
Math 562 Spring 2014
Exam 3 — Thurs Apr 24 Drew Armstrong

There are 3 problems with 12 parts. Each part is worth 2 points, for a total of 24 points.

1. Let K be a field.

(a) Accurately state the Division Theorem for K[x]. [Hint: “Given two polynomials
f(x), g(x) ∈ K[x] with g(x) 6= 0 there exist q(x), r(x) ∈ K[x] such that. . . ”]

Proof. Given two polynomials f(x), g(x) ∈ K[x] with g(x) 6= 0 there exist q(x), r(x) ∈
K[x] such that
• f(x) = q(x)g(x) + r(x),
• r(x) = 0 or deg(r) < deg(g). �

(b) Consider α ∈ K and f(x) ∈ K[x]. If f(α) = 0, prove that (x − α) divides f(x) in
K[x]. [Hint: Use part (a).]

Proof. Assume that f(α) = 0. Since 0 6= x − α ∈ K[x], part (a) says that there
exist q(x), r(x) ∈ K[x] such that
• f(x) = q(x)(x− α) + r(x),
• r(x) = 0 or deg(r) < deg(x− α) = 1.

The second condition says that r(x) = r ∈ K is a constant. Then evaluating the
first condition at α gives

0 = f(α) = q(α)(α− α) + r = q(α) · 0 + r = 0 + r = r.

We conclude that f(x) = q(x)(x− α). �

(c) Let f(x) ∈ K[x] have degree 3. If f(x) is not irreducible in K[x], prove that f(x)
has a root in K.

Proof. Suppose that we have f(x) = g(x)h(x) where deg(g) ≥ 1 and deg(h) ≥ 1
(i.e. g and h are not units). Then since

3 = deg(f) = deg(g) + deg(h)

we conclude that deg(g) = 1 or deg(h) = 1. Without loss, assume that deg(g) = 1
so that g(x) = ax+ b for some a, b ∈ K with a 6= 0. Then we have

f(−b/a−1) = g(−b/a−1)h(−b/a−1) = 0 · h(−b/a−1) = 0,

hence f(x) has the root −b/a−1 ∈ K. �

(d) Let F3 = {0, 1, 2} be the field with three elements. Prove that the polynomial
x3 + 2x+ 1 is irreducible in F3[x]. [Hint: Use part (c).]

Proof. By part (c) it is enough to check that x3 + 2x+ 1 ∈ F3[x] has no root in F3.
Since F3 only has 3 elements we can check them all:

03 + 2 · 0 + 1 = 1 6= 0

13 + 2 · 1 + 1 = 4 = 1 6= 0

23 + 2 · 2 + 1 = 13 = 1 6= 0.

�



2. Let L ⊇ K be a field extension. Given α ∈ L we define the evaluation homomorphism
evα : K[x] → L by sending

∑
k akx

k 7→
∑

k akα
k. Assume that evα is not injective (i.e.

that α is “algebraic” over K).

(a) State the definition of the minimal polynomial mα(x) ∈ K[x] and say why it exists.

Proof. We know that ker(evα) is a nonzero ideal of K[x]. Since K[x] is a PID this
implies that ker(evα) = (mα(x)) for some nonzero polynomial mα(x) ∈ K[x]. If
we assume that the leading coefficient of mα(x) is 1 then this polynomial is unique
and we call it the minimal polynomial of α over K. �

(b) Prove that mα(x) is irreducible over K. [Hint: Suppose for contradiction that there
is a nontrivial factorization mα(x) = f(x)g(x).]

Proof. Assume for contradiction that we havemα(x) = f(x)g(x) for some f(x), g(x) ∈
K[x] with deg(f) < deg(mα) and deg(g) < deg(mα). Evaluating at α gives

0 = mα(α) = f(α)g(α),

and since L is a domain this implies f(α) = 0 or g(α) = 0. Without loss, suppose
that f(α) = 0. This implies that f(x) ∈ ker(evα) = (mα(x)) and hence mα(x)
divides f(x). Since f(x) 6= 0 this implies deg(mα) ≤ deg(f), which contradicts the
fact that deg(f) < deg(mα). �

(c) Prove that the image K[α] := im(evα) is a field. [Hint: Use part (b).]

