Math 562 Spring 2014
Homework 2 Drew Armstrong

Problems on Rings

1. Chinese Remainder Theorem. Given two ideals I, J < R we define their product:
IJ:=({ab:acl,be J}).
This is the smallest ideal containing all the elements ab for a € I and b € J.

(a) Prove that IJ <InNJ.

(b) We say that ideals I, J < R are coprime if I+J = R. In this case, prove that INJ < I.J,
and hence IJ =1nNJ.

(c¢) If I, J < R are coprime ideals, prove that the map

olx+1J):=(@x+1,x+J)
defines a ring isomorphism R/(IJ) ~ R/I x R/J.

Proof. For part (a), consider a € I and b € J. Since I and J are both ideals we have ab € I
and ab € J, hence ab € I NJ. Thus I N J is an ideal containing all the elements ab for a € I
and b € J and it follows that I N J contains the smallest such ideal, i.e., IJ < TN J.

For part (b), assume that the ideals I and J are coprime, i.e., that I + J = R. Then since
1 €I+ J there exist a € I and b € J such that 1 = a + b. Finally, for all r € I N J we have
ar € IJ and rb € IJ, hence

r=rl=r(a+b)=rat+rb=ar+rbell.

It follows that I NJ < IJ. [Note: We needed the fact that R is commutative.]

For part (c), let I and J be coprime ideals and consider the map ¢(x+1J) := (x+1,z+J).
We want to prove that this is a ring isomorphism ¢ : R/(IJ) — (R/I) x (R/J). The fact
that ¢ is a ring homomorphism (it preserves addition, multiplication, and 1) follows directly
from the definitions. To show that ¢ is well-defined, assume that z + IJ =y + IJ, i.e., that
x —y € IJ. By part (a) this implies that z —y € I N J. In other words, we have x —y € |
(ie.z+I=y+I)andx—yeJ (ie. v+ J=y+J). It follows that

ole+Il))=@+1Lz+J)=w+Ly+J)=9y+1J).

To show that ¢ is injective, suppose that (z+I,z+J) = (y+1,y+J), i.e, that c+1 =y+1
and x+J =y + J. Then we have x —y € [ and x —y € J, hence x —y € I N J. By part
(b) this implies that x —y € I.J, hence = + I.J = y + I.J, as desired. Finally, to prove that ¢
is surjective, consider any (z + I,y + J) € (R/I) x (R/J). We wish to find some o € R such
that p(a+ IJ) = (x + I,y + J). Recall that I and J are coprime, so we can write 1 =a+b
with a € T and b € J. Now let @ := ay + bx. (Yes this is a trick, but it’s the same trick we
did in class.) Then we have

ola+1J) =

a+I,a+J)

ay +bx + I,ay + bz + J)
bx + I,ay + J)
(1—a)x+1,(1-by+J)
r—axr+1,y—by+J)
x+1,y+J),

hence ¢ is surjective. O
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[When R = Z the ideals are just (n) for n € Z (we say Z is a PID). Note that for all m,n € Z we
have (m)(n) = (mn), and note that (m)+ (n) = (1) if and only if m and n are coprime integers.
In this case, the Chinese Remainder Theorem says:
Z/(mn) = Z/(m) x Z/(n).

The classical version of this theorem appears in The Mathematical Classic of Sunzi from between
the 3rd and 5th century. It says that for m,n € Z coprime and arbitrary a,b € Z the system

x=a (modm)

x=0b (mod n)
has a unique solution z (mod mn). The proof of surjectivity above gives us a method to compute
the solution.]

