in R$. Substituting this into $p=a b$ gives

$$
\begin{aligned}
p & =a b \\
p & =p u b \\
p(1-u b) & =0 .
\end{aligned}
$$

Since R is a domain and $p \neq 0$ this implies that $1-u b=0$, and hence b is a unit. Contradiction. [Note that part (b) only uses the fact that R is a domain. We will use the fact that R is a PID in part (c).]

For part (c), let $I \leq R$ be a prime ideal. By part (a) this implies that $I=(p)$ for some prime element $p \in R$. Now we wish to show that (p) is a maximal ideal. Assume for contradiction that there exists an ideal $(p)<J<(1)$. Since R is a PID we have $J=(a)$ for some $a \in R$. Then $(p)<(a)$ implies that there exists $b \in R$ with $p=a b$ where b is not a unit (if b were a unit we would have $a=p b^{-1} \in(p)$, hence $(a) \leq(p)$), and $(a)<(1)$ implies that
a is not a unit (recall HW1.6). We have expressed $p=a b$ as a product of nonunits, which contradicts the fact that p is irreducible. Hence (p) is maximal.
4. Polynomials Over a Domain. Let R be a domain and consider the ring $R[x]$. Given a polynomial $f(x)=\sum_{k>0} a_{k} x^{k} \in R[x]$ we define $\operatorname{deg}(f)$ to be the largest k such that $a_{k} \neq 0$.
(a) Given $f, g \in R[x]$ prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
(b) Prove that $R[x]$ is a domain.
(c) Prove that the group of units is $R[x]^{\times}=R^{\times}$.
(d) Give a specific example to show that (c) can fail when R is not a domain. [Hint: Let $R=\mathbb{Z} / 4 \mathbb{Z}$. Show that the polynomial $1+2 x \in(\mathbb{Z} / 4 \mathbb{Z})[x]$ is a unit. $]$
Proof. For part (a), suppose that $f(x)=\sum_{k} a_{k} x^{k}$ has degree m and $g(x)=\sum_{k} b_{k} x^{k}$ has degree n. Recall that the coefficient of x^{k} in $f(x) g(x)$ is $\sum_{i+j=k} a_{i} b_{j}$. The coefficient of x^{m+n} is $a_{m} b_{n}$ which is nonzero because $a_{m} \neq 0$ and $b_{n} \neq 0$. Note that if $k>m+n$ then $i+j=k$ implies that either $i>m$ (hence $a_{i}=0$) or $j>n$ (hence $b_{j}=0$), and it follows that every term in the sum $\sum_{i+j=k} a_{i} b_{j}$ is zero, hence the coefficient of x^{k} in $f(x) g(x)$ is zero. We conclude that the degree of $f(x) g(x)$ is $m+n$.

For part (b), consider $f, g \in R$, both nonzero. We wish to show that $f g$ is nonzero. If $\operatorname{deg}(f)=\operatorname{deg}(g)=0$ then f, g are constants and the fact that $f g \neq 0$ follows from the fact that R is a domain. If either of $\operatorname{deg}(f), \operatorname{deg}(g)$ is >0 then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)>0$ and we conclude that $f g$ is not zero.

For part (c), we will abuse notation and identify the ring element $a \in R$ with the polynomial $a+0 x+0 x^{2}+\cdots \in R[x]$. I claim that the unit polynomials are just the polynomials $a+0 x+$ $0 x^{2}+\cdots$ where $a \in R$ is a unit. Indeed, suppose that $a \in R^{\times}$so there exists $a^{-1} \in R$. Then $a \in R[x]$ is also a unit with

$$
\left(a+0 x+0 x^{2}+\cdots\right)^{-1}=a^{-1}+0 x+0 x^{2}+\cdots,
$$

hence $R^{\times} \subseteq R[x]^{\times}$. Conversely, suppose that $f(x) \in R[x]$ is a unit, i.e., there exists $g(x) \in R[x]$ such that $f(x) g(x)=1$. Using part (a) gives

$$
\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f g)=\operatorname{deg}(1)=0
$$

Since $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$ this implies that $\operatorname{deg}(f)=\operatorname{deg}(g)=0$. Hence f is a constant and we conclude that $f \in R^{\times}$. Hence $R[x]^{\times} \subseteq R^{\times}$.

For part (d), consider the polynomial $1+2 x \in(\mathbb{Z} / 4 \mathbb{Z})[x]$. This polynomial is not constant because $2 \neq 0$ in $\mathbb{Z} / 4 \mathbb{Z}$. Nevertheless, it is a unit because

$$
(1+2 x)(1+2 x)=1+4 x+4 x^{2}=1+0 x+0 x^{2}=1 \in(\mathbb{Z} / 4 \mathbb{Z})[x] .
$$

[The general theorem says the following: The polynomial $f(x) \in R[x]$ is a unit if and only if its constant coefficient is a unit and every other coefficient is nilpotent in R. (For example, 2 is nilpotent in $\mathbb{Z} / 4 \mathbb{Z}$ because $2^{2}=0$.) Try to prove it if you want.]

