Problems that are all connected:

We say that a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is symmetric if for every permutation σ of $\{1,2, \ldots, n\}$ we have

$$
f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=\sigma(f) .
$$

The elementary symmetric polynomials $e_{1}, \ldots, e_{n} \in F\left[x_{1}, \ldots, x_{n}\right]$ are defined implicitly by

$$
t^{n}-e_{1} t^{n-1}+e_{2} t^{n-2}-\cdots+(-1)^{n} e_{n}:=\left(t-x_{1}\right)\left(t-x_{2}\right) \cdots\left(t-x_{n}\right),
$$

where t is an indeterminate. Newton's Theorem says that the subring of $F\left[x_{1}, \ldots, x_{n}\right]$ consisting of symmetric polynomials is equal to $F\left[e_{1}, \ldots, e_{n}\right]$ (i.e. every symmetric polynomial can be written uniquely as a polynomial in e_{1}, \ldots, e_{n}).

1. The polynomial $x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}$ is clearly symmetric. Express it as an element of $F\left[e_{1}, e_{2}, \ldots, e_{n}\right]$.

Proof. I will use the notation

$$
p_{k}:=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}
$$

for the k th power sum symmetric polynomial. The difficulty here is how to deal with n. For $n=1$ we have $p_{3}=x_{1}^{3}=e_{1}^{3}$ and for $n=2$ we have $p_{3}=x_{1}^{3}+x_{2}^{3}=\left(x_{1}+x_{2}\right)^{3}-3\left(x_{1}+x_{2}\right)\left(x_{1} x_{2}\right)=e_{1}^{3}-3 e_{1} e_{2}$. I claim that for all $n \geq 3$ we have $p_{3}=e_{1}^{3}-3 e_{1} e_{2}+3 e_{3}$ (i.e. the problem stabilizes).

To show this I will introduce the lexicographic order on degree sequences: say that

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)<\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

if there exists ℓ such that $\alpha_{\ell}<\beta_{\ell}$ and $\alpha_{i}=\beta_{i}$ for all $1 \leq i<\ell$. (That is, in the leftmost position in which α and β differ, β is larger. Note that this is the same as the natural order on integers with at most n decimal digits.) Given $f \in F\left[x_{1}, \ldots, x_{n}\right]$, its leading term is the term with the largest degree sequence.

So let $n \geq 3$ and observe that p_{3} has leading term x_{1}^{3}. Next note that e_{1}^{3} has leading term x_{1}^{3} and second-largest term $3 x_{1}^{2} x_{2}$. (Indeed, every term of e_{1}^{3} has degrees summing to 3.) Subtracting e_{1}^{3} from p_{3} gives us another symmetric polynomial with smaller leading term: $p_{3}-e_{1}^{3}=-3 x_{1}^{2} x_{2}+$ lower order terms. Next note that $3 e_{1} e_{2}$ has leading term $3 x_{1}^{2} x_{2}$. (Again, every term of $e_{1} e_{2}$ has degrees summing to 3 , so the only possible term higher than $x_{1}^{2} x_{2}$ is x_{1}^{3}, and this does not occur.) Adding $3 e_{1} e_{2}$ to $p_{3}-e_{1}^{3}$ then gives

$$
p_{3}-e_{1}^{3}+3 e_{1} e_{2}=3 x_{1} x_{2} x_{3}+\text { lower order terms. }
$$

