Problems on Rings

1. Chinese Remainder Theorem. Given two ideals
$$I, J \leq R$$
 we define their product:

$$IJ := \langle \{ab : a \in I, b \in J\} \rangle.$$

This is the smallest ideal containing all the elements ab for $a \in I$ and $b \in J$.

- (a) Prove that $IJ \leq I \cap J$.
- (b) We say that ideals $I, J \leq R$ are coprime if I+J=R. In this case, prove that $I \cap J \leq IJ$, and hence $IJ = I \cap J$.
- (c) If $I, J \leq R$ are coprime ideals, prove that the map

$$\varphi(x+IJ) := (x+I, x+J)$$

defines a ring isomorphism $R/(IJ) \approx R/I \times R/J$.

Proof. For part (a), consider $a \in I$ and $b \in J$. Since I and J are both ideals we have $ab \in I$ and $ab \in J$, hence $ab \in I \cap J$. Thus $I \cap J$ is an ideal containing all the elements ab for $a \in I$ and $b \in J$ and it follows that $I \cap J$ contains the smallest such ideal, i.e., $IJ \leq I \cap J$.

For part (b), assume that the ideals I and J are coprime, i.e., that I + J = R. Then since $1 \in I + J$ there exist $a \in I$ and $b \in J$ such that 1 = a + b. Finally, for all $r \in I \cap J$ we have $ar \in IJ$ and $rb \in IJ$, hence

$$r = r1 = r(a+b) = ra+rb = ar+rb \in IJ.$$

It follows that $I \cap J \leq IJ$. [Note: We needed the fact that R is commutative.]

For part (c), let I and J be coprime ideals and consider the map $\varphi(x+IJ) := (x+I, x+J)$. We want to prove that this is a ring isomorphism $\varphi : R/(IJ) \to (R/I) \times (R/J)$. The fact that φ is a ring homomorphism (it preserves addition, multiplication, and 1) follows directly from the definitions. To show that φ is well-defined, assume that x + IJ = y + IJ, i.e., that $x - y \in IJ$. By part (a) this implies that $x - y \in I \cap J$. In other words, we have $x - y \in I$ (i.e. x + I = y + I) and $x - y \in J$ (i.e. x + J = y + J). It follows that

$$\varphi(x+IJ) = (x+I, x+J) = (y+I, y+J) = \varphi(y+IJ)$$

To show that φ is injective, suppose that (x+I, x+J) = (y+I, y+J), i.e., that x+I = y+Iand x+J = y+J. Then we have $x-y \in I$ and $x-y \in J$, hence $x-y \in I \cap J$. By part (b) this implies that $x-y \in IJ$, hence x+IJ = y+IJ, as desired. Finally, to prove that φ is surjective, consider any $(x+I, y+J) \in (R/I) \times (R/J)$. We wish to find some $\alpha \in R$ such that $\varphi(\alpha + IJ) = (x+I, y+J)$. Recall that I and J are coprime, so we can write 1 = a + bwith $a \in I$ and $b \in J$. Now let $\alpha := ay + bx$. (Yes this is a trick, but it's the same trick we did in class.) Then we have

$$\begin{aligned} \varphi(\alpha + IJ) &= (\alpha + I, \alpha + J) \\ &= (ay + bx + I, ay + bx + J) \\ &= (bx + I, ay + J) \\ &= ((1 - a)x + I, (1 - b)y + J) \\ &= (x - ax + I, y - by + J) \\ &= (x + I, y + J), \end{aligned}$$

hence φ is surjective.

[When $R = \mathbb{Z}$ the ideals are just (n) for $n \in \mathbb{Z}$ (we say \mathbb{Z} is a PID). Note that for all $m, n \in \mathbb{Z}$ we have (m)(n) = (mn), and note that (m) + (n) = (1) if and only if m and n are coprime integers. In this case, the Chinese Remainder Theorem says:

$$\mathbb{Z}/(mn) \approx \mathbb{Z}/(m) \times \mathbb{Z}/(n)$$

The classical version of this theorem appears in *The Mathematical Classic of Sunzi* from between the 3rd and 5th century. It says that for $m, n \in \mathbb{Z}$ coprime and arbitrary $a, b \in \mathbb{Z}$ the system

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

has a unique solution $x \pmod{mn}$. The proof of surjectivity above gives us a method to compute the solution.]

