Problems on Integers

1. The Division Algorithm. Consider integers $a, b \in \mathbb{Z}$ with $b \neq 0$.
(a) Prove that there exist integers $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<|b|$. [Hint: Let S be the set of integers of the form $a-q b$ for some $q \in \mathbb{Z}$. By well ordering, the set S has a smallest nonnegative element which we can call r. Show that r is small enough.]
(b) Prove that the integers q, r from part (a) are unique. [Hint: Suppose that $a=q_{1} b+r_{1}=$ $q_{2} b+r_{2}$ with $0 \leq r_{1}<|b|$ and $0 \leq r_{2}<|b|$. Show that the assumption $r_{1}-r_{2} \neq 0$ leads to a contradiction.]
(c) Use the Division Algorithm to prove that the equation $2 x=1$ has no solution $x \in \mathbb{Z}$.

Proof. Consider integers $a, b \in \mathbb{Z}$ with $b \neq 0$. For part (a), define the set

$$
S:=\{a-q b: q \in \mathbb{Z}\} .
$$

By well ordering, the set S has a smallest nonnegative element. Call it $r \geq 0$. Then by definition of S there exists $q \in \mathbb{Z}$ such that $a=q b+r$. I claim that $0 \leq r<|b|$. Suppose not, i.e., suppose that we have $|b| \leq r$. In this case we have $0 \leq r-|b|<|b|$. But we also have

$$
r-|b|=a-q b-|b|=a-(q \pm 1) b \in S,
$$

which contradicts the fact that r is the smallest nonnegative element of S. We have proven that there exist $q, r \in \mathbb{Z}$ with $a=q b+r$ and $0 \leq r<|b|$ as desired.

For part (b), suppose that there exist $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ such that

$$
q_{1} b+r_{1}=a=q_{2} b+r_{2}
$$

with $0 \leq r_{1}<|b|$ and $0 \leq r_{2}<|b|$. We want to show that $q_{1}=q_{2}$ and $r_{1}=r_{2}$. Suppose not, i.e., suppose that $r_{1} \neq r_{2}$, say $r_{1}<r_{2}$. Then we have

$$
0<\left(r_{2}-r_{1}\right) \leq r_{2}<|b| .
$$

But we also have

$$
\begin{aligned}
q_{1} b+r_{1} & =q_{2} b+r_{2}, \\
q_{1} b-q_{2} b & =r_{2}-r_{1}, \\
\left(q_{1}-q_{2}\right) b & =\left(r_{2}-r_{1}\right) .
\end{aligned}
$$

Since $r_{2}-r_{1} \neq 0$ we have $q_{1}-q_{2} \neq 0$ which implies that $1 \leq\left|q_{1}-q_{2}\right|$, hence

$$
|b| \leq\left|q_{1}-q_{2}\right||b|=\left|\left(q_{1}-q_{2}\right) b\right|=\left|r_{2}-r_{1}\right| \leq\left(r_{2}-r_{1}\right) .
$$

Contradiction. We conclude that $r_{1}=r_{2}$. Then since $\left(q_{1}-q_{2}\right) b=0$ and $b \neq 0$ we conclude that $\left(q_{1}-q_{2}\right)=0$, hence $q_{1}=q_{2}$. [Interesting question: Why is \mathbb{Z} a domain?]

For part (c), assume for contradiction that there exists $x \in \mathbb{Z}$ such that $2 x=1$. Since

$$
1=2 x+0 \quad \text { with } \quad 0 \leq 0<2
$$

we see that 0 is the remainder when 1 is divided by 2 . But we also have

$$
1=2 \cdot 0+1 \quad \text { with } \quad 0 \leq 1<2
$$

so 1 is the remainder when 1 is divided by 2 . This contradicts the uniqueness of remainder proved in part (b).
[Now we can confidently say that $1 / 2$ is not an integer; that is, after we explain why \mathbb{Z} is a domain.]

2. Application of Unique Factorization.

(a) Consider $a, p \in \mathbb{Z}$ with p prime and $a \neq 0$. Prove that p occurs an even number of times in the prime factorization of a^{2}.
(b) Use part (a) to give a short proof that $\sqrt{2}$ is irrational. [Hint: Assume for contradiction that there exist $a, b \in \mathbb{Z}$ with $b \neq 0$ and $a / b=\sqrt{2}$.]

