Problems on Rings

1. Chinese Remainder Theorem. Given two ideals $I, J \leq R$ we define their product:

$$
I J:=\langle\{a b: a \in I, b \in J\}\rangle .
$$

This is the smallest ideal containing all the elements $a b$ for $a \in I$ and $b \in J$.
(a) Prove that $I J \leq I \cap J$.
(b) We say that ideals $I, J \leq R$ are coprime if $I+J=R$. In this case, prove that $I \cap J \leq I J$, and hence $I J=I \cap J$.
(c) If $I, J \leq R$ are coprime ideals, prove that the map

$$
\varphi(x+I J):=(x+I, x+J)
$$

defines a ring isomorphism $R /(I J) \approx R / I \times R / J$.
Proof. For part (a), consider $a \in I$ and $b \in J$. Since I and J are both ideals we have $a b \in I$ and $a b \in J$, hence $a b \in I \cap J$. Thus $I \cap J$ is an ideal containing all the elements $a b$ for $a \in I$ and $b \in J$ and it follows that $I \cap J$ contains the smallest such ideal, i.e., $I J \leq I \cap J$.

For part (b), assume that the ideals I and J are coprime, i.e., that $I+J=R$. Then since $1 \in I+J$ there exist $a \in I$ and $b \in J$ such that $1=a+b$. Finally, for all $r \in I \cap J$ we have $a r \in I J$ and $r b \in I J$, hence

$$
r=r 1=r(a+b)=r a+r b=a r+r b \in I J .
$$

It follows that $I \cap J \leq I J$. [Note: We needed the fact that R is commutative.]
For part (c), let I and J be coprime ideals and consider the map $\varphi(x+I J):=(x+I, x+J)$. We want to prove that this is a ring isomorphism $\varphi: R /(I J) \rightarrow(R / I) \times(R / J)$. The fact that φ is a ring homomorphism (it preserves addition, multiplication, and 1) follows directly from the definitions. To show that φ is well-defined, assume that $x+I J=y+I J$, i.e., that $x-y \in I J$. By part (a) this implies that $x-y \in I \cap J$. In other words, we have $x-y \in I$ (i.e. $x+I=y+I$) and $x-y \in J$ (i.e. $x+J=y+J$). It follows that

$$
\varphi(x+I J)=(x+I, x+J)=(y+I, y+J)=\varphi(y+I J) .
$$

To show that φ is injective, suppose that $(x+I, x+J)=(y+I, y+J)$, i.e., that $x+I=y+I$ and $x+J=y+J$. Then we have $x-y \in I$ and $x-y \in J$, hence $x-y \in I \cap J$. By part (b) this implies that $x-y \in I J$, hence $x+I J=y+I J$, as desired. Finally, to prove that φ is surjective, consider any $(x+I, y+J) \in(R / I) \times(R / J)$. We wish to find some $\alpha \in R$ such that $\varphi(\alpha+I J)=(x+I, y+J)$. Recall that I and J are coprime, so we can write $1=a+b$ with $a \in I$ and $b \in J$. Now let $\alpha:=a y+b x$. (Yes this is a trick, but it's the same trick we did in class.) Then we have

$$
\begin{aligned}
\varphi(\alpha+I J) & =(\alpha+I, \alpha+J) \\
& =(a y+b x+I, a y+b x+J) \\
& =(b x+I, a y+J) \\
& =((1-a) x+I,(1-b) y+J) \\
& =(x-a x+I, y-b y+J) \\
& =(x+I, y+J),
\end{aligned}
$$

hence φ is surjective.
[When $R=\mathbb{Z}$ the ideals are just (n) for $n \in \mathbb{Z}$ (we say \mathbb{Z} is a PID). Note that for all $m, n \in \mathbb{Z}$ we have $(m)(n)=(m n)$, and note that $(m)+(n)=(1)$ if and only if m and n are coprime integers. In this case, the Chinese Remainder Theorem says:

$$
\mathbb{Z} /(m n) \approx \mathbb{Z} /(m) \times \mathbb{Z} /(n)
$$

The classical version of this theorem appears in The Mathematical Classic of Sunzi from between the 3 rd and 5 th century. It says that for $m, n \in \mathbb{Z}$ coprime and arbitrary $a, b \in \mathbb{Z}$ the system

