There are 4 problems with 12 parts. Each part is worth 2 points, for a total of 24 points.

1. Let R be a ring (i.e. commutative with 1). We say $u \in R$ is a unit if there exists $u^{-1} \in R$ such that $u u^{-1}=1$. Let $R^{\times} \subseteq R$ be the set of units. We define an equivalence relation on R (called association) by setting

$$
" a \sim b " \Longleftrightarrow " \exists u \in R^{\times} \text {such that } a=u b "
$$

(a) Given $a \in R$, we define the principal ideal (a) $:=\{a r: r \in R\}$. Prove that for that for all $a, b \in R$ we have " $a \sim b " \Rightarrow$ " $(a)=(b)$ ".

Proof. Assume that $a \sim b$ so that we have $a=u b$ for some unit $u \in R^{\times}$. Then for any $r \in R$ we have $a r=b(u r) \in(b)$ hence $(a) \leq(b)$. Conversely, since u is invertible we have $b=u^{-1} a$ and then for all $r \in R$ we have $b r=a\left(u^{-1} r\right) \in(a)$, hence $(b) \leq(a)$.

We say that R is a domain if for all $a \neq 0$ and $b \neq 0$ we have $a b \neq 0$.
(d) Prove that if R is a domain then for all $a, b \in R$ we have " $(a)=(b)$ " " $a \sim b$ ".

Proof. Assume that R is a domain and that $(a)=(b)$. If $a=0$ then we also have $b=0$ and hence $a \sim b$. Otherwise, assume that a and b are nonzero. Since $a \in(b)$ we have $a=b r$ and since $b \in(a)$ we have $b=a s$ for some $r, s \in R$, hence

$$
\begin{aligned}
a & =(a s) r \\
a & =a(s r) \\
a-a(s r) & =0 \\
a(1-s r) & =0 .
\end{aligned}
$$

Since R is a domain and since $a \neq 0$ this implies that $1-s r=0$, i.e., $s r=1$. Since $a=b r$ with $r \in R^{\times}$we conclude that $a \sim b$.
2. Let R be a domain. Given $p, d \in R$ we say that d is a proper divisor of p if

- d divides p,
- d is not a unit, and
- d is not associate to p (i.e. there is no $u \in R^{\times}$such that $p=u d$).

We say that $p \in R$ is irreducible if it has no proper divisors.
(a) Given $a \in R$, prove that (a) =R if and only if $a \in R^{\times}$. [Hint: See Problem 1.]

Proof. If $(a)=R$ then we have $1 \in(a)$ and hence there exists $r \in R$ such that $1=a b$. We conclude that $a \in R^{\times}$. Conversely, if $a \in R$ then for all $r \in R$ we have $r=\left(a a^{-1}\right) r=a\left(a^{-1} r\right) \in(a)$. We conclude that $(a)=R$.

We say that an ideal $I<R$ is maximal if there is no ideal J such that $I<J<R$ (where " $<$ " means strict inclusion of ideals.)
(b) If $(p)<R$ is a maximal ideal, prove that $p \in R$ is irreducible.

Proof. We will prove the contrapositive. Assume that p is reducible. By the definition given, there exists $d \in R$ such that d divides p (i.e. $(p) \leq(d)$), d is not a unit (i.e. $(d) \neq R$ by part (a)), and d is not associate to p (i.e. $(p) \neq(d)$ by Problem 1). Thus we have strict inclusions of ideals

$$
(p)<(d)<R
$$

which means that (p) is not maximal.
We say that R is a PID if every ideal $I \leq R$ has the form $I=(a)$ for some $a \in R$.
(c) Now let R be a PID. If $p \in R$ is irreducible, prove that (p) is a maximal ideal.

Proof. Let $p \in R$ be irreducible and suppose for contradiction that there exists an ideal J with strict inclusions $(p)<J<R$. Since R is a PID we have $J=(d)$ for some $d \in R$. But then, as in part (b), this d is a proper divisor of p, contradicting the fact that p is irreducible.
3. In this problem let R be a PID.
(a) Suppose we have $a, p \in R$ such that p does not divide a. Prove that we have a strict containment of ideals $(p)<(a)+(p)$.
Proof. By definition we have $(a)+(p)=\{a r+p s: r, s \in R\}$. Thus for all $p s \in(p)$ we have $p s=a 0+p s \in(a)+(p)$, hence $(p) \leq(a)+(p)$. But if $(p)=(a)+(p)$ then since $a \in(a)+(p)$ we have $a \in(p)$ which contradicts the fact that p does not divide a. We conclude that $(p)<(a)+(p)$.
(b) Now suppose that $p \in R$ from part (a) is irreducible. In this case, prove that there exist $x, y \in R$ such that $1=a x+p y$. [Hint: R is a PID. Use Problem 2.]