Proof. Since mα(x) is irreducible, the ideal (mα) < K[x] is maximal among princi-
pal ideals. Since K[x] is a PID this implies that (mα) is maximal among all ideals,
which by the Correspondence Theorem implies that K[x]/(mα) is a field. Finally,
we use the First Isomorphism Theorem to conclude that

K[α] = im(evα) ≈ K[x]

ker(evα)
=
K[x]

(mα)

is a field. �

(d) If S ⊆ L is any subring of L containing the set K ∪ {α}, prove that K[α] ⊆ S.

Proof. A general element ofK[α] looks like f(α) =
∑

k akα
k where f(x) =

∑
k akx

k ∈
K[x]. Since α ∈ S and ak ∈ S for all ak ∈ S, and since S is closed under addition
and multiplication, we conclude that

f(α) =
∑
k

akα
k ∈ S.

�

3. Consider the ring F3[x] where F3 = {0, 1, 2} is the field with three elements. Kronecker’s
Theorem says that there exists a field extension L ⊇ F3 and an element α ∈ L such that
α3 + 2α+ 1 = 0.

(a) Prove that the minimal polynomial of α over F3 is mα(x) = x3 + 2x + 1. [Hint:
Use Problem 1(d).]



Proof. Let f(x) = x3 + 2x + 1 ∈ F3[x] and let mα(x) ∈ F3[x] be the minimal
polynomial of α ∈ L over F3[x]. Since f ∈ ker(evα) = (mα) we conclude that mα

divides f . Since f(x) is irreducible (by Problem 1(d)) this implies that mα(x) is a
nonzero constant or is associate to f(x). But since mα(α) = 0 we know that mα(x)
is not a nonzero constant. Hence mα(x) and f(x) are associate. Since we assume
that mα(x) has leading coefficient 1 this implies that mα(x) = f(x). �

(b) By Problem 2(c) we know that F3[α] is a field. Prove that every element of this
field has the form a + bα + cα2 for some a, b, c ∈ F3. [Hint: A general element of
F3[α] looks like f(α) for some f(x) ∈ F3[x].]

Proof. A general element of F3[α] looks like f(α) for some f(x) ∈ F3[x]. We can
divide f(x) by the minimal polynomial mα(x) to obtain
• f(x) = q(x)mα(x) + r(x),

• r(x) = 0 or deg(r) < deg(mα) = 3.
Evaluating at α gives

f(α) = q(α)mα(α) + r(α) = q(α) · 0 + r(α) = r(α).

Since deg(r) < 3 we can write r(x) = a + bx + cx2 for some a, b, c ∈ F3. Then we
have f(α) = r(α) = a+ bα+ cα2. �

(c) Compute the size of the field F3[α]. [Hint: You may assume without proof that the
set 1, α, α2 is linearly independent over F3.]

Proof. We know from part (b) that every element of F3[α] can be written as a +
bα+cα2 for some a, b, c ∈ F3, and we assume without proof that this representation
is unique. Thus we have a bijection between elements of F3[α] and vectors (a, b, c) ∈
(F3)

3. It follows that

|F3[α]| = |F3|3 = 33 = 27.

�

(d) Compute the product of 1 + α+ α2 and 1 + 2α in the field F3[α].

Proof. First we note that

(1 + α+ α2)(1 + 2α) = 1 + 3α+ 3α2 + 2α3

= 1 + 0α+ 0α2 + 2α3

= 1 + 2α3.

Then we use the fact that α3 = −2α− 1 = α+ 2 to obtain

1 + 2α3 = 1 + 2(α+ 2)

= 1 + 2α+ 4

= 5 + 2α

= 2 + 2α.

We conclude that (1+α+α2)(1+2α) = 2+2α. The other
(
27
2

)
−1 = 350 products

are left to the reader. �


