
Math 562 Spring 2014
Homework 2 Drew Armstrong

Problems on Rings

1. Chinese Remainder Theorem. Given two ideals I, J ≤ R we define their product:

IJ := 〈{ab : a ∈ I, b ∈ J}〉.
This is the smallest ideal containing all the elements ab for a ∈ I and b ∈ J .

(a) Prove that IJ ≤ I ∩ J .
(b) We say that ideals I, J ≤ R are coprime if I+J = R. In this case, prove that I∩J ≤ IJ ,

and hence IJ = I ∩ J .
(c) If I, J ≤ R are coprime ideals, prove that the map

ϕ(x+ IJ) := (x+ I, x+ J)

defines a ring isomorphism R/(IJ) ≈ R/I ×R/J .

Proof. For part (a), consider a ∈ I and b ∈ J . Since I and J are both ideals we have ab ∈ I
and ab ∈ J , hence ab ∈ I ∩ J . Thus I ∩ J is an ideal containing all the elements ab for a ∈ I
and b ∈ J and it follows that I ∩ J contains the smallest such ideal, i.e., IJ ≤ I ∩ J .

For part (b), assume that the ideals I and J are coprime, i.e., that I + J = R. Then since
1 ∈ I + J there exist a ∈ I and b ∈ J such that 1 = a + b. Finally, for all r ∈ I ∩ J we have
ar ∈ IJ and rb ∈ IJ , hence

r = r1 = r(a+ b) = ra+ rb = ar + rb ∈ IJ.
It follows that I ∩ J ≤ IJ . [Note: We needed the fact that R is commutative.]

For part (c), let I and J be coprime ideals and consider the map ϕ(x+IJ) := (x+I, x+J).
We want to prove that this is a ring isomorphism ϕ : R/(IJ) → (R/I) × (R/J). The fact
that ϕ is a ring homomorphism (it preserves addition, multiplication, and 1) follows directly
from the definitions. To show that ϕ is well-defined, assume that x + IJ = y + IJ , i.e., that
x − y ∈ IJ . By part (a) this implies that x − y ∈ I ∩ J . In other words, we have x − y ∈ I
(i.e. x+ I = y + I) and x− y ∈ J (i.e. x+ J = y + J). It follows that

ϕ(x+ IJ) = (x+ I, x+ J) = (y + I, y + J) = ϕ(y + IJ).

To show that ϕ is injective, suppose that (x+ I, x+J) = (y+ I, y+J), i.e., that x+ I = y+ I
and x + J = y + J . Then we have x − y ∈ I and x − y ∈ J , hence x − y ∈ I ∩ J . By part
(b) this implies that x− y ∈ IJ , hence x+ IJ = y + IJ , as desired. Finally, to prove that ϕ
is surjective, consider any (x+ I, y + J) ∈ (R/I)× (R/J). We wish to find some α ∈ R such
that ϕ(α+ IJ) = (x+ I, y + J). Recall that I and J are coprime, so we can write 1 = a+ b
with a ∈ I and b ∈ J . Now let α := ay + bx. (Yes this is a trick, but it’s the same trick we
did in class.) Then we have

ϕ(α+ IJ) = (α+ I, α+ J)

= (ay + bx+ I, ay + bx+ J)

= (bx+ I, ay + J)

= ((1− a)x+ I, (1− b)y + J)

= (x− ax+ I, y − by + J)

= (x+ I, y + J),

hence ϕ is surjective. �



[When R = Z the ideals are just (n) for n ∈ Z (we say Z is a PID). Note that for all m,n ∈ Z we
have (m)(n) = (mn), and note that (m) + (n) = (1) if and only if m and n are coprime integers.
In this case, the Chinese Remainder Theorem says:

Z/(mn) ≈ Z/(m)× Z/(n).

The classical version of this theorem appears in The Mathematical Classic of Sunzi from between
the 3rd and 5th century. It says that for m,n ∈ Z coprime and arbitrary a, b ∈ Z the system

x ≡ a (mod m)

x ≡ b (mod n)

has a unique solution x (mod mn). The proof of surjectivity above gives us a method to compute
the solution.]

2. Groups of Units. Let R and S be rings. Prove that we have an isomorphism of groups:

(R× S)× ≈ R× × S×.

Proof. Consider the inclusion map ι : R××S× ↪→ R×S. It is obviously injective. Given units
r ∈ R× and s ∈ S×, note that (r, s) is a unit in R× S because

(r, s)(r−1, s−1) = (rr−1, ss−1) = (1, 1).

