Let R be a ring. We say that R is a domain if for all $a, b \in R$ we have

 $ab = 0 \implies a = 0 \text{ or } b = 0,$

that is, if the ring has no zerodivisors.

1. Prime Ideals. Given an ideal $I \leq R$ in a general ring R we say that I is prime if for all $a, b \in R$ we have

$$ab \in I \implies a \in I \text{ or } b \in I.$$

- (a) If $I \leq R$ is a prime ideal, prove that R/I is a domain.
- (b) If R/I is a domain, prove that I is a prime ideal.
- (c) Prove that every maximal ideal is prime. [Hint: Every field is a domain.]

2. Domain = Subring of a Field. In this problem you will prove that R is a domain if and only if R is a subring of a field.

- (a) If R is a subring of a field K, prove that R is a domain.
- (b) Let R be a domain and define the set of fractions:

$$\operatorname{Frac}(R) := \left\{ \left[\frac{a}{b} \right] : a, b \in R, b \neq 0 \right\}.$$

At first these are just abstract symbols. We define a relation on $\operatorname{Frac}(R)$ by saying that $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$ if and only if ad = bc. Prove that this is an **equivalence relation**.

(c) Now we define "multiplication" and "addition" of fractions by:

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} \cdot \begin{bmatrix} \frac{c}{d} \end{bmatrix} := \begin{bmatrix} \frac{ac}{bd} \end{bmatrix}$$
 and $\begin{bmatrix} \frac{a}{b} \end{bmatrix} + \begin{bmatrix} \frac{c}{d} \end{bmatrix} := \begin{bmatrix} \frac{ad+bc}{bd} \end{bmatrix}$.

Prove that these operations are **well-defined**.

(d) It follows that $\operatorname{Frac}(R)$ is a field (you don't need to check this) since for all nonzero $\left[\frac{a}{b}\right]$ we have $\left[\frac{a}{b}\right]^{-1} = \left[\frac{b}{a}\right]$. Prove that the map $\iota: R \to \operatorname{Frac}(R)$ defined by $\iota(a) := \left[\frac{a}{1}\right]$ is an injective ring homomorphism. Use the First Isomorphism Theorem to conclude that R is isomorphic to a subring of its field of fractions $\operatorname{Frac}(R)$.

3. Prime \implies Maximal in a PID. In Problem 1 we saw that every maximal ideal in a general ring is prime. Now let *R* be a PID. We will see that every prime ideal in *R* is maximal.

(a) Let $I \leq R$ be a prime ideal. Since R is a PID we have I = (p) for some $p \in R$. Show that for all $a, b \in R$ we have

$$p|ab \implies p|a \text{ or } p|b.$$

We say that $p \in R$ is a prime element.

(b) We say that $a \in R$ is an irreducible element if for all $b, c \in R$ we have

$$a = bc \implies b \text{ or } c \text{ is a unit.}$$

Prove that every irreducible element in a PID is irreducible.

(c) Use this to conclude that every prime ideal in a PID is maximal. [Hint: Let $I \leq R$ be a prime ideal. Then I = (p) for some prime element $p \in R$. By part (c), this p is also irreducible. Then what?]

4. Polynomials Over a Domain. Let R be a domain and consider the ring R[x]. Given a polynomial $f(x) = \sum_{k\geq 0} a_k x^k \in R[x]$ we define deg(f) to be the largest k such that $a_k \neq 0$.

- (a) Given $f, g \in R[x]$ prove that $\deg(fg) = \deg(f) + \deg(g)$.
- (b) Prove that R[x] is a domain.
- (c) Prove that the group of units is $R[x]^{\times} = R^{\times}$.
- (d) Give a specific example to show that (c) can fail when R is not a domain. [Hint: Let $R = \mathbb{Z}/4\mathbb{Z}$. Show that the polynomial $1 + 2x \in (\mathbb{Z}/4\mathbb{Z})[x]$ is a unit.]

5. Prime \Rightarrow Maximal in General.

(a) Let $I \leq R$ be an ideal in a general ring and consider the map

$$\varphi: R[x] \to (R/I)[x]$$

defined by $\sum_k a_k x^k \mapsto \sum_k (a_k + I) x^k$. Show that φ is a surjective ring homomorphism. (b) Show that the kernel of φ is the set

$$I[x] := \left\{ \sum_{k} a_k x^k \in R[x] : a_k \in I \text{ for all } k \right\},\$$

and hence $I[x] \leq R[x]$ is an ideal.

- (c) Use the First Isomorphism Theorem to conclude that $(R/I)[x] \approx (R[x])/(I[x])$.
- (d) Consider the prime (hence maximal) ideal $3\mathbb{Z}$ in the PID \mathbb{Z} . Show that $3\mathbb{Z}[x]$ is a prime ideal of $\mathbb{Z}[x]$ that is not maximal. Conclude that $\mathbb{Z}[x]$ is not a PID. [Hint: Use Problem 4 to show that $(\mathbb{Z}/3\mathbb{Z})[x]$ is a domain but not a field. Use part (c) and Problem 1 to conclude that $3\mathbb{Z}[x]$ is prime but not maximal. Use Problem 3 to conclude that $\mathbb{Z}[x]$ is not a PID.]