Let $R$ be a ring. We say that $R$ is a domain if for all $a, b \in R$ we have

$$
a b=0 \quad \Longrightarrow \quad a=0 \text { or } b=0,
$$

that is, if the ring has no zerodivisors.

1. Prime Ideals. Given an ideal $I \leq R$ in a general ring $R$ we say that $I$ is prime if for all $a, b \in R$ we have

$$
a b \in I \quad \Longrightarrow \quad a \in I \text { or } b \in I .
$$

(a) If $I \leq R$ is a prime ideal, prove that $R / I$ is a domain.
(b) If $R / I$ is a domain, prove that $I$ is a prime ideal.
(c) Prove that every maximal ideal is prime. [Hint: Every field is a domain.]
2. Domain $=$ Subring of a Field. In this problem you will prove that $R$ is a domain if and only if $R$ is a subring of a field.
(a) If $R$ is a subring of a field $K$, prove that $R$ is a domain.
(b) Let $R$ be a domain and define the set of fractions:

$$
\operatorname{Frac}(R):=\left\{\left[\frac{a}{b}\right]: a, b \in R, b \neq 0\right\} .
$$

At first these are just abstract symbols. We define a relation on $\operatorname{Frac}(R)$ by saying that $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$ if and only if $a d=b c$. Prove that this is an equivalence relation.
(c) Now we define "multiplication" and "addition" of fractions by:

$$
\left[\frac{a}{b}\right] \cdot\left[\frac{c}{d}\right]:=\left[\frac{a c}{b d}\right] \quad \text { and } \quad\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]:=\left[\frac{a d+b c}{b d}\right] .
$$

Prove that these operations are well-defined.
(d) It follows that $\operatorname{Frac}(R)$ is a field (you don't need to check this) since for all nonzero $\left[\frac{a}{b}\right]$ we have $\left[\frac{a}{b}\right]^{-1}=\left[\frac{b}{a}\right]$. Prove that the map $\iota: R \rightarrow \operatorname{Frac}(R)$ defined by $\iota(a):=\left[\frac{a}{1}\right]$ is an injective ring homomorphism. Use the First Isomorphism Theorem to conclude that $R$ is isomorphic to a subring of its field of fractions $\operatorname{Frac}(R)$.
3. Prime $\Longrightarrow$ Maximal in a PID. In Problem 1 we saw that every maximal ideal in a general ring is prime. Now let $R$ be a PID. We will see that every prime ideal in $R$ is maximal.
(a) Let $I \leq R$ be a prime ideal. Since $R$ is a PID we have $I=(p)$ for some $p \in R$. Show that for all $a, b \in R$ we have

$$
p|a b \quad \Longrightarrow \quad p| a \text { or } p \mid b .
$$

We say that $p \in R$ is a prime element.
(b) We say that $a \in R$ is an irreducible element if for all $b, c \in R$ we have

$$
a=b c \quad \Longrightarrow \quad b \text { or } c \text { is a unit. }
$$

Prove that every irreducible element in a PID is irreducible.
(c) Use this to conclude that every prime ideal in a PID is maximal. [Hint: Let $I \leq R$ be a prime ideal. Then $I=(p)$ for some prime element $p \in R$. By part (c), this $p$ is also irreducible. Then what?]
4. Polynomials Over a Domain. Let $R$ be a domain and consider the ring $R[x]$. Given a polynomial $f(x)=\sum_{k \geq 0} a_{k} x^{k} \in R[x]$ we define $\operatorname{deg}(f)$ to be the largest $k$ such that $a_{k} \neq 0$.
(a) Given $f, g \in R[x]$ prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
(b) Prove that $R[x]$ is a domain.
(c) Prove that the group of units is $R[x]^{\times}=R^{\times}$.
(d) Give a specific example to show that (c) can fail when $R$ is not a domain. [Hint: Let $R=\mathbb{Z} / 4 \mathbb{Z}$. Show that the polynomial $1+2 x \in(\mathbb{Z} / 4 \mathbb{Z})[x]$ is a unit.]

## 5. Prime $\nRightarrow$ Maximal in General.

(a) Let $I \leq R$ be an ideal in a general ring and consider the map

$$
\varphi: R[x] \rightarrow(R / I)[x]
$$

defined by $\sum_{k} a_{k} x^{k} \mapsto \sum_{k}\left(a_{k}+I\right) x^{k}$. Show that $\varphi$ is a surjective ring homomorphism.
(b) Show that the kernel of $\varphi$ is the set

$$
I[x]:=\left\{\sum_{k} a_{k} x^{k} \in R[x]: a_{k} \in I \text { for all } k\right\},
$$

and hence $I[x] \leq R[x]$ is an ideal.
(c) Use the First Isomorphism Theorem to conclude that $(R / I)[x] \approx(R[x]) /(I[x])$.
(d) Consider the prime (hence maximal) ideal $3 \mathbb{Z}$ in the PID $\mathbb{Z}$. Show that $3 \mathbb{Z}[x]$ is a prime ideal of $\mathbb{Z}[x]$ that is not maximal. Conclude that $\mathbb{Z}[x]$ is not a PID. [Hint: Use Problem 4 to show that $(\mathbb{Z} / 3 \mathbb{Z})[x]$ is a domain but not a field. Use part (c) and Problem 1 to conclude that $3 \mathbb{Z}[x]$ is prime but not maximal. Use Problem 3 to conclude that $\mathbb{Z}[x]$ is not a PID.]