$$
\begin{array}{ll}
x \equiv a & (\bmod m) \\
x \equiv b & (\bmod n)
\end{array}
$$

has a unique solution $x(\bmod m n)$. The proof of surjectivity above gives us a method to compute the solution.]
2. Groups of Units. Let R and S be rings. Prove that we have an isomorphism of groups:

$$
(R \times S)^{\times} \approx R^{\times} \times S^{\times} .
$$

Proof. Consider the inclusion map $\iota: R^{\times} \times S^{\times} \hookrightarrow R \times S$. It is obviously injective. Given units $r \in R^{\times}$and $s \in S^{\times}$, note that (r, s) is a unit in $R \times S$ because

$$
(r, s)\left(r^{-1}, s^{-1}\right)=\left(r r^{-1}, s s^{-1}\right)=(1,1)
$$

Thus we obtain an injective group homomorphism $\iota: R^{\times} \times S^{\times} \hookrightarrow(R \times S)^{\times}$. To see that ι is surjective, consider any $(r, s) \in(R \times S)^{\times}$. By definition this mean that there exists $(a, b) \in R \times S$ such that

$$
(1,1)=(r, s)(a, b)=(r a, s b) .
$$

But then $r a=1$, hence $r \in R^{\times}$, and $s b=1$, hence $s \in S^{\times}$. Thus $\iota: R^{\times} \times S^{\times} \rightarrow(R \times S)^{\times}$is a group isomorphism.
3. Diamond Isomorphism for Rings. Let R be a ring, let $S \subseteq R$ be a subring, and let $I \leq R$ be an ideal.
(a) Prove that $S+I$ is a subring of R.
(b) Prove that I is an ideal of $S+I$.
(c) Prove that $S \cap I$ is an ideal of S.
(d) Prove that we have an isomorphism of rings:

$$
\frac{S}{S \cap I} \approx \frac{S+I}{I} .
$$

[Hint: Consider the natural map $\varphi: S \rightarrow R / I$ defined by $a \mapsto a+I$. What is the image? What is the kernel? Now use the First Isomorphism Theorem.]
Proof. Let $S \subset R$ be a subring and let $I \leq R$ be an ideal. For part (a), consider $r+a$ and $s+b$ in $S+I$, i.e., consider $r, s \in S$ and $a, b \in I$. Then we have

$$
(r+a)+(s+b)=(r+s)+(a+b) \in S+I
$$

because $r+s \in S$ and $a+b \in I$ and

$$
(r+a)(s+b)=r s+a s+r b+a b=(r s)+(a s+r b+a b) \in S+I
$$

because $r s \in S$ and $a s+r b+a b \in I$. Finally note that $1=1+0 \in S+I$ because $1 \in S$ and $0 \in I$. We conclude that $S+I \subseteq R$ is a subring.

For part (b), first note that I is an additive subgroup of $S+I$. To see that $I \leq S+I$ is an ideal, consider $a \in I$ and $s+b \in S+I$, i.e., $s \in S$ and $b \in I$. Then we have

$$
a(s+b)=a s+a b \in I
$$

because $a s \in I$ and $a b \in I$.
For part (c), first note that $S \cap I$ is an additive subgroup of S. Now consider any $a \in S \cap I$ and $s \in S$. Then we have $a s \in S$ because S is closed under multiplication and as $\in I$ because I is an ideal. Hence as $\in S \cap I$ and we conclude that $S \cap I \leq S$ is an ideal.

Finally, for part (d) consider the natural map $\varphi: S \rightarrow R / I$ defined by $a \mapsto a+I$. By definition $a \in S$ is in the kernel if and only if $a+I=0+I$, in other words, if and only if $a \in I$. Thus we have $\operatorname{ker} \varphi=S \cap I$. I claim that $\operatorname{im} \varphi=(S+I) / I$. Indeed, given any $s \in S$ we have $\varphi(s)=s+I=(s+0)+I \in(S+I) / I$. Conversely, given any $s+a \in S+I$ (i.e. with $s \in S$ and $a \in I)$ we have $(s+a)+I=s+I=\varphi(s)$. By the First Isomorphism Theorem we conclude that

$$
\frac{S}{S \cap I}=\frac{S}{\operatorname{ker} \varphi} \approx \operatorname{im} \varphi=\frac{S+I}{I} .
$$

[I will a draw a picture in class to show you why this is called the "Diamond Isomorphism".]