Proof. For part (a), suppose that $a \in \mathbb{Z}$ can be written as a product

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

where $p_{1}<p_{2}<\cdots<p_{k}$ are distinct primes. Then we have

$$
a^{2}=\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{k}^{2 e_{k}},
$$

thus any given prime occurs an even number of times in the prime factorization of a^{2} (zero is a perfectly good number of times).

For part (b), assume for contradiction that there exist $a, b \in \mathbb{Z}$ with $b \neq 0$ and $a / b=\sqrt{2}$. Then we have

$$
\begin{aligned}
a / b & =\sqrt{2}, \\
a & =b \sqrt{2}, \\
a^{2} & =2 b^{2} .
\end{aligned}
$$

But the prime 2 occurs an even number of times in a^{2} and an odd number of times in $2 b^{2}$. This contradicts the uniqueness of prime factorization.
[You can use the same method to prove that \sqrt{d} is irrational for any $d \in \mathbb{Z}$ such that $\sqrt{d} \notin \mathbb{Z}$.]

Problems on Rings

3. Properties of subtraction.

(a) Given $a \in R$ the axioms say that there exists $a^{\prime} \in R$ such that $a+a^{\prime}=0$. Prove that this a^{\prime} is unique. We will call it $-a$. Then we define the operation of subtraction by

$$
a-b:=a+(-b) .
$$

(b) Prove that $a 0=0$ for all $a \in R$.
(c) Prove that for all $a, b \in R$ we have $(-a) b=-(a b)$. [Hint: Use part (b).]
(d) Prove that for all $a, b \in R$ we have $(-a)(-b)=a b$. [Hint: Use part (c) to show that $a b+a(-b)=0$. Then use (b).] If a child asks you why negative times negative is positive, now you will know what to say.
(e) Prove that for all $a, b, c \in R$ we have $a(b-c)=a b-a c$. [Hint: Use part (c).]

Proof. For part (a), suppose we have a^{\prime} and $a^{\prime \prime}$ in R such that

$$
a+a^{\prime}=0=a+a^{\prime \prime} .
$$

It follows that

$$
a^{\prime}=a^{\prime}+0=a^{\prime}+\left(a+a^{\prime \prime}\right)=\left(a^{\prime}+a\right)+a^{\prime \prime}=0+a^{\prime \prime}=a^{\prime \prime} .
$$

We will write $-a:=a^{\prime}=a^{\prime \prime}$ for the unique additive inverse.
For part (b) first note that

$$
a 0=a(0+0)=a 0+a 0 .
$$

Then add $-0 a$ to both sides to conclude that $0=a 0$.

For part (c) we want to show that $(-a) b$ is the additive inverse of $a b$. Indeed, using the result of part (a) we have

$$
a b+(-a) b=(a+(-a)) b=0 b=0 .
$$

For part (d) first note that $a(-b)=-(a b)$. This follows from part (c) and commutativity. Then apply part (c) again to get

$$
a b=-(a(-b))=(-a)(-b) .
$$

Finally, for part (e) we apply part (c) again to get

$$
a(b-c)=a(b+(-c))=a b+a(-c)=a b+(-(a c))=a b-a c .
$$

4. Let $\varphi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that $\varphi\left(0_{R}\right)=0_{S}$.
(b) Prove that $\varphi(-a)=-\varphi(a)$ for all $a \in R$.
(c) Let $a \in R$. If a^{-1} exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1}=\varphi\left(a^{-1}\right)$.

Proof. Let $\varphi: R \rightarrow S$ be a ring homomorphism. That is, we have $\varphi\left(1_{R}\right)=1_{S}$ and for all $a, b \in R$ we have $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b)$. To prove part (a) note that

$$
\varphi\left(0_{R}\right)=\varphi\left(0_{R}+0_{R}\right)=\varphi\left(0_{R}\right)+\varphi\left(0_{R}\right)
$$

Now subtract $\varphi\left(0_{R}\right)$ from both sides to get $0_{S}=\varphi\left(0_{R}\right)$. For part (b), let $a \in R$. Then using part (a) we have

$$
0_{S}=\varphi\left(0_{R}\right)=\varphi(a-a)=\varphi(a+(-a))=\varphi(a)+\varphi(-a) .
$$

Now subtract $\varphi(a)$ from both sides to get $-\varphi(a)=\varphi(-a)$.
For part (c), let $a \in R$ and suppose that there exists $a^{-1} \in R$ with $a a^{-1}=1_{R}$. Applying φ to this equation gives

$$
1_{S}=\varphi\left(1_{R}\right)=\varphi\left(a a^{-1}\right)=\varphi(a) \varphi\left(a^{-1}\right) .
$$

We conclude that $\varphi(a)^{-1}=\varphi\left(a^{-1}\right)$.
[Note that we needed to assume $\varphi\left(1_{R}\right)=1_{S}$ in the definition of ring homomorphism. It does not follow automatically from the fact that $\varphi(a b)=\varphi(a) \varphi(b)$. We might try to say that

$$
\varphi\left(1_{R}\right)=\varphi\left(1_{R} 1_{R}\right)=\varphi\left(1_{R}\right) \varphi\left(1_{R}\right)
$$

and then cancel $\varphi\left(1_{R}\right)$ from both sides to get $1_{S}=\varphi\left(1_{R}\right)$. But this doesn't work because $(R, \times, 1)$ is just a semigroup, not a group.]
5. Let R be a ring. We say that $a \in R$ is nilpotent if $a^{n}=0$ for some n. If a is nilpotent, prove that $1+a$ and $1-a$ are units (i.e. invertible).
Proof. Note that for all $a \in R$ and $n \in \mathbb{N}$ we have the identities:

$$
\begin{aligned}
1-a^{n} & =(1-a)\left(1+a+a^{2}+\cdots+a^{n-1}\right) \\
1-(-1)^{n} a^{n} & =(1+a)\left(1-a+a^{2}-\cdots+(-1)^{n-1} a^{n-1}\right)
\end{aligned}
$$

If $a^{n}=0$ then we obtain inverses for $1+a$ and $1-a$.
6. Let $I \leq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.

Proof. If $I=R$ then we have $1 \in I$ and so I contains a unit. Conversely, suppose that we have $u \in I$ and that there exists $u^{-1} \in R$. Since I is an ideal this implies that $1=u u^{-1} \in I$ and then for all $a \in R$ we have $a=1 a \in I$. Hence $I=R$.
[For this reason, $R=(1)$ is sometimes called the "unit ideal".]
7. Given an ideal $I \leq R$ and an element $a \in R$ we define the additive coset

$$
a+I:=\{a+x: x \in I\} .
$$

Now consider $a, a^{\prime}, b, b^{\prime} \in R$ such that $a+I=a^{\prime}+I$ and $b+I=b^{\prime}+I$. Prove that $(a+b)+I=\left(a^{\prime}+b^{\prime}\right)+I$ and $(a b)+I=\left(a^{\prime} b^{\prime}\right)+I$. This shows that addition and multiplication of cosets is well-defined.
Proof. We assume that $a+I=a^{\prime}+I$ and $b+I=b^{\prime}+I$; that is, there exist $x, y \in I$ such that $a-a^{\prime}=x$ and $b-b^{\prime}=y$. First we show that $(a+b)+I=\left(a^{\prime}+b^{\prime}\right)+I$. Indeed, we have

$$
\begin{aligned}
(a+b) & =\left(a^{\prime}+x\right)+\left(b^{\prime}+y\right), \\
& =\left(a^{\prime}+b^{\prime}\right)+(x+y) .
\end{aligned}
$$

Since $x+y \in I$ we conclude that $(a+b)-\left(a^{\prime}+b^{\prime}\right) \in I$ as desired. Next we show that $(a b)+I=\left(a^{\prime} b^{\prime}\right)+I$. Indeed, we have

$$
\begin{aligned}
(a b) & =\left(a^{\prime}+x\right)\left(b^{\prime}+y\right), \\
& =\left(a^{\prime} b^{\prime}\right)+\left(a^{\prime} y+x b^{\prime}+x y\right) .
\end{aligned}
$$

Since $a^{\prime} y+x b^{\prime}+x y \in I$ we conclude that $(a b)-\left(a^{\prime} b^{\prime}\right) \in I$ as desired.
[We have proved that the set R / I has well-defined addition and multiplication. One can then show that these operations define a ring structure on R / I. It seems that every book on the subject leaves out this verification as too "boring". I will not disagree.]