5. Prime \nRightarrow Maximal in General.

(a) Let $I \leq R$ be an ideal in a general ring and consider the map

$$
\varphi: R[x] \rightarrow(R / I)[x]
$$

defined by $\sum_{k} a_{k} x^{k} \mapsto \sum_{k}\left(a_{k}+I\right) x^{k}$. Show that φ is a surjective ring homomorphism.
(b) Show that the kernel of φ is the set

$$
I[x]:=\left\{\sum_{k} a_{k} x^{k} \in R[x]: a_{k} \in I \text { for all } k\right\}
$$

and hence $I[x] \leq R[x]$ is an ideal.
(c) Use the First Isomorphism Theorem to conclude that $(R / I)[x] \approx(R[x]) /(I[x])$.
(d) Consider the prime (hence maximal) ideal $3 \mathbb{Z}$ in the PID \mathbb{Z}. Show that $3 \mathbb{Z}[x]$ is a prime ideal of $\mathbb{Z}[x]$ that is not maximal. Conclude that $\mathbb{Z}[x]$ is not a PID. [Hint: Use Problem 4 to show that $(\mathbb{Z} / 3 \mathbb{Z})[x]$ is a domain but not a field. Use part (c) and Problem 1 to conclude that $3 \mathbb{Z}[x]$ is prime but not maximal. Use Problem 3 to conclude that $\mathbb{Z}[x]$ is not a PID.]

Proof. For part (a), consider polynomials $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{k} b_{k} x^{k}$ in $R[x]$. Then we have

$$
\begin{aligned}
\varphi(f+g) & =\varphi\left(\sum_{k}\left(a_{k}+b_{k}\right) x^{k}\right) \\
& =\sum_{k}\left(\left(a_{k}+b_{k}\right)+I\right) x^{k} \\
& =\sum_{k}\left(\left(a_{k}+I\right)+\left(b_{k}+I\right)\right) x^{k} \\
& =\sum_{k}\left(a_{k}+I\right) x^{k}+\sum_{k}\left(b_{k}+I\right) x^{k} \\
& =\varphi(f)+\varphi(g),
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(f g) & =\varphi\left(\sum_{k}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}\right) \\
& =\sum_{k}\left(\left(\sum_{i+j=k} a_{i} b_{j}\right)+I\right) x^{k} \\
& =\sum_{k}\left(\sum_{i+j=k}\left(a_{i} b_{j}+I\right)\right) x^{k} \\
& =\sum_{k}\left(\sum_{i+j=k}\left(a_{i}+I\right)\left(b_{j}+I\right)\right) x^{k} \\
& =\left(\sum_{k}\left(a_{k}+I\right) x^{k}\right)\left(\sum_{k}\left(b_{k}+I\right) x^{k}\right) \\
& =\varphi(f) \varphi(g) .
\end{aligned}
$$

Finally, φ sends the identify polynomial $1+0 x+0 x^{2}+\cdots$ in $R[x]$ to the identity polynomial $(1+I)+(0+I) x+(0+I) x^{2}+\cdots$ in $(R / I)[x]$. Thus φ is a ring homomorphism. It is surjective because the canonical map $a \mapsto a+I$ is a surjection $R \rightarrow R / I$.

For part (b), note that $f(x)=\sum_{k} a_{k} x^{k} \in R[x]$ is in the kernel of φ if and only if $\sum_{k}\left(a_{k}+\right.$ $I) x^{k}$ is the zero polynomial in $(R / I)[x]$. In other words, we have $f(x) \in \operatorname{ker} \varphi$ if and only if $a_{k}+I=I$ (i.e. $a_{k} \in I$) for all k. It follows that $\operatorname{ker} \varphi=I[x]$ and that this set is an ideal.

For part (c), the First Isomorphism Theorem says that

$$
\frac{R[x]}{I[x]}=\frac{R[x]}{\operatorname{ker} \varphi} \approx \operatorname{im} \varphi=(R / I)[x] .
$$

For part (d), consider the ideal $3 \mathbb{Z} \leq \mathbb{Z}$ in the ring of integers. By part (c) we have

$$
\frac{\mathbb{Z}[x]}{3 \mathbb{Z}[x]} \approx(\mathbb{Z} / 3 \mathbb{Z})[x] .
$$

Since $3 \mathbb{Z} \leq \mathbb{Z}$ is a prime ideal (because 3 is a prime integer), Problem 1(a) says that $\mathbb{Z} / 3 \mathbb{Z}$ is a domain. Then Problem $4(\mathrm{~b})$ says that $(\mathbb{Z} / 3 \mathbb{Z})[x]$ is a domain, and Problem 1(c) implies that $3 \mathbb{Z}[x] \leq \mathbb{Z}[x]$ is a prime ideal. However, note that $(\mathbb{Z} / 3 \mathbb{Z})[x]$ is not a field. Indeed, the nonzero element $x \in(\mathbb{Z} / 3 \mathbb{Z})[x]$ has no multiplicative inverse because for all polynomials $f(x) \in(\mathbb{Z} / 3 \mathbb{Z})[x]$ we have $\operatorname{deg}(x f(x))=\operatorname{deg}(x)+\operatorname{deg}(f)=\operatorname{deg}(f)+1>0$ but $\operatorname{deg}(1)=0$. Since $\mathbb{Z}[x] / 3 \mathbb{Z}[x]$ is not a field, it follows that $3 \mathbb{Z}[x] \leq \mathbb{Z}[x]$ is not a maximal ideal. We have shown that $3 \mathbb{Z}[x] \leq \mathbb{Z}[x]$ is a prime ideal that is not maximal. By Problem 3(c) it follows that the domain $\mathbb{Z}[x]$ is not a PID.
[We took a bit of a sneaky route to prove that $\mathbb{Z}[x]$ is not a PID. In particular, we showed that nonprincipal ideals exist, but we didn't give an example of one. Here's an example: The set of polynomials in $\mathbb{Z}[x]$ whose constant term is divisible by 3 is a nonprincipal ideal in $\mathbb{Z}[x]$ (i.e., it is not of the form $(f(x))$ for any $f(x) \in \mathbb{Z}[x])$. But it is generated by the two elements 3 and x. Try to prove that if you like. It turns out that every prime ideal of $\mathbb{Z}[x]$ can be generated by one or two elements. So it's not very far from a PID.]