2. Groups of Units. Let R and S be rings. Prove that we have an isomorphism of groups: $(R \times S)^{\times} \approx R^{\times} \times S^{\times}.$

Proof. Consider the inclusion map $\iota : R^{\times} \times S^{\times} \hookrightarrow R \times S$. It is obviously injective. Given units $r \in R^{\times}$ and $s \in S^{\times}$, note that (r, s) is a unit in $R \times S$ because

$$(r,s)(r^{-1},s^{-1}) = (rr^{-1},ss^{-1}) = (1,1).$$

Thus we obtain an injective group homomorphism $\iota : R^{\times} \times S^{\times} \hookrightarrow (R \times S)^{\times}$. To see that ι is **surjective**, consider any $(r, s) \in (R \times S)^{\times}$. By definition this mean that there exists $(a, b) \in R \times S$ such that

$$(1,1) = (r,s)(a,b) = (ra,sb).$$

But then ra = 1, hence $r \in R^{\times}$, and sb = 1, hence $s \in S^{\times}$. Thus $\iota : R^{\times} \times S^{\times} \to (R \times S)^{\times}$ is a group isomorphism.

3. Diamond Isomorphism for Rings. Let R be a ring, let $S \subseteq R$ be a subring, and let $I \leq R$ be an ideal.

- (a) Prove that S + I is a subring of R.
- (b) Prove that I is an ideal of S + I.
- (c) Prove that $S \cap I$ is an ideal of S.
- (d) Prove that we have an isomorphism of rings:

$$\frac{S}{S \cap I} \approx \frac{S+I}{I}.$$

[Hint: Consider the natural map $\varphi : S \to R/I$ defined by $a \mapsto a + I$. What is the image? What is the kernel? Now use the First Isomorphism Theorem.]

Proof. Let $S \subset R$ be a subring and let $I \leq R$ be an ideal. For part (a), consider r + a and s + b in S + I, i.e., consider $r, s \in S$ and $a, b \in I$. Then we have

$$(r+a) + (s+b) = (r+s) + (a+b) \in S + I$$

because $r + s \in S$ and $a + b \in I$ and

$$(r+a)(s+b) = rs + as + rb + ab = (rs) + (as + rb + ab) \in S + I$$

because $rs \in S$ and $as + rb + ab \in I$. Finally note that $1 = 1 + 0 \in S + I$ because $1 \in S$ and $0 \in I$. We conclude that $S + I \subseteq R$ is a subring.

For part (b), first note that I is an additive subgroup of S + I. To see that $I \leq S + I$ is an ideal, consider $a \in I$ and $s + b \in S + I$, i.e., $s \in S$ and $b \in I$. Then we have

$$a(s+b) = as + ab \in I$$

because $as \in I$ and $ab \in I$.

For part (c), first note that $S \cap I$ is an additive subgroup of S. Now consider any $a \in S \cap I$ and $s \in S$. Then we have $as \in S$ because S is closed under multiplication and $as \in I$ because I is an ideal. Hence $as \in S \cap I$ and we conclude that $S \cap I \leq S$ is an ideal.

Finally, for part (d) consider the natural map $\varphi : S \to R/I$ defined by $a \mapsto a + I$. By definition $a \in S$ is in the kernel if and only if a + I = 0 + I, in other words, if and only if $a \in I$. Thus we have ker $\varphi = S \cap I$. I claim that im $\varphi = (S + I)/I$. Indeed, given any $s \in S$ we have $\varphi(s) = s + I = (s + 0) + I \in (S + I)/I$. Conversely, given any $s + a \in S + I$ (i.e. with $s \in S$ and $a \in I$) we have $(s + a) + I = s + I = \varphi(s)$. By the First Isomorphism Theorem we conclude that

$$\frac{S}{S \cap I} = \frac{S}{\ker \varphi} \approx \operatorname{im} \varphi = \frac{S+I}{I}.$$

[I will a draw a picture in class to show you why this is called the "Diamond Isomorphism".]

Problems on Polynomials

4. Descartes' Factor Theorem. Let K be a field and consider the ring K[x] of polynomials. Given $f(x) \in K[x]$ and $\alpha \in K$ such that $f(\alpha) = 0$, prove that $f(x) = (x - \alpha)h(x)$ where $h(x) \in K[x]$ with $\deg(h) = \deg(f) - 1$. [Hint: Observe that $x^n - \alpha^n = (x - \alpha)(x^{n-1} + \alpha x^{n-2} + \cdots + \alpha^{n-2}x + \alpha^{n-1})$ for all $n \ge 0$. Consider the polynomial $f(x) - f(\alpha)$.]

Proof. To save space, we define the polynomial $[n]_{x,\alpha} := (x^{n-1} + x^{n-2}\alpha + \dots + x\alpha^{n-2} + \alpha^{n-1})$ for each positive integer n and real number α . Suppose that $f(x) \in \mathbb{R}[x]$ has degree d and write

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$$

for $a_0, \ldots, a_d \in \mathbb{R}$ with $a_d \neq 0$. Then applying the identity $x^n - \alpha^n = (x - \alpha)[n]_{x,\alpha}$ we can write

$$f(x) - f(\alpha) = a_d(x^d - \alpha^d) + a_{d-1}(x^{d-1} - \alpha^{d-1}) + \dots + a_1(x - \alpha)$$

= $a_d(x - \alpha)[d]_{x,\alpha} + a_{d-1}(x - \alpha)[d - 1]_{x,\alpha} + \dots + a_1(x - \alpha)[1]_{x,\alpha}$
= $(x - \alpha)(a_d[d]_{x,\alpha} + a_{d-1}[d - 1]_{x,\alpha} + \dots + a_1[1]_{x,\alpha})$
= $(x - \alpha)(a_dx^{d-1} + \text{ lower order terms }).$

If $f(\alpha) = 0$ then we obtain $f(x) = (x - \alpha)h(x)$ where $h(x) \in \mathbb{R}[x]$ has degree d - 1.

5. Constructing the Complex Numbers. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi : \mathbb{R}[x] \to \mathbb{C}$ be the map that sends a polynomial f(x) to its evaluation $f(i) \in \mathbb{C}$ at x = i.

- (a) Prove that φ is a surjective ring homomorphism.
- (b) Recall the definition of complex conjugation: $\overline{a+ib} := a ib$ for $a, b \in \mathbb{R}$. Prove that $f(-i) = \overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.
- (c) Use Descartes' Factor Theorem to prove that the kernel of φ is the principal ideal generated by $x^2 + 1$:

$$\ker \varphi = (x^2 + 1) := \{ (x^2 + 1)g(x) : g(x) \in \mathbb{R}[x] \}.$$

(d) Conclude that \mathbb{C} is isomorphic to the quotient ring $\mathbb{R}[x]/(x^2+1)$.

Proof. The multiplicative identity of $\mathbb{R}[x]$ is the constant polynomial $\mathbf{1}(x) = 1$, so clearly $\varphi(\mathbf{1}) = \mathbf{1}(i) = 1 \in \mathbb{C}$, which is the multiplicative identity of \mathbb{C} . To prove (a) we must show that $\varphi(f+g) = \varphi(f) + \varphi(g)$ and $\varphi(fg) = \varphi(f)\varphi(g)$ for all $f, g \in \mathbb{R}[x]$. To this end, let $f(x) = \sum_k a_k x^k$ and $g(x) = \sum_k b_k x^k$. Then we have

$$\varphi(f) + \varphi(g) = f(i) + g(i) = \sum_{k} a_{k}i^{k} + \sum_{k} b_{k}i^{k} = \sum_{k} (a_{k} + b_{k})i^{k} = (f + g)(i) = \varphi(f + g)$$

and also

$$\varphi(f)\varphi(g) = f(i)g(i) = \sum_{k} \left(\sum_{u+v=k} (a_u i^u)(b_v i^v) \right) = \sum_{k} \left(\sum_{u+v=k} a_u b_v \right) i^k = (fg)(i) = \varphi(fg).$$

