There are 3 problems with 12 parts. Each part is worth 2 points, for a total of 24 points.

1. Let K be a field.
(a) Accurately state the Division Theorem for $K[x]$. [Hint: "Given two polynomials $f(x), g(x) \in K[x]$ with $g(x) \neq 0$ there exist $q(x), r(x) \in K[x]$ such that. . ."]

Proof. Given two polynomials $f(x), g(x) \in K[x]$ with $g(x) \neq 0$ there exist $q(x), r(x) \in$ $K[x]$ such that

- $f(x)=q(x) g(x)+r(x)$,
- $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
(b) Consider $\alpha \in K$ and $f(x) \in K[x]$. If $f(\alpha)=0$, prove that $(x-\alpha)$ divides $f(x)$ in $K[x]$. [Hint: Use part (a).]

Proof. Assume that $f(\alpha)=0$. Since $0 \neq x-\alpha \in K[x]$, part (a) says that there exist $q(x), r(x) \in K[x]$ such that

- $f(x)=q(x)(x-\alpha)+r(x)$,
- $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(x-\alpha)=1$.

The second condition says that $r(x)=r \in K$ is a constant. Then evaluating the first condition at α gives

$$
0=f(\alpha)=q(\alpha)(\alpha-\alpha)+r=q(\alpha) \cdot 0+r=0+r=r
$$

We conclude that $f(x)=q(x)(x-\alpha)$.
(c) Let $f(x) \in K[x]$ have degree 3. If $f(x)$ is not irreducible in $K[x]$, prove that $f(x)$ has a root in K.

Proof. Suppose that we have $f(x)=g(x) h(x)$ where $\operatorname{deg}(g) \geq 1$ and $\operatorname{deg}(h) \geq 1$ (i.e. g and h are not units). Then since

$$
3=\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)
$$

we conclude that $\operatorname{deg}(g)=1$ or $\operatorname{deg}(h)=1$. Without loss, assume that $\operatorname{deg}(g)=1$ so that $g(x)=a x+b$ for some $a, b \in K$ with $a \neq 0$. Then we have

$$
f\left(-b / a^{-1}\right)=g\left(-b / a^{-1}\right) h\left(-b / a^{-1}\right)=0 \cdot h\left(-b / a^{-1}\right)=0
$$

hence $f(x)$ has the root $-b / a^{-1} \in K$.
(d) Let $\mathbb{F}_{3}=\{0,1,2\}$ be the field with three elements. Prove that the polynomial $x^{3}+2 x+1$ is irreducible in $\mathbb{F}_{3}[x]$. [Hint: Use part (c).]

Proof. By part (c) it is enough to check that $x^{3}+2 x+1 \in \mathbb{F}_{3}[x]$ has no root in \mathbb{F}_{3}. Since \mathbb{F}_{3} only has 3 elements we can check them all:

$$
\begin{aligned}
& 0^{3}+2 \cdot 0+1=1 \neq 0 \\
& 1^{3}+2 \cdot 1+1=4=1 \neq 0 \\
& 2^{3}+2 \cdot 2+1=13=1 \neq 0
\end{aligned}
$$

2. Let $L \supseteq K$ be a field extension. Given $\alpha \in L$ we define the evaluation homomorphism $\mathrm{ev}_{\alpha}: K[x] \rightarrow L$ by sending $\sum_{k} a_{k} x^{k} \mapsto \sum_{k} a_{k} \alpha^{k}$. Assume that ev_{α} is not injective (i.e. that α is "algebraic" over K).
(a) State the definition of the minimal polynomial $m_{\alpha}(x) \in K[x]$ and say why it exists.