I claim that the expression on the right actually equals $3 e_{3}$. How do I know this? Since $p_{3}-e_{1}^{3}+3 e_{1} e_{2}$ is symmetric, we must have $p_{3}-3 e_{1}^{3}+3 e_{1} e_{2}=3 e_{3}+f$, for some symmetric $f \in F\left[x_{1}, \ldots, x_{n}\right]$ with highest term of degree strictly less than $(1,1,1,0, \ldots, 0)$. But every term of f has degrees adding to 3 , thus the only possibilities are permutations of $\{3,0, \ldots, 0\},\{2,1,0, \ldots, 0\}$ or $\{1,1,1,0, \ldots, 0\}$. If f contains any of these three types, then by symmetry it must contain a term with degree sequence $(3,0, \ldots, 0),(2,1,0, \ldots, 0)$ or $(1,1,1,0, \ldots, 0)$. This contradicts the fact that every term of f is strictly smaller than $(1,1,1,0, \ldots, 0)$. Hence $f=0$ and we conclude that $p_{3}=e_{1}^{3}-3 e_{1} e_{2}+3 e_{3}$.
[At every step of the algorithm we subtract a polynomial of the form $e_{\alpha}:=e_{1}^{\alpha_{1}} e_{2}^{\alpha_{2}} \cdots e_{n}^{\alpha_{n}}$. Note that every term of e_{α} has degrees summing to exactly $1 \alpha_{1}+2 \alpha_{2}+\cdots+n \alpha_{n}$ (just call this constant d), hence we say that the polynomial e_{α} is homogeneous of degree d. More generally, we say that a polynomial $f \in F\left[x_{1}, \ldots, x_{n}\right]$ has "total degree" d if d is the maximum sum of exponents over the terms
of f.. It follows from these observations that every symmetric polynomial $f \in F\left[x_{1}, \ldots, x_{n}\right]$ of total degree d satisfies $f \in F\left[e_{1}, \ldots, e_{d}\right]$, independently of n. (Note that p_{3} is homogeneous of degree 3 , hence $\left.\left.p_{3} \in F\left[e_{1}, e_{2}, e_{3}\right].\right)\right]$
2. Consider a polynomial $f(x) \in F[x]$ and let $F \subseteq K$ be a field extension that contains the roots $\alpha_{1}, \ldots, \alpha_{n}$ of $f(x)$ (i.e. K contains the splitting field of $\left.f(x)\right)$. If $\alpha=g\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K$ for some symmetric polynomial g, prove that α is actually in F.

Proof. By assumption, the polynomial $f(x) \in K[x]$ splits as

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)
$$

It follows that the elementary symmetric polynomials e_{1}, \ldots, e_{n} evaluated at $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ are in the field F (because by definition these are \pm the coefficients of $f(x)$, which is in $F[x]$). Finally, let $g \in F\left[x_{1}, \ldots, x_{n}\right]$ be symmetric. By Newton's theorem we can write g as a polynomial in e_{1}, \ldots, e_{n} with coefficients in F. Evaluate everything at $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to conclude that $g\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ F.
[This proof has two steps. 1. Note that every symmetric combination of the roots is a polynomial in elementary symmetric combinations of the roots (Newton's Theorem). 2. Note that every elementary symmetric combination of the roots is a coefficient, hence it's in F. You could think of this as the very first theorem of Galois theory.]
3. The Splitting Theorem. Consider $f(x) \in F[x]$ with splitting field $F \subseteq K$ (i.e. $K=$ $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f(x)$.) If $g(x) \in F[x]$ is irreducible over F and has one root in K, then $g(x)$ actually splits in K. Your assignment is to read and understand the following proof.

Proof. Suppose that $g(x) \in F[x]$ is irreducible and has a root $\beta_{1} \in K$. Then we can write $\beta_{1}=$ $p\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some polynomial p in the roots of $f(x)$. Let $\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ be the set of values of $p\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}\right) \in K$ as σ runs over all permutations of $\{1,2, \ldots, n\}$ (you can note that $k \leq n!$, but this fact is not important). We claim that the polynomial

$$
h(x):=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{k}\right) \in K[x]
$$

is actually in $F[x]$. Indeed, the coefficients of $h(x)$ are the elementary symmetric polynomials in $\beta_{1}, \ldots, \beta_{k}$. Since each $\beta_{i} \in K$ is a polynomial in the α_{j} (as is any element of K), the coefficients of $h(x)$ are polynomials in the α_{j}. Now note that any permutation of the α_{j} induces a permutation of the β_{i} (by definition). Since the coefficients of $h(x)$ are symmetric under permutations of the β_{i}, they are also symmetric under permutations of the α_{j}. By Problem 2, we conclude that $h(x) \in F[x]$.

Finally, note that $g(x)$ is the minimal polynomial for β_{1} over F; i.e. the evaluation map $\varphi_{\beta_{1}}$: $F[x] \rightarrow K$ has kernel $(g(x))$. Since $h\left(\beta_{1}\right)=0$ we have $h(x) \in(g(x))$, hence $g(x)$ divides $h(x)$. Then since $h(x)$ splits in K, so does $g(x)$.
4. Let $F \subseteq K$ be a normal field extension (this means that K is the splitting field for some (nonunique) polynomial over $F)$. Given any $\alpha \in K$, let $m_{\alpha}(x) \in F[x]$ be its minimal polynomial. Then we define the norm of α by

$$
N_{K / F}(\alpha):=\left(\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right)^{[K: F] / \operatorname{deg}\left(m_{\alpha}(x)\right)}
$$

where $\alpha_{1}, \ldots, \alpha_{k}$ are the roots of $m_{\alpha}(x)$. (Without loss, you can say $\alpha=\alpha_{1}$.)
(a) Prove that $[K: F] / \operatorname{deg}\left(m_{\alpha}(x)\right) \in \mathbb{N}$.
(b) Use The Splitting Theorem to prove that $N_{K / F}(\alpha) \in K$.
(c) Then use Problem 2 to prove that actually $N_{K / F}(\alpha) \in F$.
(d) Suppose $0 \neq d \in \mathbb{Z}$ is squarefree (i.e. has no repeated prime factor) and consider the quadratic field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{d})$. Given $a, b \in \mathbb{Q}$, find the minimal polynomial of $a+b \sqrt{d} \in \mathbb{Q}(\sqrt{d})$ over \mathbb{Q} and use this to compute the norm $N_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}(a+b \sqrt{d})$. Do you recognize this? (All things are connected.)

Proof. First we prove (a). Given any $\alpha \in K$ with minimal polynomial $m_{\alpha}(x) \in F[x]$, we consider the intermediate field $F \subseteq F(\alpha) \subseteq K$. Then the Tower Law says

$$
[K: F]=[K: F(a)] \cdot[F(a): F]=[K: F(a)] \cdot \operatorname{deg}\left(m_{\alpha}(x)\right) .
$$

We conclude that $\operatorname{deg}\left(m_{\alpha}(x)\right)$ divides $[K: F]$, hence $[K: F] / \operatorname{deg}\left(m_{\alpha}(x)\right) \in \mathbb{N}$.
To prove (b), note that the irreducible polynomial $m_{\alpha}(x) \in F[x]$ has one root in K (namely, α). Since K is the splitting field for some polynomial in $F[x]$ (namely, $m_{\alpha}(x)$), the Splitting Theorem says that all of the roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are in K. We conclude that any power of the product $\alpha_{1} \cdots \alpha_{k}$ is in K, hence $N_{K / F}(\alpha) \in K$.

To prove (c), let $r=[K: F] / \operatorname{deg}\left(m_{\alpha}(x)\right)$. Then the polynomial $g\left(x_{1}, \ldots, x_{k}\right):=x_{1}^{r} x_{2}^{r} \cdots x_{k}^{r}$ is symmetric, hence Problem 2 implies that $N_{K / F}(\alpha)=g\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in F$.

Finally, let $d \in \mathbb{Z}$ be squarefree, so \sqrt{d} is irrational and $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{d})$ is a degree 2 field extension. In fact, $\mathbb{Q}(\sqrt{d})$ is the splitting field of $x^{2}-d \in \mathbb{Q}[x]$, so parts (a),(b),(c) will apply. Now consider an element $a+b \sqrt{d} \in \mathbb{Q}(\sqrt{d})$ with $b \neq 0$. The minimal polynomial of $a+b \sqrt{d}$ over \mathbb{Q} is

$$
(x-(a+b \sqrt{d}))(x-(a-b \sqrt{d}))=x^{2}-2 a x+\left(a^{2}-d b^{2}\right) \in \mathbb{Q}[x] .
$$

(Since $a \pm b \sqrt{d}$ are irrational, this quadratic polynomial has no rational root, hence it's irreducible over \mathbb{Q}.) We conclude that the norm is

$$
N_{\mathbb{Q}(d) / \mathbb{Q}}(a \pm b \sqrt{d})=((a+b \sqrt{d})(a-b \sqrt{d}))^{2 / 2}=a^{2}-d b^{2} \in \mathbb{Q} .
$$

If $b=0$ then the minimal polynomial of $a \in \mathbb{Q}(d)$ over \mathbb{Q} is $x-a \in \mathbb{Q}[x]$. In this case the formula gives $N_{\mathbb{Q}(d) / \mathbb{Q}}(a)=(a)^{2 / 1}=a^{2}$, which still looks good.
[Notice that the norm is a natural generalization of $|z|^{2}$ for complex numbers. In fact if $d<0$ (the case of imaginary quadratic fields) then $|a+b \sqrt{d}|^{2}=a^{2}-d b^{2}$ is a true statement. (See Chapter 13 of Artin.) You used this on HW2 to prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.]
5. Consider $\gamma=\sqrt[3]{2} \in \mathbb{R}$ and $\omega=e^{2 \pi i / 3} \in \mathbb{C}$.
(a) Prove that $\operatorname{Gal}(\mathbb{Q}(\gamma) / \mathbb{Q})$ is trivial, and hence $\mathbb{Q}(\gamma)$ is not the splitting field of $x^{3}-2 \in \mathbb{Q}[x]$.
(b) Prove that the splitting field of $x^{3}-2 \in \mathbb{Q}[x]$ is $\mathbb{Q}(\gamma, \omega)$.
(c) Prove that $G=\operatorname{Gal}(\mathbb{Q}(\gamma, \omega) / \mathbb{Q})$ is isomorphic to the dihedral group D_{3} of size 6. [Hint: An element is determined by how it acts on γ and ω. Define σ by $(\sigma(\gamma):=\omega \gamma, \sigma(\omega):=\omega)$ and define ρ by $\left(\rho(\gamma):=\gamma, \rho(\omega):=\omega^{2}\right)$. Recall the description of D_{3} as a semi-direct product.] Note: This is the smallest nonabelian group in the world.