2. Groups of Units. Let R and S be rings. Prove that we have an isomorphism of groups:
(Rx S)* =~ R* xS*.

Proof. Consider the inclusion map ¢ : R* x S* < R x S. It is obviously injective. Given units
r € R* and s € S*, note that (r,s) is a unit in R x S because

(r,s)(r~ Y s = (rr 1 ss7h) = (1,1).
Thus we obtain an injective group homomorphism ¢ : R* x S* «— (R x S)*. To see that
¢ is surjective, consider any (r,s) € (R x S)*. By definition this mean that there exists
(a,b) € R x S such that
(1,1) = (r,s)(a,b) = (ra, sb).
But then ra = 1, hence r € R*, and sb = 1, hence s € S*. Thus ¢ : R* x §* — (R x S)* is
a group isomorphism. O

3. Diamond Isomorphism for Rings. Let R be a ring, let S C R be a subring, and let
I < R be an ideal.

a) Prove that S + I is a subring of R.

b) Prove that I is an ideal of S + I.

c¢) Prove that SN 1T is an ideal of S.

d) Prove that we have an isomorphism of rings:

S S+1

(
(
(

YA

[Hint: Consider the natural map ¢ : S — R/I defined by a — a + I. What is the
image? What is the kernel? Now use the First Isomorphism Theorem.]

Proof. Let S C R be a subring and let I < R be an ideal. For part (a), consider r + a and
s+bin S+ 1, i.e., consider r,s € S and a,b € I. Then we have

(r+a)+(s+b)=(r+s)+(a+b)eS+1I
because r +s € S and a+b € I and
(r+a)(s+b)=rs+as+rb+ab=(rs)+(as+rb+ab) e S+1

because rs € S and as + rb+ ab € I. Finally note that 1 =1+ 0 € S+ I because 1 € S and
0 € I. We conclude that S + I C R is a subring.

For part (b), first note that I is an additive subgroup of S + I. To see that I < S+ I is an
ideal, consider a € I and s+b€ S+ 1,1i.e.,s€ S and b € I. Then we have

a(s+b)=as+abel



because as € I and ab € I.

For part (c), first note that S N1 is an additive subgroup of S. Now consider any a € SN T
and s € S. Then we have as € S because S is closed under multiplication and as € I because
I is an ideal. Hence as € SN I and we conclude that SN I < S is an ideal.

Finally, for part (d) consider the natural map ¢ : S — R/I defined by a — a + I. By
definition a € S is in the kernel if and only if a + I = 0 4 I, in other words, if and only if
a € I. Thus we have kerp = SN [. I claim that imy = (S + I)/I. Indeed, given any s € S
we have p(s) =s+1=(s+0)+1 e (S+1)/I. Conversely, given any s+a € S+ 1 (i.e. with
s€ Sand a€l)wehave (s+a)+ I =s+1=p(s). By the First Isomorphism Theorem we

conclude that
s S ~ im S+
SNI  kerg T

[I will a draw a picture in class to show you why this is called the " Diamond Isomorphism” ]
Problems on Polynomials

4. Descartes’ Factor Theorem. Let K be a field and consider the ring K[z] of polynomials.
Given f(z) € K[z] and o € K such that f(a) = 0, prove that f(z) = (r — a)h(z) where
h(z) € K[z] with deg(h) = deg(f) — 1. [Hint: Observe that 2" —a™ = (z —a)(z" ! +a2" 2+
o+ a2z 4+ a7 for all n > 0. Consider the polynomial f(x) — f(a).]

Proof. To save space, we define the polynomial [n];o = ("1 + 2" 2a+- -+ 20" 2 +a" 1)
for each positive integer n and real number «. Suppose that f(z) € R[x] has degree d and
write

flz) = agz? + ag_12% ' + - agz + ag
for ap,...,aq € R with ag # 0. Then applying the identity 2" — " = (z — a)[n]z,o we can
write
f(@) = fla) = ag(z? — a®) + ag_1(zT =4+t a1(z — @)
= ag(x — A)|dlza + ag-1(x — )[d = 1za + -+ ar(z — @)z
= (x — a)(agld]z,q + ag—1[d = lza + -+ a1[l]z.a)
(

= (z — a)(agz?™! + lower order terms ).