Proof. We know that $\operatorname{ker}\left(\mathrm{ev}_{\alpha}\right)$ is a nonzero ideal of $K[x]$. Since $K[x]$ is a PID this implies that $\operatorname{ker}\left(\mathrm{ev}_{\alpha}\right)=\left(m_{\alpha}(x)\right)$ for some nonzero polynomial $m_{\alpha}(x) \in K[x]$. If we assume that the leading coefficient of $m_{\alpha}(x)$ is 1 then this polynomial is unique and we call it the minimal polynomial of α over K.
(b) Prove that $m_{\alpha}(x)$ is irreducible over K. [Hint: Suppose for contradiction that there is a nontrivial factorization $m_{\alpha}(x)=f(x) g(x)$.]

Proof. Assume for contradiction that we have $m_{\alpha}(x)=f(x) g(x)$ for some $f(x), g(x) \in$ $K[x]$ with $\operatorname{deg}(f)<\operatorname{deg}\left(m_{\alpha}\right)$ and $\operatorname{deg}(g)<\operatorname{deg}\left(m_{\alpha}\right)$. Evaluating at α gives

$$
0=m_{\alpha}(\alpha)=f(\alpha) g(\alpha)
$$

and since L is a domain this implies $f(\alpha)=0$ or $g(\alpha)=0$. Without loss, suppose that $f(\alpha)=0$. This implies that $f(x) \in \operatorname{ker}\left(\operatorname{ev}_{\alpha}\right)=\left(m_{\alpha}(x)\right)$ and hence $m_{\alpha}(x)$ divides $f(x)$. Since $f(x) \neq 0$ this implies $\operatorname{deg}\left(m_{\alpha}\right) \leq \operatorname{deg}(f)$, which contradicts the fact that $\operatorname{deg}(f)<\operatorname{deg}\left(m_{\alpha}\right)$.
(c) Prove that the image $K[\alpha]:=\operatorname{im}\left(\mathrm{ev}_{\alpha}\right)$ is a field. [Hint: Use part (b).]

Proof. Since $m_{\alpha}(x)$ is irreducible, the ideal $\left(m_{\alpha}\right)<K[x]$ is maximal among principal ideals. Since $K[x]$ is a PID this implies that $\left(m_{\alpha}\right)$ is maximal among all ideals, which by the Correspondence Theorem implies that $K[x] /\left(m_{\alpha}\right)$ is a field. Finally, we use the First Isomorphism Theorem to conclude that

$$
K[\alpha]=\operatorname{im}\left(\mathrm{ev}_{\alpha}\right) \approx \frac{K[x]}{\operatorname{ker}\left(\mathrm{ev}_{\alpha}\right)}=\frac{K[x]}{\left(m_{\alpha}\right)}
$$

is a field.
(d) If $S \subseteq L$ is any subring of L containing the set $K \cup\{\alpha\}$, prove that $K[\alpha] \subseteq S$.

Proof. A general element of $K[\alpha]$ looks like $f(\alpha)=\sum_{k} a_{k} \alpha^{k}$ where $f(x)=\sum_{k} a_{k} x^{k} \in$ $K[x]$. Since $\alpha \in S$ and $a_{k} \in S$ for all $a_{k} \in S$, and since S is closed under addition and multiplication, we conclude that

$$
f(\alpha)=\sum_{k} a_{k} \alpha^{k} \in S
$$

3. Consider the ring $\mathbb{F}_{3}[x]$ where $\mathbb{F}_{3}=\{0,1,2\}$ is the field with three elements. Kronecker's Theorem says that there exists a field extension $L \supseteq \mathbb{F}_{3}$ and an element $\alpha \in L$ such that $\alpha^{3}+2 \alpha+1=0$.
(a) Prove that the minimal polynomial of α over \mathbb{F}_{3} is $m_{\alpha}(x)=x^{3}+2 x+1$. [Hint: Use Problem 1(d).]

