Problems on Integers

1. The Division Algorithm. Consider integers $a, b \in \mathbb{Z}$ with $b \neq 0$.
(a) Prove that there exist integers $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $0 \leq r<|b|$. [Hint: Let S be the set of integers of the form $a-q b$ for some $q \in \mathbb{Z}$. By well ordering, the set S has a smallest nonnegative element which we can call r. Show that r is small enough.]
(b) Prove that the integers q, r from part (a) are unique. [Hint: Suppose that $a=q_{1} b+r_{1}=$ $q_{2} b+r_{2}$ with $0 \leq r_{1}<|b|$ and $0 \leq r_{2}<|b|$. Show that the assumption $r_{1}-r_{2} \neq 0$ leads to a contradiction.]
(c) Use the Division Algorithm to prove that the equation $2 x=1$ has no solution $x \in \mathbb{Z}$.

2. Application of Unique Factorization.

(a) Consider $a, p \in \mathbb{Z}$ with p prime and $a \neq 0$. Prove that p occurs an even number of times in the prime factorization of a^{2}.
(b) Use part (a) to give a short proof that $\sqrt{2}$ is irrational. [Hint: Assume for contradiction that there exist $a, b \in \mathbb{Z}$ with $b \neq 0$ and $a / b=\sqrt{2}$.]

Problems on Rings

3. Properties of subtraction.

(a) Given $a \in R$ the axioms say that there exists $a^{\prime} \in R$ such that $a+a^{\prime}=0$. Prove that this a^{\prime} is unique. We will call it $-a$. Then we define the operation of subtraction by

$$
a-b:=a+(-b) .
$$

(b) Prove that $a 0=0$ for all $a \in R$.
(c) Prove that for all $a, b \in R$ we have $(-a) b=-(a b)$. [Hint: Use part (b).]
(d) Prove that for all $a, b \in R$ we have $(-a)(-b)=a b$. [Hint: Use part (c) to show that $a b+a(-b)=0$. Then use (b).] If a child asks you why negative times negative is positive, now you will know what to say.
(e) Prove that for all $a, b, c \in R$ we have $a(b-c)=a b-a c$. [Hint: Use part (c).]
4. Let $\varphi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that $\varphi\left(0_{R}\right)=0_{S}$.
(b) Prove that $\varphi(-a)=-\varphi(a)$ for all $a \in R$.
(c) Let $a \in R$. If a^{-1} exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1}=\varphi\left(a^{-1}\right)$.
5. Let R be a ring. We say that $a \in R$ is nilpotent if $a^{n}=0$ for some n. If a is nilpotent, prove that $1+a$ and $1-a$ are units (i.e. invertible).
6. Let $I \leq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.
7. Given an ideal $I \leq R$ and an element $a \in R$ we define the additive coset

$$
a+I:=\{a+x: x \in I\} .
$$

Now consider $a, a^{\prime}, b, b^{\prime} \in R$ such that $a+I=a^{\prime}+I$ and $b+I=b^{\prime}+I$. Prove that $(a+b)+I=\left(a^{\prime}+b^{\prime}\right)+I$ and $(a b)+I=\left(a^{\prime} b^{\prime}\right)+I$. This shows that addition and multiplication of cosets is well-defined.

