Problems on Galois Connections

Let S, T be sets and let $R \subseteq S \times T$ be a relation (we will write aRb to denote the statement $(a, b) \in R$). For all subsets $A \subseteq S$ and $B \subseteq T$ let us write

$$\begin{split} A^* &:= \{t \in T : aRt \ \forall a \in A\} \subseteq T, \\ B^* &:= \{s \in S : sRb \ \forall b \in B\} \subseteq S, \end{split}$$

thus defining two functions $*: \wp(S) \to \wp(T)$ and $*: \wp(T) \to \wp(S)$. (Here $\wp(U)$ is the set of subsets of U. The \wp is for "power" set.) We use the symbol * twice for aesthetic reasons; hopefully no confusion will result. Such a pair of maps is called a Galois connection.

1. Prove that for all $A, A' \subseteq S$ and $B, B' \subseteq T$ we have

$$A \subseteq A' \Rightarrow A^* \supseteq A'^*$$
 and $B \subseteq B' \Rightarrow B^* \supseteq B'^*$.

2. Prove that for all $A \subseteq S$ and $B \subseteq T$ we have

$$A \subseteq A^{**}$$
 and $B \subseteq B^{**}$.

3. Prove that for all $A \subseteq S$ and $B \subseteq T$ we have

 $A^{***} = A^*$ and $B^{***} = B^*$.

Let X be a set. A function $\mathsf{cl}: \wp(U) \to \wp(U)$ is called a closure operator if it satisfies

- $X \subseteq \mathsf{cl}(X)$ for all $X \subseteq U$,
- $X \subseteq Y \Rightarrow \mathsf{cl}(X) \subseteq \mathsf{cl}(Y)$ for all $X, Y \subseteq U$,
- $\mathsf{cl}(\mathsf{cl}(X)) = \mathsf{cl}(X)$ for all $X \subseteq U$.

(I'm sure you've met at least two examples before.)

4. Prove that $**: \wp(S) \to \wp(S)$ and $**: \wp(T) \to \wp(T)$ are closure operators.

5. Prove that $*: \wp(S) \to \wp(T)$ and $*: \wp(T) \to \wp(S)$ are inverse (and order-reversing) bijections between the **-closed subsets of S and the **-closed subsets of T. (They also preserve the "lattice structure" on closed sets, but you don't need to prove this.)

6. Now let S = K be a field and let T = G be a finite group of field automorphisms $G \leq Aut(K)$. For $a \in K$ and $g \in G$, let aRg mean that g(a) = a (we say g "fixes" a).

- (a) Let $F = G^*$. Prove that F is a subfield of K.
- (b) For each subset $H \subseteq G$ prove that $F \subseteq H^* \subseteq K$ is an intermediate field.
- (c) For each subset $L \subseteq K$ prove that $L^* \subseteq G$ is a subgroup.
- (d) Prove that every **-closed subset $L \subseteq K$ is an intermediate field $F \subseteq L \subset K$ and every **-closed subset $H \subseteq G$ is a subgroup $H \leq G$. (The Fundamental Theorem of Galois Theory says that every intermediate field and every subgroup is **-closed. This does not follow from the results of this homework; it requires a careful study of polynomials cf. everything we did this semester.)