Problems on Rings

1. We say that an ideal $I \subseteq R$ is prime if for all $a, b \in R, a b \in I$ implies that $a \in I$ or $b \in I$.
(a) Prove that $I \subseteq R$ is prime if and only if R / I is an integral domain.
(b) Prove that every maximal ideal is prime.

Proof. First note that the zero element of the ring R / I is $0+I=I$ and that $a+I=I$ if and only if $a \in I$. Now suppose that $I \subseteq R$ is a prime ideal and consider nonzero cosets $a+I$ and $b+I$ in R / I (i.e. consider $a \notin I$ and $b \notin I$). Since I is prime this implies that $a b \notin I$, hence $a b+I \neq I$ and we conclude that R / I is an integral domain. Conversely, let R / I be an integral domain and consider $a, b \in R$ with $a b \in I$ (i.e. consider $a b+I=I)$. Since $(a+I)(b+I)=a b+I=I$ and R / I is an integral domain we conclude that either $a+I=I$ (i.e. $a \in I$) or $b+I=I$ (i.e. $b \in I$). Hence $I \subseteq R$ is a prime ideal.

Now let $I \subseteq R$ be a maximal ideal. You showed on the previous homework that this implies that R / I is a field. Since every field is an integral domain, we conclude that I is a prime ideal.
[Note that this result is quite general; it is true for any commutative ring with 1 . The concepts of "prime" and "maximal" ideals are meant to generalize the concepts of "prime" and "irreducible" elements of a ring. (The intuition for this comes from PIDs.) However, even though maximal always implies prime for ideals, it is not always true that irreducible elements are prime. What's going on here?]
2. The following two proofs are wrong. Explain why, and fix them.
(a) Let R be an integral domain and consider a principal ideal $(a) \subseteq R$. If a is irreducible, then the ideal (a) is maximal, hence the ideal (a) is prime, hence the element a is prime. We conclude that every irreducible element is prime.
(b) Let $I \subseteq R$ be an ideal in an integral domain. If I is a prime ideal, then $I=(p)$ for some prime element $p \in R$. But every prime element of a domain is irreducible, hence p is irreducible and the ideal $I=(p)$ is maximal. We conclude that every prime ideal is maximal.
Proof. The problem is that these proofs fail when R is not a PID. So let R be a PID.
Claim 1: Every irreducible element of R is prime. Proof: Let $a \in R$ be irreducible and consider the ideal $(a) \subseteq R$. Let J be an ideal with $(a)<J \subseteq R$. Since R is a PID we can write $J=(b)$. Then note that $(b)=R$ since otherwise b would be a proper divisor of a. Hence $(a) \subseteq R$ is a maximal ideal and by Problem 1 it is also a prime ideal. That is, given $a \mid b c$ (i.e. $b c \in(a)$) it follows that $b \in(a)$ (i.e. $a \mid b)$ or $c \in(a)$ (i.e. $a \mid c)$. We conclude that the element $a \in R$ is prime.///

Claim 2: Every prime ideal of R is maximal. Proof: Let $I \subseteq R$ be a prime ideal. Since R is a PID we have $I=(a)$ for some element $a \in R$, and since (a) is a prime ideal it follows that $a \in R$ is a prime element (see the above proof). Then since R is an integral domain it follows that $a \in R$ is irreducible (if you don't remember the proof, do it now). Finally, consider an ideal J such that $(a)=I<J \subseteq R$. Since R is a PID we have $J=(b)$ for some $b \in R$ and then we must have $J=R$ since otherwise b is a proper divisor of a. We conclude that $I \subseteq R$ is a maximal ideal.///
3. Given a ring R, there exists a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$ defined by $\varphi\left(1_{\mathbb{Z}}\right)=1_{R}$. If $\operatorname{ker} \varphi=(n) \subseteq \mathbb{Z}$, we say the ring R has "characteristic n ".
(a) Prove that the characteristic of an integral domain is 0 or prime $p \in \mathbb{Z}$.
(b) Prove that a field F has characteristic 0 if and only if it contains a subfield isomorphic to \mathbb{Q}.

Proof. To prove (a), let R be an integral domain and consider the unique homomorphism $\varphi: \mathbb{Z} \rightarrow R$, which is defined defined by $\varphi\left(1_{\mathbb{Z}}\right)=1_{R}$. Since \mathbb{Z} is a PID we know that $\operatorname{ker} \varphi=(n)$ for some n. Suppose that n has a proper factorization $n=a b$. In particular this means that $a, b \notin(n)=\operatorname{ker} \varphi$ so that $\varphi(a), \varphi(b) \neq 0_{R}$. But since φ is a homomorphism we also have $\varphi(a) \varphi(b)=\varphi(n)=0_{R}$, which contradicts the fact that R is an integral domain. We conclude that n must be zero or prime.

