
Math 562 Spring 2014
Homework 1 Drew Armstrong

Problems on Integers

1. The Division Algorithm. Consider integers a, b ∈ Z with b 6= 0.

(a) Prove that there exist integers q, r ∈ Z such that a = qb+r and 0 ≤ r < |b|. [Hint: Let
S be the set of integers of the form a− qb for some q ∈ Z. By well ordering, the set S
has a smallest nonnegative element which we can call r. Show that r is small enough.]

(b) Prove that the integers q, r from part (a) are unique. [Hint: Suppose that a = q1b+r1 =
q2b + r2 with 0 ≤ r1 < |b| and 0 ≤ r2 < |b|. Show that the assumption r1 − r2 6= 0
leads to a contradiction.]

(c) Use the Division Algorithm to prove that the equation 2x = 1 has no solution x ∈ Z.

Proof. Consider integers a, b ∈ Z with b 6= 0. For part (a), define the set

S := {a− qb : q ∈ Z}.

By well ordering, the set S has a smallest nonnegative element. Call it r ≥ 0. Then by
definition of S there exists q ∈ Z such that a = qb + r. I claim that 0 ≤ r < |b|. Suppose not,
i.e., suppose that we have |b| ≤ r. In this case we have 0 ≤ r − |b| < |b|. But we also have

r − |b| = a− qb− |b| = a− (q ± 1)b ∈ S,

which contradicts the fact that r is the smallest nonnegative element of S. We have proven
that there exist q, r ∈ Z with a = qb + r and 0 ≤ r < |b| as desired.

For part (b), suppose that there exist q1, q2, r1, r2 ∈ Z such that

q1b + r1 = a = q2b + r2

with 0 ≤ r1 < |b| and 0 ≤ r2 < |b|. We want to show that q1 = q2 and r1 = r2. Suppose not,
i.e., suppose that r1 6= r2, say r1 < r2. Then we have

0 < (r2 − r1) ≤ r2 < |b|.

But we also have

q1b + r1 = q2b + r2,

q1b− q2b = r2 − r1,

(q1 − q2)b = (r2 − r1).

Since r2 − r1 6= 0 we have q1 − q2 6= 0 which implies that 1 ≤ |q1 − q2|, hence

|b| ≤ |q1 − q2||b| = |(q1 − q2)b| = |r2 − r1| ≤ (r2 − r1).

Contradiction. We conclude that r1 = r2. Then since (q1 − q2)b = 0 and b 6= 0 we conclude
that (q1 − q2) = 0, hence q1 = q2. [Interesting question: Why is Z a domain?]

For part (c), assume for contradiction that there exists x ∈ Z such that 2x = 1. Since

1 = 2x + 0 with 0 ≤ 0 < 2

we see that 0 is the remainder when 1 is divided by 2. But we also have

1 = 2 · 0 + 1 with 0 ≤ 1 < 2

so 1 is the remainder when 1 is divided by 2. This contradicts the uniqueness of remainder
proved in part (b). �



[Now we can confidently say that 1/2 is not an integer; that is, after we explain why Z is a domain.]

2. Application of Unique Factorization.

(a) Consider a, p ∈ Z with p prime and a 6= 0. Prove that p occurs an even number of
times in the prime factorization of a2.

(b) Use part (a) to give a short proof that
√

2 is irrational. [Hint: Assume for contradiction
that there exist a, b ∈ Z with b 6= 0 and a/b =

√
2.]

Proof. For part (a), suppose that a ∈ Z can be written as a product

a = pe11 pe22 · · · p
ek
k

where p1 < p2 < · · · < pk are distinct primes. Then we have

a2 = (pe11 pe22 · · · p
ek
k )(pe11 pe22 · · · p

ek
k ) = p2e11 p2e22 · · · p

2ek
k ,

thus any given prime occurs an even number of times in the prime factorization of a2 (zero is
a perfectly good number of times).

For part (b), assume for contradiction that there exist a, b ∈ Z with b 6= 0 and a/b =
√

2.
Then we have

a/b =
√

2,

a = b
√

2,

a2 = 2b2.

But the prime 2 occurs an even number of times in a2 and an odd number of times in 2b2.
This contradicts the uniqueness of prime factorization. �

[You can use the same method to prove that
√
d is irrational for any d ∈ Z such that

√
d 6∈ Z.]

Problems on Rings

3. Properties of subtraction.

(a) Given a ∈ R the axioms say that there exists a′ ∈ R such that a + a′ = 0. Prove that
this a′ is unique. We will call it −a. Then we define the operation of subtraction by

a− b := a + (−b).
(b) Prove that a0 = 0 for all a ∈ R.
(c) Prove that for all a, b ∈ R we have (−a)b = −(ab). [Hint: Use part (b).]
(d) Prove that for all a, b ∈ R we have (−a)(−b) = ab. [Hint: Use part (c) to show that

ab + a(−b) = 0. Then use (b).] If a child asks you why negative times negative is
positive, now you will know what to say.