Proof. Let $\mu \in \operatorname{Gal}(\mathbb{Q}(\gamma) / \mathbb{Q})$. Then μ is determined by the single value $\mu(\gamma) \in \mathbb{Q}(\gamma)$. Furthermore, since $\gamma^{3}-2=0$ we must have $0=\mu(0)=\mu\left(\gamma^{3}-2\right)=\mu(\gamma)^{3}-2$, so $\mu(\gamma)$ is also a root of $x^{3}-2 \in \mathbb{Q}[x]$. But $\mathbb{Q}(\gamma) \subseteq \mathbb{R}$ and $x^{3}-2$ has only one real root (namely, γ). Hence the only choice is $\mu(\gamma)=\gamma$ and we conclude that μ is the identity map. In particular, we have $|\operatorname{Gal}(\mathbb{Q}(\gamma) / \mathbb{Q})|=1<[\mathbb{Q}(\gamma): \mathbb{Q}]=3$, which means that $\mathbb{Q}(\gamma)$ is not a splitting field for any polynomial in $\mathbb{Q}[x]$. (You can just quote this from class.)

So what is the splitting field of $x^{3}-2 \in \mathbb{Q}[x]$? The roots of $x^{3}-2$ are $\gamma, \omega \gamma, \omega^{2} \gamma$ (thought of as complex numbers), hence the splitting field is $K=\mathbb{Q}\left(\gamma, \omega \gamma, \omega^{2} \gamma\right) \subseteq \mathbb{C}$. Clearly $\gamma, \omega \gamma, \omega^{2} \gamma \in \mathbb{Q}(\gamma, \omega)$, hence $K \subseteq \mathbb{Q}(\gamma, \omega)$. Conversely, $\gamma \in K$ and $\omega=(\omega \gamma) / \omega \in K$ imply $\mathbb{Q}(\gamma, \omega) \subseteq K$, hence $K=\mathbb{Q}(\gamma, \omega)$.

You showed on Exam 2 that $[\mathbb{Q}(\gamma, \omega): \mathbb{Q}]=6$ so we expect a Galois group of size 6 . Any element $\mu \in \operatorname{Gal}(\mathbb{Q}(\gamma, \omega) / \mathbb{Q})$ is determined by the two values $\mu(\gamma), \mu(\omega) \in \mathbb{Q}(\gamma, \omega)$. Furthermore, $\mu(\gamma)$ must be a root of $x^{3}-2$ and $\mu(\omega)$ must be a root of $x^{2}+x+1$. If we let σ denote the map $(\gamma, \omega) \mapsto(\omega \gamma, \gamma)$ and let ρ denote the map $(\gamma, \omega) \mapsto\left(\gamma, \omega^{2}\right)$ then we can generate all six group elements as in the following table:

1	σ	σ^{2}	ρ	$\rho \sigma$	$\rho \sigma^{2}$
$\gamma \mapsto \gamma$	$\gamma \mapsto \omega \gamma$	$\gamma \mapsto \omega^{2} \gamma$	$\gamma \mapsto \gamma$	$\gamma \mapsto \omega^{2} \gamma$	$\gamma \mapsto \omega \gamma$
$\omega \mapsto \omega$	$\omega \mapsto \omega$	$\omega \mapsto \omega$	$\omega \mapsto \omega^{2}$	$\omega \mapsto \omega^{2}$	$\omega \mapsto \omega^{2}$

(Here we use juxtaposition to denote composition; i.e. $\rho \sigma=\rho \circ \sigma$.) Note that the group is not abelian because $\rho \sigma$ sends $(\gamma, \omega) \mapsto\left(\omega^{2} \gamma, \omega^{2}\right)$, whereas $\sigma \rho$ sends $(\gamma, \omega) \mapsto\left(\omega \gamma, \omega^{2}\right)$. In fact, this shows that $\sigma \rho=\rho \sigma^{2}$. Recall the definition of the dihedral group D_{3}, the group of symmetries of an equilateral triangle. It is generated by a rotation R satisfying $R^{3}=1$, a flip F satisfying $F^{2}=1$, and the single relation $R F=F R^{2}$. Sending $\sigma \mapsto R$ and $\rho \mapsto F$ gives the desired group isomorphism $\operatorname{Gal}(\mathbb{Q}(\gamma, \omega) / \mathbb{Q}) \xrightarrow{\sim} D_{3}$. We can also view this as a semi-direct product

