
Math 562 Spring 2014
Exam 2 — Thurs Apr 3 Drew Armstrong

There are 4 problems with 12 parts. Each part is worth 2 points, for a total of 24 points.

1. Let R be a ring (i.e. commutative with 1). We say u ∈ R is a unit if there exists
u−1 ∈ R such that uu−1 = 1. Let R× ⊆ R be the set of units. We define an equivalence
relation on R (called association) by setting

“ a ∼ b ”⇐⇒ “∃u ∈ R× such that a = ub ”.

(a) Given a ∈ R, we define the principal ideal (a) := {ar : r ∈ R}. Prove that for
that for all a, b ∈ R we have “ a ∼ b ”⇒ “ (a) = (b) ”.

Proof. Assume that a ∼ b so that we have a = ub for some unit u ∈ R×. Then
for any r ∈ R we have ar = b(ur) ∈ (b) hence (a) ≤ (b). Conversely, since u is
invertible we have b = u−1a and then for all r ∈ R we have br = a(u−1r) ∈ (a),
hence (b) ≤ (a). �

We say that R is a domain if for all a 6= 0 and b 6= 0 we have ab 6= 0.

(d) Prove that if R is a domain then for all a, b ∈ R we have “ (a) = (b) ”⇒ “ a ∼ b ”.

Proof. Assume that R is a domain and that (a) = (b). If a = 0 then we also have
b = 0 and hence a ∼ b. Otherwise, assume that a and b are nonzero. Since a ∈ (b)
we have a = br and since b ∈ (a) we have b = as for some r, s ∈ R, hence

a = (as)r

a = a(sr)

a− a(sr) = 0

a(1− sr) = 0.

Since R is a domain and since a 6= 0 this implies that 1− sr = 0, i.e., sr = 1. Since
a = br with r ∈ R× we conclude that a ∼ b. �

2. Let R be a domain. Given p, d ∈ R we say that d is a proper divisor of p if

• d divides p,
• d is not a unit, and
• d is not associate to p (i.e. there is no u ∈ R× such that p = ud).

We say that p ∈ R is irreducible if it has no proper divisors.

(a) Given a ∈ R, prove that (a) = R if and only if a ∈ R×. [Hint: See Problem 1.]

Proof. If (a) = R then we have 1 ∈ (a) and hence there exists r ∈ R such that
1 = ab. We conclude that a ∈ R×. Conversely, if a ∈ R then for all r ∈ R we have
r = (aa−1)r = a(a−1r) ∈ (a). We conclude that (a) = R. �

We say that an ideal I < R is maximal if there is no ideal J such that I < J < R
(where “<” means strict inclusion of ideals.)

(b) If (p) < R is a maximal ideal, prove that p ∈ R is irreducible.



Proof. We will prove the contrapositive. Assume that p is reducible. By the
definition given, there exists d ∈ R such that d divides p (i.e. (p) ≤ (d)), d is not
a unit (i.e. (d) 6= R by part (a)), and d is not associate to p (i.e. (p) 6= (d) by
Problem 1). Thus we have strict inclusions of ideals

(p) < (d) < R

which means that (p) is not maximal. �

We say that R is a PID if every ideal I ≤ R has the form I = (a) for some a ∈ R.

(c) Now let R be a PID. If p ∈ R is irreducible, prove that (p) is a maximal ideal.

Proof. Let p ∈ R be irreducible and suppose for contradiction that there exists an
ideal J with strict inclusions (p) < J < R. Since R is a PID we have J = (d) for
some d ∈ R. But then, as in part (b), this d is a proper divisor of p, contradicting
the fact that p is irreducible. �

3. In this problem let R be a PID.

(a) Suppose we have a, p ∈ R such that p does not divide a. Prove that we have a
strict containment of ideals (p) < (a) + (p).

Proof. By definition we have (a) + (p) = {ar + ps : r, s ∈ R}. Thus for all ps ∈ (p)
we have ps = a0 + ps ∈ (a) + (p), hence (p) ≤ (a) + (p). But if (p) = (a) + (p)
then since a ∈ (a) + (p) we have a ∈ (p) which contradicts the fact that p does not
divide a. We conclude that (p) < (a) + (p). �

(b) Now suppose that p ∈ R from part (a) is irreducible. In this case, prove that
there exist x, y ∈ R such that 1 = ax + py. [Hint: R is a PID. Use Problem 2.]

Proof. Since R is a PID we have (a) + (p) = (d) for some d ∈ R. Since (p) < (d)
and since p is irreducible we must have (d) = R (otherwise d is a proper divisor of
p). Then since (a) + (p) = (d) = R we have 1 ∈ (a) + (p), so there exist x, y ∈ R
such that 1 = ax + py. �

(c) Finally, suppose we have a, b, p ∈ R such that: p is irreducible, p divides ab, and p
does not divide a. Prove that p divides b. [Hint: Use part (b).]

Proof. Assume that p is irreducible, p divides ab (say ab = pk) and p does not
divide a. By parts (a) and (b) there exist x, y ∈ R such that 1 = ax+ py. Multiply
both sides by b to get

1 = ax + py

b = abx + pby

b = pkx + pby

b = p(kx + by).

We conclude that p divides b. �

4. Let R be a PID and suppose that we have

p1p2 = q1q2,

where p1, p2, q1, q2 ∈ R are irreducible.

(a) Prove that p1 divides q1 or p1 divides q2. [Hint: See Problem 3.]



Proof. Since R is a PID and since p1 divides q1q2, Problem 3(c) implies that p1
divides q1 or p1 divides q2. �

(b) Without loss, you can assume that p1 divides q1. In this case prove that there exists
a unit u ∈ R× such that q1 = up1.

Proof. Without loss of generality, assume that p1 divides q1, say q1 = p1u for some
u ∈ R. If u is not a unit then p1 is a proper factor of q1. (Indeed, we know that
p1 divides q1 and p1 is not a unit (it’s irreducible). If p1 were associate to q1 (say
q1 = p1v for some v ∈ R×) then p1u = q1 = p1v implies p1(u − v) = 0 and hence
u = v ∈ R×. Contradiction.) But we assumed that q1 has no proper factor, hence
u is a unit. �

(c) Following (b), prove that we must also have p2 = uq2. [Hint: R is a domain.]

Proof. From part (b) we know that p1p2 = q1q2 = up1q2, and hence

p1p2 = up1q2

p1p2 − p1uq2 = 0

p1(p2 − uq2) = 0.

Since R is a domain and since p1 6= 0 (it’s irreducible) we conclude that p2−uq2 = 0,
hence p2 = uq2. �

(d) Give a specific example of a ring R and irreducible elements p1, p2, q1, q2 ∈ R
where the above results fail. [Hint: Obviously, your R will not be a PID.]

Proof. Let R = Z[
√
−3] and note that

2 · 2 = (1 +
√
−3)(1−

√
−3).

On HW4 you showed that 2, 1 +
√
−3 and 1−

√
−3 are irreducible in Z[

√
−3], but

that 2 is not associate to either 1 +
√
−3 or 1−

√
−3. By the results of (a),(b),(c)

the ring Z[
√
−3] is not a PID. �


