Problems on Integers

- **1. The Division Algorithm.** Consider integers $a, b \in \mathbb{Z}$ with $b \neq 0$.
 - (a) Prove that there exist integers $q, r \in \mathbb{Z}$ such that a = qb + r and $0 \le r < |b|$. [Hint: Let S be the set of integers of the form a qb for some $q \in \mathbb{Z}$. By well ordering, the set S has a smallest nonnegative element which we can call r. Show that r is small enough.]
 - (b) Prove that the integers q, r from part (a) are unique. [Hint: Suppose that $a = q_1b+r_1 = q_2b + r_2$ with $0 \le r_1 < |b|$ and $0 \le r_2 < |b|$. Show that the assumption $r_1 r_2 \ne 0$ leads to a contradiction.]
 - (c) Use the Division Algorithm to prove that the equation 2x = 1 has no solution $x \in \mathbb{Z}$.

2. Application of Unique Factorization.

- (a) Consider $a, p \in \mathbb{Z}$ with p prime and $a \neq 0$. Prove that p occurs an even number of times in the prime factorization of a^2 .
- (b) Use part (a) to give a short proof that $\sqrt{2}$ is irrational. [Hint: Assume for contradiction that there exist $a, b \in \mathbb{Z}$ with $b \neq 0$ and $a/b = \sqrt{2}$.]

Problems on Rings

3. Properties of subtraction.

(a) Given $a \in R$ the axioms say that there exists $a' \in R$ such that a + a' = 0. Prove that this a' is unique. We will call it -a. Then we define the operation of subtraction by

$$a-b := a + (-b).$$

- (b) Prove that a0 = 0 for all $a \in R$.
- (c) Prove that for all $a, b \in R$ we have (-a)b = -(ab). [Hint: Use part (b).]
- (d) Prove that for all $a, b \in R$ we have (-a)(-b) = ab. [Hint: Use part (c) to show that ab + a(-b) = 0. Then use (b).] If a child asks you **why** negative times negative is positive, now you will know what to say.
- (e) Prove that for all $a, b, c \in R$ we have a(b-c) = ab ac. [Hint: Use part (c).]

4. Let $\varphi: R \to S$ be a ring homomorphism.

- (a) Prove that $\varphi(0_R) = 0_S$.
- (b) Prove that $\varphi(-a) = -\varphi(a)$ for all $a \in R$.
- (c) Let $a \in R$. If a^{-1} exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1} = \varphi(a^{-1})$.

5. Let R be a ring. We say that $a \in R$ is nilpotent if $a^n = 0$ for some n. If a is nilpotent, prove that 1 + a and 1 - a are units (i.e. invertible).

6. Let $I \leq R$ be an ideal. Prove that I = R if and only if I contains a unit.

7. Given an ideal $I \leq R$ and an element $a \in R$ we define the additive coset

$$a + I := \{a + x : x \in I\}.$$

Now consider $a, a', b, b' \in R$ such that a + I = a' + I and b + I = b' + I. Prove that (a+b)+I = (a'+b')+I and (ab)+I = (a'b')+I. This shows that addition and multiplication of cosets is well-defined.