$$
\operatorname{Gal}(\mathbb{Q}(\gamma, \omega) / \mathbb{Q})=\langle\rho\rangle \ltimes\langle\sigma\rangle
$$

where $\langle\sigma\rangle$ is a normal subgroup and the (non-normal) subgroup $\langle\rho\rangle$ acts on $\langle\sigma\rangle$ by conjugation, sending σ to $\rho \sigma \rho=\sigma^{2}$.
6. The norm from Problem 4 can be defined equivalently in terms of the Galois group. Let $F \subseteq K$ be a normal extension with Galois group $G=\operatorname{Gal}(K / F)$. For each $\alpha \in K$ we define the norm

$$
N_{K / F}(\alpha):=\prod_{\sigma \in G} \sigma(\alpha) \in K .
$$

(a) Use this definition to give a different proof that actually $N_{K / F}(\alpha) \in F$. [Hint: For all $\mu \in G$, show that $\mu\left(N_{K / F}(\alpha)\right)=N_{K / F}(\alpha)$.]
(b) Consider the field $\mathbb{Q}(\omega)$, where $\omega=e^{2 \pi i / 3}$. The minimal polynomial of ω over \mathbb{Q} is $x^{2}+x+1$, hence $\mathbb{Q}(\omega)$ has basis $1, \omega$ as a vector space over \mathbb{Q}. Compute a formula for the inverse of $a+b \omega \in \mathbb{Q}(\omega)$. Use the norm in your answer. [Hint: It's "the same" as the formula for inverting a complex number; i.e. $z^{-1}=\bar{z} /|z|^{2}$.]
Proof. To show part (a), suppose $[K: F]=n$ and let $G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. If $\mu \in G$, note that $G=\left\{\mu \sigma_{1}, \ldots, \mu \sigma_{n}\right\}$ is just a permutation of the group elements. Hence

$$
\mu\left(\sigma_{1}(\alpha) \cdots \sigma_{n}(\alpha)\right)=\mu \sigma_{1}(\alpha) \cdots \mu \sigma_{n}(\alpha)=\sigma_{1}(\alpha) \cdots \sigma_{n}(\alpha) \in K
$$

and we conclude that $\mu\left(N_{K / F}(\alpha)\right)=N_{K / F}(\alpha)$. Since this is true for all $\mu \in G$ we have that $N_{K / F}(\alpha)$ is an element of the fixed subfield $K^{G} \subseteq K$. By the Tower Law we have $[K: F]=\left[K: K^{G}\right] \cdot\left[K^{G}: F\right]$. We will see in class that $\left[K: K^{G}\right]=|G|=[K: F]$, which implies that $\left[K^{G}: F\right]=1$, or $K^{G}=F$. We conclude that $N_{K / F}(\alpha) \in F$.

Finally, part (b). Let's just write N for the norm $N_{\mathbb{Q}(\omega) / \mathbb{Q}}$. The Galois group $\operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q})$ consists of the identity element 1 and the "conjugation" map σ defined by $\sigma(\omega):=\omega^{2}$. Note that $\sigma(a+b \omega)=$ $\sigma(a)+\sigma(b) \sigma(\omega)=a+b \omega^{2}=a+b(-\omega-1)=(a-b)-b \omega$ for arbitrary $a, b \in \mathbb{Q}$. Thus we have

$$
\begin{aligned}
N(a+b \omega) & =1(a+b \omega) \sigma(a+b \omega)=(a+b \omega)\left(a+b \omega^{2}\right) \\
& =a^{2}+a b\left(\omega+\omega^{2}\right)+b \omega^{3}=a^{2}-a b+b^{2} \in \mathbb{Q} .
\end{aligned}
$$

Finally we get

$$
\frac{1}{a+b \omega}=\frac{1}{a+b \omega} \cdot \frac{\sigma(a+b \omega)}{\sigma(a+b \omega)}=\frac{(a-b)-b \omega}{a^{2}-a b+b^{2}}=\left(\frac{a-b}{a^{2}-a b+b^{2}}\right)-\left(\frac{b}{a^{2}-a b+b^{2}}\right) \omega .
$$

More compactly, this is $(a+b \omega)^{-1}=\sigma(a+b \omega) / N(a+b \omega)$. Compare $z^{-1}=\bar{z} /|z|^{2}$.