Notice that the proof of $\varphi(f)\varphi(g) = \varphi(fg)$ uses the fact that \mathbb{C} is commutative. (This is why we only consider polynomials over commutative rings.) Finally, note that the map is surjective since for any $a + ib \in \mathbb{C}$ we have $a + ib = \varphi(f)$ with $f(x) = a + xb \in \mathbb{R}[x]$.

Given complex numbers a + ib and c + id note that

$$\overline{a+ib} + \overline{c+id} = (a-ib) + (c-id) = (a+c) - i(b+d)$$
$$= \overline{(a+c) + i(b+d)} = \overline{(a+ib) + (c+id)}$$

and

$$(\overline{a+ib})(\overline{c+id}) = (a-ib)(c-id) = (ac-bd) - i(ad+bc)$$
$$= \overline{(ac-bd) + i(ad+bc)} = \overline{(a+ib)(c+id)}.$$

Combined with the fact that $\overline{1} = 1$ we conclude that complex conjugation $z \to \overline{z}$ is a ring isomorphism $\mathbb{C} \to \mathbb{C}$ (we call it a field automorphism). Furthermore, we have $\overline{z} = z$ for all $z \in \mathbb{R} \subseteq \mathbb{C}$. Now we will prove (b). Let $f(x) = \sum_k a_k x^k$ and consider any complex number $z \in \mathbb{C}$. Then using the homomorphism properties of conjugation we have

$$\overline{f(z)} = \sum_{k} a_k z^k = \sum_{k} \overline{a_k} (\overline{z})^k = \sum_{k} a_k (\overline{z})^k = f(\overline{z}).$$

In particular, taking z = i gives f(-i) = f(i).

Finally consider the surjective homomorphism $\varphi : \mathbb{R}[x] \to \mathbb{C}$ given by $\varphi(f) = f(i)$. To prove (c) we will show that ker $\varphi = (x^2 + 1)$. Indeed, if $f(x) \in (x^2 + 1)$ then we can write $f(x) = (x^2 + 1)g(x)$ and then $\varphi(f) = (i^2 + 1)g(i) = 0 \cdot g(x) = 0$, hence $f \in \ker \varphi$ and $(x^2 + 1) \subseteq \ker \varphi$. Conversely, suppose that $f \in \ker \varphi$, i.e., f(i) = 0. By Descartes' Factor Theorem applied to $f(x) \in \mathbb{C}[x]$ (a slightly tricky point) we have f(x) = (x - i)g(x) for some $g(x) \in \mathbb{C}[x]$. But by part (b) we know that f(i) = 0 implies f(-i) = 0 hence $f(-i) = -2i \cdot g(-i) = 0$, which implies that g(-i) = 0. Then Descartes' Factor Theorem implies that g(x) = (x + i)h(x) for some $h(x) \in \mathbb{C}[x]$. Putting this together we get

$$f(x) = (x - i)(x + i)h(x) = (x^2 + 1)h(x)$$

for some $h(x) \in \mathbb{C}[x]$. The only problem left is to show that $h(x) \in \mathbb{R}[x]$. But since f(x) and $(x^2 + 1)$ are in $\mathbb{R}[x]$ we must also have $h(x) \in \mathbb{R}[x]$ (for example, we could do long division to compute $f(x)/(x^2 + 1) = h(x)$). We conclude that $h(x) \in \mathbb{R}[x]$ and hence f(x) is in the ideal $(x^2 + 1)$ as desired. Then for part (d), the First Isomorphism Theorem says that

$$\frac{\mathbb{R}[x]}{(x^2+1)} = \frac{\mathbb{R}[x]}{\ker \varphi} \approx \operatorname{im} \varphi = \mathbb{C}.$$