Proof. Let $f(x)=x^{3}+2 x+1 \in \mathbb{F}_{3}[x]$ and let $m_{\alpha}(x) \in \mathbb{F}_{3}[x]$ be the minimal polynomial of $\alpha \in L$ over $\mathbb{F}_{3}[x]$. Since $f \in \operatorname{ker}\left(\mathrm{ev}_{\alpha}\right)=\left(m_{\alpha}\right)$ we conclude that m_{α} divides f. Since $f(x)$ is irreducible (by Problem 1(d)) this implies that $m_{\alpha}(x)$ is a nonzero constant or is associate to $f(x)$. But since $m_{\alpha}(\alpha)=0$ we know that $m_{\alpha}(x)$ is not a nonzero constant. Hence $m_{\alpha}(x)$ and $f(x)$ are associate. Since we assume that $m_{\alpha}(x)$ has leading coefficient 1 this implies that $m_{\alpha}(x)=f(x)$.
(b) By Problem 2(c) we know that $\mathbb{F}_{3}[\alpha]$ is a field. Prove that every element of this field has the form $a+b \alpha+c \alpha^{2}$ for some $a, b, c \in \mathbb{F}_{3}$. [Hint: A general element of $\mathbb{F}_{3}[\alpha]$ looks like $f(\alpha)$ for some $\left.f(x) \in \mathbb{F}_{3}[x].\right]$
Proof. A general element of $\mathbb{F}_{3}[\alpha]$ looks like $f(\alpha)$ for some $f(x) \in \mathbb{F}_{3}[x]$. We can divide $f(x)$ by the minimal polynomial $m_{\alpha}(x)$ to obtain

- $f(x)=q(x) m_{\alpha}(x)+r(x)$,
- $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}\left(m_{\alpha}\right)=3$.

Evaluating at α gives

$$
f(\alpha)=q(\alpha) m_{\alpha}(\alpha)+r(\alpha)=q(\alpha) \cdot 0+r(\alpha)=r(\alpha)
$$

Since $\operatorname{deg}(r)<3$ we can write $r(x)=a+b x+c x^{2}$ for some $a, b, c \in \mathbb{F}_{3}$. Then we have $f(\alpha)=r(\alpha)=a+b \alpha+c \alpha^{2}$.
(c) Compute the size of the field $\mathbb{F}_{3}[\alpha]$. [Hint: You may assume without proof that the set $1, \alpha, \alpha^{2}$ is linearly independent over \mathbb{F}_{3}.]
Proof. We know from part (b) that every element of $\mathbb{F}_{3}[\alpha]$ can be written as $a+$ $b \alpha+c \alpha^{2}$ for some $a, b, c \in \mathbb{F}_{3}$, and we assume without proof that this representation is unique. Thus we have a bijection between elements of $\mathbb{F}_{3}[\alpha]$ and vectors $(a, b, c) \in$ $\left(\mathbb{F}_{3}\right)^{3}$. It follows that

$$
\left|\mathbb{F}_{3}[\alpha]\right|=\left|\mathbb{F}_{3}\right|^{3}=3^{3}=27
$$

(d) Compute the product of $1+\alpha+\alpha^{2}$ and $1+2 \alpha$ in the field $\mathbb{F}_{3}[\alpha]$.

Proof. First we note that

$$
\begin{aligned}
\left(1+\alpha+\alpha^{2}\right)(1+2 \alpha) & =1+3 \alpha+3 \alpha^{2}+2 \alpha^{3} \\
& =1+0 \alpha+0 \alpha^{2}+2 \alpha^{3} \\
& =1+2 \alpha^{3} .
\end{aligned}
$$

Then we use the fact that $\alpha^{3}=-2 \alpha-1=\alpha+2$ to obtain

$$
\begin{aligned}
1+2 \alpha^{3} & =1+2(\alpha+2) \\
& =1+2 \alpha+4 \\
& =5+2 \alpha \\
& =2+2 \alpha .
\end{aligned}
$$

We conclude that $\left(1+\alpha+\alpha^{2}\right)(1+2 \alpha)=2+2 \alpha$. The other $\binom{27}{2}-1=350$ products are left to the reader.