Thus we obtain an injective group homomorphism ι : R× × S× ↪→ (R × S)×. To see that
ι is surjective, consider any (r, s) ∈ (R × S)×. By definition this mean that there exists
(a, b) ∈ R× S such that

(1, 1) = (r, s)(a, b) = (ra, sb).

But then ra = 1, hence r ∈ R×, and sb = 1, hence s ∈ S×. Thus ι : R× × S× → (R × S)× is
a group isomorphism. �

3. Diamond Isomorphism for Rings. Let R be a ring, let S ⊆ R be a subring, and let
I ≤ R be an ideal.

(a) Prove that S + I is a subring of R.
(b) Prove that I is an ideal of S + I.
(c) Prove that S ∩ I is an ideal of S.
(d) Prove that we have an isomorphism of rings:

S

S ∩ I
≈ S + I

I
.

[Hint: Consider the natural map ϕ : S → R/I defined by a 7→ a + I. What is the
image? What is the kernel? Now use the First Isomorphism Theorem.]

Proof. Let S ⊂ R be a subring and let I ≤ R be an ideal. For part (a), consider r + a and
s+ b in S + I, i.e., consider r, s ∈ S and a, b ∈ I. Then we have

(r + a) + (s+ b) = (r + s) + (a+ b) ∈ S + I

because r + s ∈ S and a+ b ∈ I and

(r + a)(s+ b) = rs+ as+ rb+ ab = (rs) + (as+ rb+ ab) ∈ S + I

because rs ∈ S and as+ rb+ ab ∈ I. Finally note that 1 = 1 + 0 ∈ S + I because 1 ∈ S and
0 ∈ I. We conclude that S + I ⊆ R is a subring.

For part (b), first note that I is an additive subgroup of S + I. To see that I ≤ S + I is an
ideal, consider a ∈ I and s+ b ∈ S + I, i.e., s ∈ S and b ∈ I. Then we have

a(s+ b) = as+ ab ∈ I



because as ∈ I and ab ∈ I.
For part (c), first note that S ∩ I is an additive subgroup of S. Now consider any a ∈ S ∩ I

and s ∈ S. Then we have as ∈ S because S is closed under multiplication and as ∈ I because
I is an ideal. Hence as ∈ S ∩ I and we conclude that S ∩ I ≤ S is an ideal.

Finally, for part (d) consider the natural map ϕ : S → R/I defined by a 7→ a + I. By
definition a ∈ S is in the kernel if and only if a + I = 0 + I, in other words, if and only if
a ∈ I. Thus we have kerϕ = S ∩ I. I claim that imϕ = (S + I)/I. Indeed, given any s ∈ S
we have ϕ(s) = s+ I = (s+ 0) + I ∈ (S+ I)/I. Conversely, given any s+ a ∈ S+ I (i.e. with
s ∈ S and a ∈ I) we have (s+ a) + I = s+ I = ϕ(s). By the First Isomorphism Theorem we
conclude that

S

S ∩ I
=

S

kerϕ
≈ imϕ =

S + I

I
.

�

[I will a draw a picture in class to show you why this is called the ”Diamond Isomorphism”.]

Problems on Polynomials

4. Descartes’ Factor Theorem. Let K be a field and consider the ring K[x] of polynomials.
Given f(x) ∈ K[x] and α ∈ K such that f(α) = 0, prove that f(x) = (x − α)h(x) where
h(x) ∈ K[x] with deg(h) = deg(f)−1. [Hint: Observe that xn−αn = (x−α)(xn−1 +αxn−2 +
· · ·+ αn−2x+ αn−1) for all n ≥ 0. Consider the polynomial f(x)− f(α).]

Proof. To save space, we define the polynomial [n]x,α := (xn−1 +xn−2α+ · · ·+xαn−2 +αn−1)
for each positive integer n and real number α. Suppose that f(x) ∈ R[x] has degree d and
write

f(x) = adx
d + ad−1x

d−1 + · · · a1x+ a0

for a0, . . . , ad ∈ R with ad 6= 0. Then applying the identity xn − αn = (x − α)[n]x,α we can
write

f(x)− f(α) = ad(x
d − αd) + ad−1(x

d−1 − αd−1) + · · ·+ a1(x− α)

= ad(x− α)[d]x,α + ad−1(x− α)[d− 1]x,α + · · ·+ a1(x− α)[1]x,α

= (x− α)(ad[d]x,α + ad−1[d− 1]x,α + · · ·+ a1[1]x,α)

= (x− α)(adx
d−1 + lower order terms ).

If f(α) = 0 then we obtain f(x) = (x− α)h(x) where h(x) ∈ R[x] has degree d− 1. �

5. Constructing the Complex Numbers. Let R and C be the real and complex fields.
Let ϕ : R[x]→ C be the map that sends a polynomial f(x) to its evaluation f(i) ∈ C at x = i.

(a) Prove that ϕ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: a+ ib := a− ib for a, b ∈ R. Prove that

f(−i) = f(i) ∈ C for all f(x) ∈ R[x].
(c) Use Descartes’ Factor Theorem to prove that the kernel of ϕ is the principal ideal

generated by x2 + 1:

kerϕ = (x2 + 1) := {(x2 + 1)g(x) : g(x) ∈ R[x]}.

(d) Conclude that C is isomorphic to the quotient ring R[x]/(x2 + 1).



Proof. The multiplicative identity of R[x] is the constant polynomial 1(x) = 1, so clearly
ϕ(1) = 1(i) = 1 ∈ C, which is the multiplicative identity of C. To prove (a) we must show
that ϕ(f + g) = ϕ(f) + ϕ(g) and ϕ(fg) = ϕ(f)ϕ(g) for all f, g ∈ R[x]. To this end, let
f(x) =

∑
k akx

k and g(x) =
∑

k bkx
k. Then we have

ϕ(f) + ϕ(g) = f(i) + g(i) =
∑
k

aki
k +

∑
k

bki
k =

∑
k

(ak + bk)i
k = (f + g)(i) = ϕ(f + g)

and also

ϕ(f)ϕ(g) = f(i)g(i) =
∑
k

( ∑
u+v=k

(aui
u)(bvi

v)

)
=
∑
k

( ∑
u+v=k

aubv

)
ik = (fg)(i) = ϕ(fg).

Notice that the proof of ϕ(f)ϕ(g) = ϕ(fg) uses the fact that C is commutative. (This
is why we only consider polynomials over commutative rings.) Finally, note that the map is
surjective since for any a+ ib ∈ C we have a+ ib = ϕ(f) with f(x) = a+ xb ∈ R[x].

Given complex numbers a+ ib and c+ id note that

a+ ib+ c+ id = (a− ib) + (c− id) = (a+ c)− i(b+ d)

= (a+ c) + i(b+ d) = (a+ ib) + (c+ id)

and

(a+ ib)(c+ id) = (a− ib)(c− id) = (ac− bd)− i(ad+ bc)

= (ac− bd) + i(ad+ bc) = (a+ ib)(c+ id).

Combined with the fact that 1 = 1 we conclude that complex conjugation z → z is a ring
isomorphism C → C (we call it a field automorphism). Furthermore, we have z = z for all
z ∈ R ⊆ C. Now we will prove (b). Let f(x) =

∑
k akx

k and consider any complex number
z ∈ C. Then using the homomorphism properties of conjugation we have

f(z) =
∑
k

akzk =
∑
k

ak(z)
k =

∑
k

ak(z)
k = f(z).

In particular, taking z = i gives f(−i) = f(i).
Finally consider the surjective homomorphism ϕ : R[x]→ C given by ϕ(f) = f(i). To prove

(c) we will show that kerϕ = (x2 + 1). Indeed, if f(x) ∈ (x2 + 1) then we can write f(x) =
(x2 + 1)g(x) and then ϕ(f) = (i2 + 1)g(i) = 0 · g(x) = 0, hence f ∈ kerϕ and (x2 + 1) ⊆ kerϕ.
Conversely, suppose that f ∈ kerϕ, i.e., f(i) = 0. By Descartes’ Factor Theorem applied to
f(x) ∈ C[x] (a slightly tricky point) we have f(x) = (x − i)g(x) for some g(x) ∈ C[x]. But
by part (b) we know that f(i) = 0 implies f(−i) = 0 hence f(−i) = −2i · g(−i) = 0, which
implies that g(−i) = 0. Then Descartes’ Factor Theorem implies that g(x) = (x+ i)h(x) for
some h(x) ∈ C[x]. Putting this together we get

f(x) = (x− i)(x+ i)h(x) = (x2 + 1)h(x)

for some h(x) ∈ C[x]. The only problem left is to show that h(x) ∈ R[x]. But since f(x) and
(x2 + 1) are in R[x] we must also have h(x) ∈ R[x] (for example, we could do long division to
compute f(x)/(x2 + 1) = h(x)). We conclude that h(x) ∈ R[x] and hence f(x) is in the ideal
(x2 + 1) as desired. Then for part (d), the First Isomorphism Theorem says that

R[x]

(x2 + 1)
=

R[x]

kerϕ
≈ imϕ = C.

�


