There are 3 problems with 12 parts. Each part is worth 2 points, for a total of 24 points.

1. Let K be a field.

(a) Accurately state the Division Theorem for K[x]. [Hint: "Given two polynomials $f(x), g(x) \in K[x]$ with $g(x) \neq 0$ there exist $q(x), r(x) \in K[x]$ such that..."]

Proof. Given two polynomials $f(x), g(x) \in K[x]$ with $g(x) \neq 0$ there exist $q(x), r(x) \in K[x]$ such that

- f(x) = q(x)g(x) + r(x),
- r(x) = 0 or $\deg(r) < \deg(g)$.
- (b) Consider $\alpha \in K$ and $f(x) \in K[x]$. If $f(\alpha) = 0$, prove that $(x \alpha)$ divides f(x) in K[x]. [Hint: Use part (a).]

Proof. Assume that $f(\alpha) = 0$. Since $0 \neq x - \alpha \in K[x]$, part (a) says that there exist $q(x), r(x) \in K[x]$ such that

- $f(x) = q(x)(x \alpha) + r(x),$
- r(x) = 0 or $\deg(r) < \deg(x \alpha) = 1$.

The second condition says that $r(x) = r \in K$ is a constant. Then evaluating the first condition at α gives

$$0 = f(\alpha) = q(\alpha)(\alpha - \alpha) + r = q(\alpha) \cdot 0 + r = 0 + r = r$$

We conclude that $f(x) = q(x)(x - \alpha)$.

(c) Let $f(x) \in K[x]$ have degree 3. If f(x) is **not** irreducible in K[x], prove that f(x) has a root in K.

Proof. Suppose that we have f(x) = g(x)h(x) where $\deg(g) \ge 1$ and $\deg(h) \ge 1$ (i.e. g and h are not units). Then since

$$B = \deg(f) = \deg(g) + \deg(h)$$

we conclude that $\deg(g) = 1$ or $\deg(h) = 1$. Without loss, assume that $\deg(g) = 1$ so that g(x) = ax + b for some $a, b \in K$ with $a \neq 0$. Then we have

$$f(-b/a^{-1}) = g(-b/a^{-1})h(-b/a^{-1}) = 0 \cdot h(-b/a^{-1}) = 0,$$

hence f(x) has the root $-b/a^{-1} \in K$.

(d) Let $\mathbb{F}_3 = \{0, 1, 2\}$ be the field with three elements. Prove that the polynomial $x^3 + 2x + 1$ is irreducible in $\mathbb{F}_3[x]$. [Hint: Use part (c).]

Proof. By part (c) it is enough to check that $x^3 + 2x + 1 \in \mathbb{F}_3[x]$ has no root in \mathbb{F}_3 . Since \mathbb{F}_3 only has 3 elements we can check them all:

$$0^{3} + 2 \cdot 0 + 1 = 1 \neq 0$$

$$1^{3} + 2 \cdot 1 + 1 = 4 = 1 \neq 0$$

$$2^{3} + 2 \cdot 2 + 1 = 13 = 1 \neq 0.$$

2. Let $L \supseteq K$ be a field extension. Given $\alpha \in L$ we define the evaluation homomorphism $ev_{\alpha} : K[x] \to L$ by sending $\sum_{k} a_{k}x^{k} \mapsto \sum_{k} a_{k}\alpha^{k}$. Assume that ev_{α} is not injective (i.e. that α is "algebraic" over K).

(a) State the definition of the minimal polynomial $m_{\alpha}(x) \in K[x]$ and say why it exists.

Proof. We know that ker(ev_{α}) is a nonzero ideal of K[x]. Since K[x] is a PID this implies that ker(ev_{α}) = $(m_{\alpha}(x))$ for some nonzero polynomial $m_{\alpha}(x) \in K[x]$. If we assume that the leading coefficient of $m_{\alpha}(x)$ is 1 then this polynomial is unique and we call it the minimal polynomial of α over K.

(b) Prove that $m_{\alpha}(x)$ is irreducible over K. [Hint: Suppose for contradiction that there is a nontrivial factorization $m_{\alpha}(x) = f(x)g(x)$.]

Proof. Assume for contradiction that we have $m_{\alpha}(x) = f(x)g(x)$ for some $f(x), g(x) \in K[x]$ with $\deg(f) < \deg(m_{\alpha})$ and $\deg(g) < \deg(m_{\alpha})$. Evaluating at α gives

$$0 = m_{\alpha}(\alpha) = f(\alpha)g(\alpha),$$

and since L is a domain this implies $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss, suppose that $f(\alpha) = 0$. This implies that $f(x) \in \ker(\operatorname{ev}_{\alpha}) = (m_{\alpha}(x))$ and hence $m_{\alpha}(x)$ divides f(x). Since $f(x) \neq 0$ this implies $\deg(m_{\alpha}) \leq \deg(f)$, which contradicts the fact that $\deg(f) < \deg(m_{\alpha})$.

(c) Prove that the image $K[\alpha] := \operatorname{im}(\operatorname{ev}_{\alpha})$ is a field. [Hint: Use part (b).]

Proof. Since $m_{\alpha}(x)$ is irreducible, the ideal $(m_{\alpha}) < K[x]$ is maximal among principal ideals. Since K[x] is a PID this implies that (m_{α}) is maximal among **all** ideals, which by the Correspondence Theorem implies that $K[x]/(m_{\alpha})$ is a field. Finally, we use the First Isomorphism Theorem to conclude that

$$K[\alpha] = \operatorname{im}(\operatorname{ev}_{\alpha}) \approx \frac{K[x]}{\operatorname{ker}(\operatorname{ev}_{\alpha})} = \frac{K[x]}{(m_{\alpha})}$$

is a field.

(d) If $S \subseteq L$ is any subring of L containing the set $K \cup \{\alpha\}$, prove that $K[\alpha] \subseteq S$.

Proof. A general element of $K[\alpha]$ looks like $f(\alpha) = \sum_k a_k \alpha^k$ where $f(x) = \sum_k a_k x^k \in K[x]$. Since $\alpha \in S$ and $a_k \in S$ for all $a_k \in S$, and since S is closed under addition and multiplication, we conclude that

$$f(\alpha) = \sum_{k} a_k \alpha^k \in S.$$

3. Consider the ring $\mathbb{F}_3[x]$ where $\mathbb{F}_3 = \{0, 1, 2\}$ is the field with three elements. Kronecker's Theorem says that there exists a field extension $L \supseteq \mathbb{F}_3$ and an element $\alpha \in L$ such that $\alpha^3 + 2\alpha + 1 = 0$.

(a) Prove that the minimal polynomial of α over \mathbb{F}_3 is $m_{\alpha}(x) = x^3 + 2x + 1$. [Hint: Use Problem 1(d).]

Proof. Let $f(x) = x^3 + 2x + 1 \in \mathbb{F}_3[x]$ and let $m_{\alpha}(x) \in \mathbb{F}_3[x]$ be the minimal polynomial of $\alpha \in L$ over $\mathbb{F}_3[x]$. Since $f \in \ker(ev_{\alpha}) = (m_{\alpha})$ we conclude that m_{α} divides f. Since f(x) is irreducible (by Problem 1(d)) this implies that $m_{\alpha}(x)$ is a nonzero constant or is associate to f(x). But since $m_{\alpha}(\alpha) = 0$ we know that $m_{\alpha}(x)$ is not a nonzero constant. Hence $m_{\alpha}(x)$ and f(x) are associate. Since we assume that $m_{\alpha}(x)$ has leading coefficient 1 this implies that $m_{\alpha}(x) = f(x)$. \Box

(b) By Problem 2(c) we know that $\mathbb{F}_3[\alpha]$ is a field. Prove that every element of this field has the form $a + b\alpha + c\alpha^2$ for some $a, b, c \in \mathbb{F}_3$. [Hint: A general element of $\mathbb{F}_3[\alpha]$ looks like $f(\alpha)$ for some $f(x) \in \mathbb{F}_3[x]$.]

Proof. A general element of $\mathbb{F}_3[\alpha]$ looks like $f(\alpha)$ for some $f(x) \in \mathbb{F}_3[x]$. We can divide f(x) by the minimal polynomial $m_{\alpha}(x)$ to obtain • $f(x) = q(x)m_{\alpha}(x) + r(x)$,

• r(x) = 0 or $\deg(r) < \deg(m_{\alpha}) = 3$. Evaluating at α gives

$$f(\alpha) = q(\alpha)m_{\alpha}(\alpha) + r(\alpha) = q(\alpha) \cdot 0 + r(\alpha) = r(\alpha).$$

Since deg(r) < 3 we can write $r(x) = a + bx + cx^2$ for some $a, b, c \in \mathbb{F}_3$. Then we have $f(\alpha) = r(\alpha) = a + b\alpha + c\alpha^2$.

(c) Compute the size of the field $\mathbb{F}_3[\alpha]$. [Hint: You may assume without proof that the set $1, \alpha, \alpha^2$ is linearly independent over \mathbb{F}_3 .]

Proof. We know from part (b) that every element of $\mathbb{F}_3[\alpha]$ can be written as $a + b\alpha + c\alpha^2$ for some $a, b, c \in \mathbb{F}_3$, and we assume without proof that this representation is unique. Thus we have a bijection between elements of $\mathbb{F}_3[\alpha]$ and vectors $(a, b, c) \in (\mathbb{F}_3)^3$. It follows that

$$|\mathbb{F}_3[\alpha]| = |\mathbb{F}_3|^3 = 3^3 = 27.$$

(d) Compute the product of $1 + \alpha + \alpha^2$ and $1 + 2\alpha$ in the field $\mathbb{F}_3[\alpha]$.

Proof. First we note that

$$(1 + \alpha + \alpha^{2})(1 + 2\alpha) = 1 + 3\alpha + 3\alpha^{2} + 2\alpha^{3}$$
$$= 1 + 0\alpha + 0\alpha^{2} + 2\alpha^{3}$$
$$= 1 + 2\alpha^{3}$$

Then we use the fact that $\alpha^3 = -2\alpha - 1 = \alpha + 2$ to obtain

$$1 + 2\alpha^3 = 1 + 2(\alpha + 2)$$
$$= 1 + 2\alpha + 4$$
$$= 5 + 2\alpha$$
$$= 2 + 2\alpha.$$

We conclude that $(1 + \alpha + \alpha^2)(1 + 2\alpha) = 2 + 2\alpha$. The other $\binom{27}{2} - 1 = 350$ products are left to the reader.