Problems on Polynomials

4. Descartes' Factor Theorem. Let K be a field and consider the ring $K[x]$ of polynomials. Given $f(x) \in K[x]$ and $\alpha \in K$ such that $f(\alpha)=0$, prove that $f(x)=(x-\alpha) h(x)$ where $h(x) \in K[x]$ with $\operatorname{deg}(h)=\operatorname{deg}(f)-1$. [Hint: Observe that $x^{n}-\alpha^{n}=(x-\alpha)\left(x^{n-1}+\alpha x^{n-2}+\right.$ $\cdots+\alpha^{n-2} x+\alpha^{n-1}$) for all $n \geq 0$. Consider the polynomial $f(x)-f(\alpha)$.]

Proof. To save space, we define the polynomial $[n]_{x, \alpha}:=\left(x^{n-1}+x^{n-2} \alpha+\cdots+x \alpha^{n-2}+\alpha^{n-1}\right)$ for each positive integer n and real number α. Suppose that $f(x) \in \mathbb{R}[x]$ has degree d and write

$$
f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots a_{1} x+a_{0}
$$

for $a_{0}, \ldots, a_{d} \in \mathbb{R}$ with $a_{d} \neq 0$. Then applying the identity $x^{n}-\alpha^{n}=(x-\alpha)[n]_{x, \alpha}$ we can write

$$
\begin{aligned}
f(x)-f(\alpha) & =a_{d}\left(x^{d}-\alpha^{d}\right)+a_{d-1}\left(x^{d-1}-\alpha^{d-1}\right)+\cdots+a_{1}(x-\alpha) \\
& =a_{d}(x-\alpha)[d]_{x, \alpha}+a_{d-1}(x-\alpha)[d-1]_{x, \alpha}+\cdots+a_{1}(x-\alpha)[1]_{x, \alpha} \\
& =(x-\alpha)\left(a_{d}[d]_{x, \alpha}+a_{d-1}[d-1]_{x, \alpha}+\cdots+a_{1}[1]_{x, \alpha}\right) \\
& =(x-\alpha)\left(a_{d} x^{d-1}+\text { lower order terms }\right) .
\end{aligned}
$$

If $f(\alpha)=0$ then we obtain $f(x)=(x-\alpha) h(x)$ where $h(x) \in \mathbb{R}[x]$ has degree $d-1$.
5. Constructing the Complex Numbers. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$ be the map that sends a polynomial $f(x)$ to its evaluation $f(i) \in \mathbb{C}$ at $x=i$.
(a) Prove that φ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: $\overline{a+i b}:=a-i b$ for $a, b \in \mathbb{R}$. Prove that $f(-i)=\overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.
(c) Use Descartes' Factor Theorem to prove that the kernel of φ is the principal ideal generated by $x^{2}+1$:

$$
\operatorname{ker} \varphi=\left(x^{2}+1\right):=\left\{\left(x^{2}+1\right) g(x): g(x) \in \mathbb{R}[x]\right\} .
$$

(d) Conclude that \mathbb{C} is isomorphic to the quotient ring $\mathbb{R}[x] /\left(x^{2}+1\right)$.

Proof. The multiplicative identity of $\mathbb{R}[x]$ is the constant polynomial $\mathbf{1}(x)=1$, so clearly $\varphi(\mathbf{1})=\mathbf{1}(i)=1 \in \mathbb{C}$, which is the multiplicative identity of \mathbb{C}. To prove (a) we must show that $\varphi(f+g)=\varphi(f)+\varphi(g)$ and $\varphi(f g)=\varphi(f) \varphi(g)$ for all $f, g \in \mathbb{R}[x]$. To this end, let $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{k} b_{k} x^{k}$. Then we have

$$
\varphi(f)+\varphi(g)=f(i)+g(i)=\sum_{k} a_{k} i^{k}+\sum_{k} b_{k} i^{k}=\sum_{k}\left(a_{k}+b_{k}\right) i^{k}=(f+g)(i)=\varphi(f+g)
$$

and also

$$
\varphi(f) \varphi(g)=f(i) g(i)=\sum_{k}\left(\sum_{u+v=k}\left(a_{u} i^{u}\right)\left(b_{v} i^{v}\right)\right)=\sum_{k}\left(\sum_{u+v=k} a_{u} b_{v}\right) i^{k}=(f g)(i)=\varphi(f g) .
$$

Notice that the proof of $\varphi(f) \varphi(g)=\varphi(f g)$ uses the fact that \mathbb{C} is commutative. (This is why we only consider polynomials over commutative rings.) Finally, note that the map is surjective since for any $a+i b \in \mathbb{C}$ we have $a+i b=\varphi(f)$ with $f(x)=a+x b \in \mathbb{R}[x]$.

Given complex numbers $a+i b$ and $c+i d$ note that

$$
\begin{aligned}
\overline{a+i b}+\overline{c+i d}=(a-i b)+(c-i d)=(a+c)- & i(b+d) \\
& =\overline{(a+c)+i(b+d)}=\overline{(a+i b)+(c+i d)}
\end{aligned}
$$

and

$$
\begin{aligned}
(\overline{a+i b})(\overline{c+i d})=(a-i b)(c-i d)=(a c-b d) & -i(a d+b c) \\
& =\overline{(a c-b d)+i(a d+b c)}=\overline{(a+i b)(c+i d)} .
\end{aligned}
$$

Combined with the fact that $\overline{1}=1$ we conclude that complex conjugation $z \rightarrow \bar{z}$ is a ring isomorphism $\mathbb{C} \rightarrow \mathbb{C}$ (we call it a field automorphism). Furthermore, we have $\bar{z}=z$ for all $z \in \mathbb{R} \subseteq \mathbb{C}$. Now we will prove (b). Let $f(x)=\sum_{k} a_{k} x^{k}$ and consider any complex number $z \in \mathbb{C}$. Then using the homomorphism properties of conjugation we have

$$
\overline{f(z)}=\overline{\sum_{k} a_{k} z^{k}}=\sum_{k} \overline{a_{k}}(\bar{z})^{k}=\sum_{k} a_{k}(\bar{z})^{k}=f(\bar{z}) .
$$

In particular, taking $z=i$ gives $f(-i)=\overline{f(i)}$.
Finally consider the surjective homomorphism $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$ given by $\varphi(f)=f(i)$. To prove (c) we will show that $\operatorname{ker} \varphi=\left(x^{2}+1\right)$. Indeed, if $f(x) \in\left(x^{2}+1\right)$ then we can write $f(x)=$ $\left(x^{2}+1\right) g(x)$ and then $\varphi(f)=\left(i^{2}+1\right) g(i)=0 \cdot g(x)=0$, hence $f \in \operatorname{ker} \varphi$ and $\left(x^{2}+1\right) \subseteq \operatorname{ker} \varphi$. Conversely, suppose that $f \in \operatorname{ker} \varphi$, i.e., $f(i)=0$. By Descartes' Factor Theorem applied to $f(x) \in \mathbb{C}[x]$ (a slightly tricky point) we have $f(x)=(x-i) g(x)$ for some $g(x) \in \mathbb{C}[x]$. But by part (b) we know that $f(i)=0$ implies $f(-i)=0$ hence $f(-i)=-2 i \cdot g(-i)=0$, which implies that $g(-i)=0$. Then Descartes' Factor Theorem implies that $g(x)=(x+i) h(x)$ for some $h(x) \in \mathbb{C}[x]$. Putting this together we get

$$
f(x)=(x-i)(x+i) h(x)=\left(x^{2}+1\right) h(x)
$$

for some $h(x) \in \mathbb{C}[x]$. The only problem left is to show that $h(x) \in \mathbb{R}[x]$. But since $f(x)$ and $\left(x^{2}+1\right)$ are in $\mathbb{R}[x]$ we must also have $h(x) \in \mathbb{R}[x]$ (for example, we could do long division to compute $\left.f(x) /\left(x^{2}+1\right)=h(x)\right)$. We conclude that $h(x) \in \mathbb{R}[x]$ and hence $f(x)$ is in the ideal $\left(x^{2}+1\right)$ as desired. Then for part (d), the First Isomorphism Theorem says that

$$
\frac{\mathbb{R}[x]}{\left(x^{2}+1\right)}=\frac{\mathbb{R}[x]}{\operatorname{ker} \varphi} \approx \operatorname{im} \varphi=\mathbb{C} .
$$

