Problems on Rings

1. Chinese Remainder Theorem. Given two ideals $I, J \leq R$ we define their product:

$$IJ := \langle \{ab : a \in I, b \in J\} \rangle.$$

This is the smallest ideal containing all the elements ab for $a \in I$ and $b \in J$.

- (a) Prove that $IJ \leq I \cap J$.
- (b) We say that ideals $I, J \leq R$ are coprime if I+J=R. In this case, prove that $I \cap J \leq IJ$, and hence $IJ = I \cap J$.
- (c) If $I, J \leq R$ are coprime ideals, prove that the map

$$\varphi(x+IJ) := (x+I, x+J)$$

defines a ring isomorphism $R/(IJ) \approx R/I \times R/J$.

2. Groups of Units. Let R and S be rings. Prove that we have an isomorphism of groups: $(R \times S)^{\times} \approx R^{\times} \times S^{\times}.$

3. Diamond Isomorphism for Rings. Let R be a ring, let $S \subseteq R$ be a subring, and let $I \leq R$ be an ideal.

- (a) Prove that S + I is a subring of R.
- (b) Prove that I is an ideal of S + I.
- (c) Prove that $S \cap I$ is an ideal of S.
- (d) Prove that we have an isomorphism of rings:

$$\frac{S}{S \cap I} \approx \frac{S+I}{I}.$$

[Hint: Consider the natural map $\varphi : S \to R/I$ defined by $a \mapsto a + I$. What is the image? What is the kernel? Now use the First Isomorphism Theorem.]

Problems on Polynomials

4. Descartes' Factor Theorem. Let K be a field and consider the ring K[x] of polynomials. Given $f(x) \in K[x]$ and $\alpha \in K$ such that $f(\alpha) = 0$, prove that $f(x) = (x - \alpha)h(x)$ where $h(x) \in K[x]$ with $\deg(h) = \deg(f) - 1$. [Hint: Observe that $x^n - \alpha^n = (x - \alpha)(x^{n-1} + \alpha x^{n-2} + \cdots + \alpha^{n-2}x + \alpha^{n-1})$ for all $n \ge 0$. Consider the polynomial $f(x) - f(\alpha)$.]

5. Constructing the Complex Numbers. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi : \mathbb{R}[x] \to \mathbb{C}$ be the map that sends a polynomial f(x) to its evaluation $f(i) \in \mathbb{C}$ at x = i.

- (a) Prove that φ is a surjective ring homomorphism.
- (b) Recall the definition of complex conjugation: $\overline{a+ib} := a ib$ for $a, b \in \mathbb{R}$. Prove that $f(-i) = \overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.
- (c) Use Descartes' Factor Theorem to prove that the kernel of φ is the principal ideal generated by $x^2 + 1$:

$$\ker \varphi = (x^2 + 1) := \{ (x^2 + 1)g(x) : g(x) \in \mathbb{R}[x] \}.$$

(d) Conclude that \mathbb{C} is isomorphic to the quotient ring $\mathbb{R}[x]/(x^2+1)$.