Math 562 Spring 2014
Homework 1 Drew Armstrong

Problems on Integers

1. The Division Algorithm. Consider integers a,b € Z with b # 0.

(a) Prove that there exist integers ¢, r € Z such that a = gb+r and 0 < r < |b|. [Hint: Let
S be the set of integers of the form a — ¢b for some ¢ € Z. By well ordering, the set S
has a smallest nonnegative element which we can call r. Show that r is small enough.|

(b) Prove that the integers g, r from part (a) are unique. [Hint: Suppose that a = ¢1b+r1 =
q2b + 19 with 0 < 71 < |b| and 0 < rg < |[b|. Show that the assumption 71 — ry # 0
leads to a contradiction.]

(c¢) Use the Division Algorithm to prove that the equation 2z = 1 has no solution x € Z.

Proof. Consider integers a,b € Z with b # 0. For part (a), define the set
S:={a—qb:qeZ}.

By well ordering, the set S has a smallest nonnegative element. Call it » > 0. Then by
definition of S there exists ¢ € Z such that a = gb+ r. I claim that 0 < r < |b|. Suppose not,
i.e., suppose that we have |b| < r. In this case we have 0 < r — |b| < |b|. But we also have

r—lbl=a—qgb—|bl=a—- (g 1)beS,

which contradicts the fact that r is the smallest nonnegative element of S. We have proven
that there exist ¢,r € Z with a = gb+ r and 0 < r < |b| as desired.
For part (b), suppose that there exist g1, g2, 71,72 € Z such that

qb+r1=a=qb+r;

with 0 < r; < |b] and 0 < ry < |b|. We want to show that ¢ = g2 and r1 = r9. Suppose not,
i.e., suppose that ry # ro, say 71 < ry. Then we have

0<(ro—ry) <re <|bl
But we also have
@b+ 11 = q2b+ 1o,
@b —qb =71 — 11,
(@1 —q2)b=(r2 —11).
Since 1 — r1 # 0 we have ¢ — g2 # 0 which implies that 1 < |¢; — ¢2|, hence
0] < lq1 — q2l|b] = [(q1 — q2)b] = |r2 — 71| < (rg —11).

Contradiction. We conclude that ry = ro. Then since (¢1 — g2)b = 0 and b # 0 we conclude
that (q1 — g2) = 0, hence ¢1 = 2. [Interesting question: Why is Z a domain?]
For part (c), assume for contradiction that there exists x € Z such that 2z = 1. Since

1=2x+0 with 0<0<2
we see that 0 is the remainder when 1 is divided by 2. But we also have
1=2-0+1 with 0<1<2

so 1 is the remainder when 1 is divided by 2. This contradicts the uniqueness of remainder
proved in part (b). O



[Now we can confidently say that 1/2 is not an integer; that is, after we explain why Z is a domain.]

2. Application of Unique Factorization.

(a) Consider a,p € Z with p prime and a # 0. Prove that p occurs an even number of
times in the prime factorization of a?.

(b) Use part (a) to give a short proof that v/2 is irrational. [Hint: Assume for contradiction
that there exist a,b € Z with b # 0 and a/b = v/2.]

Proof. For part (a), suppose that a € Z can be written as a product
a=pips . poh
where p; < po < -+ < pp are distinct primes. Then we have

e1. €9 2e1 . 2e2 2ep

a* = (p1'py’ - P ) (07 py - 0it) = P e
thus any given prime occurs an even number of times in the prime factorization of a? (zero is
a perfectly good number of times).
For part (b), assume for contradiction that there exist a,b € Z with b # 0 and a/b = /2.
Then we have

a/b =2,
a=bv2,
a? = 2b?.
But the prime 2 occurs an even number of times in a? and an odd number of times in 2b°.

This contradicts the uniqueness of prime factorization. O

[You can use the same method to prove that v/d is irrational for any d € Z such that v/d ¢ Z.]
Problems on Rings

3. Properties of subtraction.
(a) Given a € R the axioms say that there exists a’ € R such that a + o’ = 0. Prove that
this @’ is unique. We will call it —a. Then we define the operation of subtraction by
a—b:=a+(-b).

(b) Prove that a0 =0 for all a € R.

(¢) Prove that for all a,b € R we have (—a)b = —(ab). [Hint: Use part (b).]

(d) Prove that for all a,b € R we have (—a)(—b) = ab. [Hint: Use part (c) to show that
ab + a(—b) = 0. Then use (b).] If a child asks you why negative times negative is
positive, now you will know what to say.

(e) Prove that for all a,b,c € R we have a(b— ¢) = ab — ac. [Hint: Use part (c).]

Proof. For part (a), suppose we have @’ and a” in R such that
a+ad =0=a+ad".
It follows that

" i

d=d+0=d+(a+d")=(d+a)+d" =0+d" =d".

We will write —a := a’ = a” for the unique additive inverse.
For part (b) first note that
a0 = a(0+ 0) = a0 + a0.
Then add —0a to both sides to conclude that 0 = a0.



For part (c) we want to show that (—a)b is the additive inverse of ab. Indeed, using the
result of part (a) we have

ab+ (—a)b = (a+ (—a))b=0b=0.
For part (d) first note that a(—b) = —(ab). This follows from part (¢) and commutativity.
Then apply part (c) again to get
ab = —(a(=b)) = (—a)(=b).
Finally, for part (e) we apply part (c) again to get
a(b—rc)=a(b+ (—c)) = ab+ a(—c) = ab+ (—(ac)) = ab — ac.

4. Let ¢ : R — S be a ring homomorphism.
(a) Prove that ¢(0g) = 0g.
(b) Prove that p(—a) = —p(a) for all a € R.
(c) Let a € R. If a~! exists, prove that ¢(a) is invertible with ¢(a)™! = ¢(a™1).

Proof. Let ¢ : R — S be a ring homomorphism. That is, we have p(1g) = 1g and for all
a,b € R we have p(a +b) = ¢(a) + ¢(b) and ¢(ab) = p(a)p(b). To prove part (a) note that

©(0r) = ©(0r + 0r) = ¢(Or) + ©(0R).

Now subtract ¢(0g) from both sides to get 0s = ¢(0r). For part (b), let @ € R. Then using
part (a) we have

05 = ¢(0r) = p(a—a) = p(a+ (—a)) = p(a) + ¢(—a).
Now subtract ¢(a) from both sides to get —p(a) = ¢(—a).
For part (c), let a € R and suppose that there exists a~! € R with aa=! = 1. Applying ¢
to this equation gives

Ls = ¢(1p) = p(aa™") = p(a)p(a™).
We conclude that p(a)™! = p(a™t). O

[Note that we needed to assume ¢(1g) = lg in the definition of ring homomorphism. It does not
follow automatically from the fact that ¢(ab) = ¢(a)p(b). We might try to say that

©(1r) = ¢(1r1R) = ¢(1r)¢(1R)
and then cancel ¢(1g) from both sides to get 1 = ¢(1g). But this doesn't work because (R, x, 1)
is just a semigroup, not a group.]
5. Let R be a ring. We say that a € R is nilpotent if ¢ = 0 for some n. If a is nilpotent,
prove that 14+ a and 1 — @ are units (i.e. invertible).
Proof. Note that for all a € R and n € N we have the identities:
l-a"=(1-a)(l+a+a*+---+a" 1),
I—(-D)""=1+a)(l-a+a®—--+(=1)"ta" ).

If a™ = 0 then we obtain inverses for 1 +a and 1 — a. O

6. Let I < R be an ideal. Prove that I = R if and only if I contains a unit.

Proof. If I = R then we have 1 € I and so I contains a unit. Conversely, suppose that we
have u € I and that there exists u~' € R. Since I is an ideal this implies that 1 = wu=t € I
and then for all a € R we have a = 1a € I. Hence I = R. U



[For this reason, R = (1) is sometimes called the “unit ideal” ]

7. Given an ideal I < R and an element ¢ € R we define the additive coset
a+I:={a+z:xel}.

Now consider a,a’,b,b/ € R such that a +1 = o’ + 1 and b+ 1 = o + I. Prove that
(a+b)+1 = (a'+V)+1 and (ab)+1 = (a’t’) + 1. This shows that addition and multiplication
of cosets is well-defined.

Proof. We assume that a+1 = a' + 1 and b+ I =V + I; that is, there exist z,y € I such that
a—a =xand b—V =y. First we show that (a +b0) + 1 = (a’ +b') + I. Indeed, we have

(a+0) = (a' + )+ (b +v),
= (d + V) + (z+y).

Since © + y € I we conclude that (a + b) — (¢’ + ') € I as desired. Next we show that
(ab) + I = (a'V’) + I. Indeed, we have

(ab) = (a’ +z)(" +y),
= (a'V') + (d'y + zb' + zy).
Since a'y + zb’ 4+ zy € I we conclude that (ab) — (a't’) € I as desired. O

[We have proved that the set R/I has well-defined addition and multiplication. One can then show
that these operations define a ring structure on R/I. It seems that every book on the subject
leaves out this verification as too “boring”. | will not disagree.]