Proof. Since R is a PID we have $(a)+(p)=(d)$ for some $d \in R$. Since $(p)<(d)$ and since p is irreducible we must have $(d)=R$ (otherwise d is a proper divisor of $p)$. Then since $(a)+(p)=(d)=R$ we have $1 \in(a)+(p)$, so there exist $x, y \in R$ such that $1=a x+p y$.
(c) Finally, suppose we have $a, b, p \in R$ such that: p is irreducible, p divides $a b$, and p does not divide a. Prove that p divides b. [Hint: Use part (b).]
Proof. Assume that p is irreducible, p divides $a b$ (say $a b=p k$) and p does not divide a. By parts (a) and (b) there exist $x, y \in R$ such that $1=a x+p y$. Multiply both sides by b to get

$$
\begin{aligned}
1 & =a x+p y \\
b & =a b x+p b y \\
b & =p k x+p b y \\
b & =p(k x+b y) .
\end{aligned}
$$

We conclude that p divides b.
4. Let R be a PID and suppose that we have

$$
p_{1} p_{2}=q_{1} q_{2}
$$

where $p_{1}, p_{2}, q_{1}, q_{2} \in R$ are irreducible.
(a) Prove that p_{1} divides q_{1} or p_{1} divides q_{2}. [Hint: See Problem 3.]

Proof. Since R is a PID and since p_{1} divides $q_{1} q_{2}$, Problem 3(c) implies that p_{1} divides q_{1} or p_{1} divides q_{2}.
(b) Without loss, you can assume that p_{1} divides q_{1}. In this case prove that there exists a unit $u \in R^{\times}$such that $q_{1}=u p_{1}$.
Proof. Without loss of generality, assume that p_{1} divides q_{1}, say $q_{1}=p_{1} u$ for some $u \in R$. If u is not a unit then p_{1} is a proper factor of q_{1}. (Indeed, we know that p_{1} divides q_{1} and p_{1} is not a unit (it's irreducible). If p_{1} were associate to q_{1} (say $q_{1}=p_{1} v$ for some $\left.v \in R^{\times}\right)$then $p_{1} u=q_{1}=p_{1} v$ implies $p_{1}(u-v)=0$ and hence $u=v \in R^{\times}$. Contradiction.) But we assumed that q_{1} has no proper factor, hence u is a unit.
(c) Following (b), prove that we must also have $p_{2}=u q_{2}$. [Hint: R is a domain.]

Proof. From part (b) we know that $p_{1} p_{2}=q_{1} q_{2}=u p_{1} q_{2}$, and hence

$$
\begin{aligned}
p_{1} p_{2} & =u p_{1} q_{2} \\
p_{1} p_{2}-p_{1} u q_{2} & =0 \\
p_{1}\left(p_{2}-u q_{2}\right) & =0 .
\end{aligned}
$$

Since R is a domain and since $p_{1} \neq 0$ (it's irreducible) we conclude that $p_{2}-u q_{2}=0$, hence $p_{2}=u q_{2}$.
(d) Give a specific example of a ring R and irreducible elements $p_{1}, p_{2}, q_{1}, q_{2} \in R$ where the above results fail. [Hint: Obviously, your R will not be a PID.]
Proof. Let $R=\mathbb{Z}[\sqrt{-3}]$ and note that

$$
2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3}) .
$$

On HW4 you showed that $2,1+\sqrt{-3}$ and $1-\sqrt{-3}$ are irreducible in $\mathbb{Z}[\sqrt{-3}]$, but that 2 is not associate to either $1+\sqrt{-3}$ or $1-\sqrt{-3}$. By the results of (a),(b),(c) the ring $\mathbb{Z}[\sqrt{-3}]$ is not a PID.

