Problems that are all connected:

We say that a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is symmetric if for every permutation σ of $\{1,2, \ldots, n\}$ we have

$$
f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=\sigma(f) .
$$

The elementary symmetric polynomials $e_{1}, \ldots, e_{n} \in F\left[x_{1}, \ldots, x_{n}\right]$ are defined implicitly by

$$
t^{n}-e_{1} t^{n-1}+e_{2} t^{n-2}-\cdots+(-1)^{n} e_{n}:=\left(t-x_{1}\right)\left(t-x_{2}\right) \cdots\left(t-x_{n}\right),
$$

where t is an indeterminate. Newton's Theorem says that the subring of $F\left[x_{1}, \ldots, x_{n}\right]$ consisting of symmetric polynomials is equal to $F\left[e_{1}, \ldots, e_{n}\right]$ (i.e. every symmetric polynomial can be written uniquely as a polynomial in $\left.e_{1}, \ldots, e_{n}\right)$.

1. The polynomial $x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}$ is clearly symmetric. Express it as an element of $F\left[e_{1}, e_{2}, \ldots, e_{n}\right]$.
2. Consider a polynomial $f(x) \in F[x]$ and let $F \subseteq K$ be a field extension that contains the roots $\alpha_{1}, \ldots, \alpha_{n}$ of $f(x)$ (i.e. K contains the splitting field of $\left.f(x)\right)$. If $\alpha=g\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K$ for some symmetric polynomial g, prove that α is actually in F.
3. The Splitting Theorem. Consider $f(x) \in F[x]$ with splitting field $F \subseteq K$ (i.e. $K=$ $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f(x)$.) If $g(x) \in F[x]$ is irreducible over F and has one root in K, then $g(x)$ actually splits in K. Your assignment is to read and understand the following proof.
Proof. Suppose that $g(x) \in F[x]$ is irreducible and has a root $\beta_{1} \in K$. Then we can write $\beta_{1}=$ $p\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some polynomial p in the roots of $f(x)$. Let $\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ be the set of values of $p\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}\right) \in K$ as σ runs over all permutations of $\{1,2, \ldots, n\}$ (you can note that $k \leq n!$, but this fact is not important). We claim that the polynomial

$$
h(x):=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{k}\right) \in K[x]
$$

is actually in $F[x]$. Indeed, the coefficients of $h(x)$ are the elementary symmetric polynomials in $\beta_{1}, \ldots, \beta_{k}$. Since each $\beta_{i} \in K$ is a polynomial in the α_{j} (as is any element of K), the coefficients of $h(x)$ are polynomials in the α_{j}. Now note that any permutation of the α_{j} induces a permutation of the β_{i} (by definition). Since the coefficients of $h(x)$ are symmetric under permutations of the β_{i}, they are also symmetric under permutations of the α_{j}. By Problem 2, we conclude that $h(x) \in F[x]$.

Finally, note that $g(x)$ is the minimal polynomial for β_{1} over F; i.e. the evaluation map $\varphi_{\beta_{1}}$: $F[x] \rightarrow K$ has kernel $(g(x))$. Since $h\left(\beta_{1}\right)=0$ we have $h(x) \in(g(x))$, hence $g(x)$ divides $h(x)$. Then since $h(x)$ splits in K, so does $g(x)$.
4. Let $F \subseteq K$ be a normal field extension (this means that K is the splitting field for some (nonunique) polynomial over F). Given any $\alpha \in K$, let $m_{\alpha}(x) \in F[x]$ be its minimal polynomial. Then we define the norm of α by

$$
N_{K / F}(\alpha):=\left(\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right)^{[K: F] / \operatorname{deg}\left(m_{\alpha}(x)\right)},
$$

where $\alpha_{1}, \ldots, \alpha_{k}$ are the roots of $m_{\alpha}(x)$. (Without loss, you can say $\alpha=\alpha_{1}$.)
(a) Prove that $[K: F] / \operatorname{deg}\left(m_{\alpha}(x)\right) \in \mathbb{Z}$.
(b) Use The Splitting Theorem to prove that $N_{K / F}(\alpha) \in K$.
(c) Then use Problem 2 to prove that actually $N_{K / F}(\alpha) \in F$.
(d) Suppose $0 \neq d \in \mathbb{Z}$ is squarefree (i.e. has no repeated prime factor) and consider the quadratic field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{d})$. Given $a, b \in \mathbb{Q}$, find the minimal polynomial of $a+b \sqrt{d} \in \mathbb{Q}(\sqrt{d})$ over \mathbb{Q} and use this to compute the norm $N_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}(a+b \sqrt{d})$. Do you recognize this? (All things are connected.)
5. Consider $\gamma=\sqrt[3]{2} \in \mathbb{R}$ and $\omega=e^{2 \pi i / 3} \in \mathbb{C}$.
(a) Prove that $\operatorname{Gal}(\mathbb{Q}(\gamma) / \mathbb{Q})$ is trivial, and hence $\mathbb{Q}(\gamma)$ is not the splitting field of $x^{3}-2 \in \mathbb{Q}[x]$.
(b) Prove that the splitting field of $x^{3}-2 \in \mathbb{Q}[x]$ is $\mathbb{Q}(\gamma, \omega)$.
(c) Prove that $G=\operatorname{Gal}(\mathbb{Q}(\gamma, \omega) / \mathbb{Q})$ is isomorphic to the dihedral group D_{3} of size 6. [Hint: An element is determined by how it acts on γ and ω. Define σ by $(\sigma(\gamma):=\omega \gamma, \sigma(\omega):=\omega)$ and define ρ by $\left(\rho(\gamma):=\gamma, \rho(\omega):=\omega^{2}\right)$. Recall the description of D_{3} as a semi-direct product.] Note: This is the smallest nonabelian group in the world.
6. The norm from Problem 4 can be defined equivalently in terms of the Galois group. Let $F \subseteq K$ be a normal extension with Galois group $G=\operatorname{Gal}(K / F)$. For each $\alpha \in K$ we define the norm

$$
N_{K / F}(\alpha):=\prod_{\sigma \in G} \sigma(\alpha) \in K
$$

(a) Use this definition to give a different proof that actually $N_{K / F}(\alpha) \in F$. [Hint: For all $\mu \in G$, show that $\mu\left(N_{K / F}(\alpha)\right)=N_{K / F}(\alpha)$.]
(b) Consider the field $\mathbb{Q}(\omega)$, where $\omega=e^{2 \pi i / 3}$. The minimal polynomial of ω over \mathbb{Q} is $x^{2}+x+1$, hence $\mathbb{Q}(\omega)$ has basis $1, \omega$ as a vector space over \mathbb{Q}. Compute a formula for the inverse of $a+b \omega \in \mathbb{Q}(\omega)$. Use the norm in your answer. [Hint: It's "the same" as the formula for inverting a complex number; i.e. $z^{-1}=\bar{z} /|z|^{2}$.]

