Problems on Galois Connections

Let S, T be sets and let $R \subseteq S \times T$ be a relation (we will write $a R b$ to denote the statement $(a, b) \in R)$. For all subsets $A \subseteq S$ and $B \subseteq T$ let us write

$$
\begin{aligned}
& A^{*}:=\{t \in T: a R t \quad \forall a \in A\} \subseteq T, \\
& B^{*}:=\{s \in S: s R b \quad \forall b \in B\} \subseteq S
\end{aligned}
$$

thus defining two functions $*: \wp(S) \rightarrow \wp(T)$ and $*: \wp(T) \rightarrow \wp(S)$. (Here $\wp(U)$ is the set of subsets of U. The \wp is for "power" set.) We use the symbol $*$ twice for aesthetic reasons; hopefully no confusion will result. Such a pair of maps is called a Galois connection.

1. Prove that for all $A, A^{\prime} \subseteq S$ and $B, B^{\prime} \subseteq T$ we have

$$
A \subseteq A^{\prime} \Rightarrow A^{*} \supseteq A^{*} \quad \text { and } \quad B \subseteq B^{\prime} \Rightarrow B^{*} \supseteq B^{* *}
$$

2. Prove that for all $A \subseteq S$ and $B \subseteq T$ we have

$$
A \subseteq A^{* *} \quad \text { and } \quad B \subseteq B^{* *}
$$

3. Prove that for all $A \subseteq S$ and $B \subseteq T$ we have

$$
A^{* * *}=A^{*} \quad \text { and } \quad B^{* * *}=B^{*}
$$

Let X be a set. A function $\mathrm{cl}: \wp(U) \rightarrow \wp(U)$ is called a closure operator if it satisfies

- $X \subseteq \mathrm{cl}(X)$ for all $X \subseteq U$,
- $X \subseteq Y \Rightarrow \operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$ for all $X, Y \subseteq U$,
- $\mathrm{cl}(\mathrm{cl}(X))=\mathrm{cl}(X)$ for all $X \subseteq U$.
(I'm sure you've met at least two examples before.)

4. Prove that $* *: \wp(S) \rightarrow \wp(S)$ and $* *: \wp(T) \rightarrow \wp(T)$ are closure operators.
5. Prove that $*: \wp(S) \rightarrow \wp(T)$ and $*: \wp(T) \rightarrow \wp(S)$ are inverse (and order-reversing) bijections between the $* *$-closed subsets of S and the $* *$-closed subsets of T. (They also preserve the "lattice structure" on closed sets, but you don't need to prove this.)
6. Now let $S=K$ be a field and let $T=G$ be a finite group of field automorphisms $G \leq \operatorname{Aut}(K)$. For $a \in K$ and $g \in G$, let $a R g$ mean that $g(a)=a$ (we say g "fixes" a).
(a) Let $F=G^{*}$. Prove that F is a subfield of K.
(b) For each subset $H \subseteq G$ prove that $F \subseteq H^{*} \subseteq K$ is an intermediate field.
(c) For each subset $L \subseteq K$ prove that $L^{*} \subseteq G$ is a subgroup.
(d) Prove that every $* *$-closed subset $L \subseteq K$ is an intermediate field $F \subseteq L \subset K$ and every $* *$-closed subset $H \subseteq G$ is a subgroup $H \leq G$. (The Fundamental Theorem of Galois Theory says that every intermediate field and every subgroup is $* *$-closed. This does not follow from the results of this homework; it requires a careful study of polynomials - cf. everything we did this semester.)