(e) Prove that for all a, b, c ∈ R we have a(b− c) = ab− ac. [Hint: Use part (c).]

Proof. For part (a), suppose we have a′ and a′′ in R such that

a + a′ = 0 = a + a′′.

It follows that

a′ = a′ + 0 = a′ + (a + a′′) = (a′ + a) + a′′ = 0 + a′′ = a′′.

We will write −a := a′ = a′′ for the unique additive inverse.
For part (b) first note that

a0 = a(0 + 0) = a0 + a0.

Then add −0a to both sides to conclude that 0 = a0.



For part (c) we want to show that (−a)b is the additive inverse of ab. Indeed, using the
result of part (a) we have

ab + (−a)b = (a + (−a))b = 0b = 0.

For part (d) first note that a(−b) = −(ab). This follows from part (c) and commutativity.
Then apply part (c) again to get

ab = −(a(−b)) = (−a)(−b).
Finally, for part (e) we apply part (c) again to get

a(b− c) = a(b + (−c)) = ab + a(−c) = ab + (−(ac)) = ab− ac.

�

4. Let ϕ : R→ S be a ring homomorphism.

(a) Prove that ϕ(0R) = 0S .
(b) Prove that ϕ(−a) = −ϕ(a) for all a ∈ R.
(c) Let a ∈ R. If a−1 exists, prove that ϕ(a) is invertible with ϕ(a)−1 = ϕ(a−1).

Proof. Let ϕ : R → S be a ring homomorphism. That is, we have ϕ(1R) = 1S and for all
a, b ∈ R we have ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b). To prove part (a) note that

ϕ(0R) = ϕ(0R + 0R) = ϕ(0R) + ϕ(0R).

Now subtract ϕ(0R) from both sides to get 0S = ϕ(0R). For part (b), let a ∈ R. Then using
part (a) we have

0S = ϕ(0R) = ϕ(a− a) = ϕ(a + (−a)) = ϕ(a) + ϕ(−a).

Now subtract ϕ(a) from both sides to get −ϕ(a) = ϕ(−a).
For part (c), let a ∈ R and suppose that there exists a−1 ∈ R with aa−1 = 1R. Applying ϕ

to this equation gives
1S = ϕ(1R) = ϕ(aa−1) = ϕ(a)ϕ(a−1).

We conclude that ϕ(a)−1 = ϕ(a−1). �

[Note that we needed to assume ϕ(1R) = 1S in the definition of ring homomorphism. It does not
follow automatically from the fact that ϕ(ab) = ϕ(a)ϕ(b). We might try to say that

ϕ(1R) = ϕ(1R1R) = ϕ(1R)ϕ(1R)

and then cancel ϕ(1R) from both sides to get 1S = ϕ(1R). But this doesn’t work because (R,×, 1)
is just a semigroup, not a group.]

5. Let R be a ring. We say that a ∈ R is nilpotent if an = 0 for some n. If a is nilpotent,
prove that 1 + a and 1− a are units (i.e. invertible).

Proof. Note that for all a ∈ R and n ∈ N we have the identities:

1− an = (1− a)(1 + a + a2 + · · ·+ an−1),

1− (−1)nan = (1 + a)(1− a + a2 − · · ·+ (−1)n−1an−1).

If an = 0 then we obtain inverses for 1 + a and 1− a. �

6. Let I ≤ R be an ideal. Prove that I = R if and only if I contains a unit.

Proof. If I = R then we have 1 ∈ I and so I contains a unit. Conversely, suppose that we
have u ∈ I and that there exists u−1 ∈ R. Since I is an ideal this implies that 1 = uu−1 ∈ I
and then for all a ∈ R we have a = 1a ∈ I. Hence I = R. �



[For this reason, R = (1) is sometimes called the “unit ideal”.]

7. Given an ideal I ≤ R and an element a ∈ R we define the additive coset

a + I := {a + x : x ∈ I}.
Now consider a, a′, b, b′ ∈ R such that a + I = a′ + I and b + I = b′ + I. Prove that
(a+b)+I = (a′+b′)+I and (ab)+I = (a′b′)+I. This shows that addition and multiplication
of cosets is well-defined.

Proof. We assume that a+ I = a′+ I and b+ I = b′+ I; that is, there exist x, y ∈ I such that
a− a′ = x and b− b′ = y. First we show that (a + b) + I = (a′ + b′) + I. Indeed, we have

(a + b) = (a′ + x) + (b′ + y),

= (a′ + b′) + (x + y).

Since x + y ∈ I we conclude that (a + b) − (a′ + b′) ∈ I as desired. Next we show that
(ab) + I = (a′b′) + I. Indeed, we have

(ab) = (a′ + x)(b′ + y),

= (a′b′) + (a′y + xb′ + xy).

Since a′y + xb′ + xy ∈ I we conclude that (ab)− (a′b′) ∈ I as desired. �

[We have proved that the set R/I has well-defined addition and multiplication. One can then show
that these operations define a ring structure on R/I. It seems that every book on the subject
leaves out this verification as too “boring”. I will not disagree.]