If f(a) =0 then we obtain f(z) = (z — a)h(z) where h(z) € R[z] has degree d — 1. O

5. Constructing the Complex Numbers. Let R and C be the real and complex fields.
Let ¢ : R[z] — C be the map that sends a polynomial f(x) to its evaluation f(i) € C at z = 1.
(a) Prove that ¢ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: a + ib := a — ib for a,b € R. Prove that
f(=i) = f(i) € C for all f(z) € R[z].
(c¢) Use Descartes’ Factor Theorem to prove that the kernel of ¢ is the principal ideal
generated by z2 + 1:

ker p = (22 4+ 1) := {(2* + 1)g(z) : g(x) € R[]}
(d) Conclude that C is isomorphic to the quotient ring R[z]/(z? + 1).




Proof. The multiplicative identity of R[z] is the constant polynomial 1(z) = 1, so clearly
©(1) = 1(i) = 1 € C, which is the multiplicative identity of C. To prove (a) we must show

that o(f 4+ g) = »(f) + »(g9) and (fg) = ¢(f)¢(g) for all f,g € Rlz]. To this end, let
f(x) =3, axx® and g(x) = 3, bpa®. Then we have

o(f) +olg) = (i) + 9(i) = > api® + Y bpi® = (ar +b)i* = (f + 9)(i) = o(f +9)
k k k

and also

o(Felg) = fli)g(i) = ( > (aui“)(bviv)> => ( > aubv> i* = (f9) (@) = ¢(f9)-

k utv=~k k utv==k

Notice that the proof of ¢(f)p(g) = ¢(fg) uses the fact that C is commutative. (This
is why we only consider polynomials over commutative rings.) Finally, note that the map is
surjective since for any a + ib € C we have a + ib = ¢(f) with f(z) = a + zb € Rz].

Given complex numbers a + ib and ¢ + id note that

a+ib+c+id= (a —1ib) + (c —id) = (a +c) —i(b+d)

=(a+c)+i(b+d) = (a+1ib) + (c+id)

and
(a+1ib)(c+id) = (a —ib)(c — id) = (ac — bd) — i(ad + bc)
= (ac — bd) + i(ad + bc) = (a + ib)(c + id).

Combined with the fact that T = 1 we conclude that complex conjugation z — 7 is a ring
isomorphism C — C (we call it a field automorphism). Furthermore, we have Z = z for all
z € R C C. Now we will prove (b). Let f(x) = Y., arz* and consider any complex number
z € C. Then using the homomorphism properties of conjugation we have

Zakzk‘ Zak Zak = f(z

In particular, taking z =i gives f(—i) = m

Finally consider the surjective homomorphism ¢ : R[z] — C given by ¢(f) = f(i). To prove
(c) we will show that ker o = (22 + 1). Indeed, if f(x) € (22 + 1) then we can write f(x) =
(22 4+ 1)g(x) and then o(f) = (i24+1)g(i) = 0-g(z) = 0, hence f € ker ¢ and (22 +1) C ker ¢.
Conversely, suppose that f € ker g, i.e., f(i) = 0. By Descartes’ Factor Theorem applied to
f(z) € C[z] (a slightly tricky point) we have f(x) = (z —i)g(x) for some g(z) € C[z]. But
by part (b) we know that f(i) = 0 implies f(—i) = 0 hence f(—i) = —2i - g(—¢) = 0, which
implies that g(—¢) = 0. Then Descartes’ Factor Theorem implies that g(z) = (x + i)h(z) for
some h(x) € C[z]. Putting this together we get

f(@) = (& =) (z + D)h(z) = (2> + 1)h(z)
for some h(z) € C[z]. The only problem left is to show that h(x) € R[z]. But since f(z) and
(2 + 1) are in R[z] we must also have h(z) € R[z] (for example, we could do long division to

compute f(z)/(z% + 1) = h(z)). We conclude that h(z) € R[x] and hence f(z) is in the ideal
(2 + 1) as desired. Then for part (d), the First Isomorphism Theorem says that

Rle] _ Rl _
(x24+1)  kergp