To prove (b), let F be a field and consider the map $\varphi: \mathbb{Z} \rightarrow F$ defined by $\varphi\left(1_{\mathbb{Z}}\right)=1_{F}$. If F has characteristic 0 then the map φ is injective and we can use this to define an injective homomorphism $\bar{\varphi}: \mathbb{Q} \hookrightarrow F$ by $\bar{\varphi}(a / b):=\varphi(a) / \varphi(b)$ whenever $b \neq 0_{\mathbb{Z}}$. This map is well-defined since if $a / b=c / d$ (i.e. $a d=b c$) then we obtain $\varphi(a) \varphi(d)=\varphi(b) \varphi(c)$, hence $\varphi(a) / \varphi(b)=\varphi(c) / \varphi(d)$. It's a homomorphism because $\bar{\varphi}\left(1_{\mathbb{Z}} / 1_{\mathbb{Z}}\right)=\varphi\left(1_{\mathbb{Z}}\right) / \varphi\left(1_{\mathbb{Z}}\right)=1_{F} / 1_{F}=1_{F}$,

$$
\bar{\varphi}\left(\frac{a}{b} \cdot \frac{c}{d}\right)=\bar{\varphi}\left(\frac{a c}{b d}\right)=\frac{\varphi(a c)}{\varphi(b d)}=\frac{\varphi(a) \varphi(c)}{\varphi(b) \varphi(d)}=\frac{\varphi(a)}{\varphi(b)} \cdot \frac{\varphi(c)}{\varphi(d)}=\bar{\varphi}\left(\frac{a}{b}\right) \bar{\varphi}\left(\frac{c}{d}\right),
$$

and
$\bar{\varphi}\left(\frac{a}{b}+\frac{c}{d}\right)=\bar{\varphi}\left(\frac{a d+b c}{b d}\right)=\frac{\varphi(a d+b c)}{\varphi(b d)}=\frac{\varphi(a) \varphi(d)+\varphi(b) \varphi(c)}{\varphi(b) \varphi(d)}=\frac{\varphi(a)}{\varphi(b)}+\frac{\varphi(c)}{\varphi(d)}=\bar{\varphi}\left(\frac{a}{c}\right)+\bar{\varphi}\left(\frac{c}{d}\right)$,
whenever the denominators are nonzero. Finally, the map $\bar{\varphi}$ is injective because $\bar{\varphi}(a / b)=\bar{\varphi}(c / d) \Rightarrow$ $\varphi(a) / \varphi(b)=\varphi(c) / \varphi(d) \Rightarrow \varphi(a) \varphi(d)=\varphi(b) \varphi(c) \Rightarrow \varphi(a d)=\varphi(b c)$, and then the injectivity of φ implies $a d=b c \Rightarrow a / d=b / c$. Hence F contains a subfield isomorphic to \mathbb{Q}; namely, the homomorphic image $\bar{\varphi}(\mathbb{Q}) \subseteq F$.

Conversely, suppose that $K \subseteq F$ is a subfield isomorphic to \mathbb{Q}. Since φ maps $1_{\mathbb{Z}}$ to $1_{F} \in K \subseteq F$ it follows that φ maps \mathbb{Z} into K. But K is a field of characteristic 0 (why?). Hence $\operatorname{ker} \varphi=(0)$ and we conclude that F has characteristic 0 .
[In general, given any field F we define its prime subfield $F^{\prime} \subseteq F$ as the intersection of all subfields equivalently, F^{\prime} is the subfield generated by 1_{F}. It's a general fact that the prime subfield is isomorphic to either \mathbb{Q} or $\mathbb{Z} /(p)$, depending on the characteristic of F. You just proved the characteristic 0 case.]

Problems on Fields

4. Finite Implies Algebraic. Consider a field extension $F \subseteq K$. We say that $a \in K$ is algebraic over F if $f(a)=0$ for some (monic) polynomial $f(x) \in F[x]$. We say that the extension $F \subseteq K$ is algebraic if every element of K is algebraic over F. Prove that if $[K: F]<\infty$ then $F \subseteq K$ is algebraic. [Hint: Consider the powers $1, a, a^{2}, \ldots$ of some $a \in K$. Are they independent over F ?]

Proof. Let $F \subseteq K$ be an extension of fields and suppose that $[K: F]=n<\infty$. That is, K is a vector space of dimension n over F. Let $a \in K$ be any nonzero element and consider the set $\left\{1, a, \ldots, a^{n}\right\} \subseteq K$. If this set contains any repetition, say $a^{j}=a^{k}$, then a is a root of the polynomial $f(x)=x^{j}-x^{k} \in F[x]$. Otherwise the set $\left\{1, a, \ldots, a^{n}\right\}$ contains $n+1$ distinct elements. Since K has dimension n we know that any set of $>n$ elements must be linearly dependent. Hence there exist $c_{0}, \ldots, c_{n} \in F$ such that

$$
c_{0}+c_{1} a+c_{2} a^{2}+\cdots+c_{n} a^{n}=0 .
$$

We conclude that a is a root of the polynomial $f(x)=c_{0}+c_{1} x+\cdots c_{n} x^{n} \in F[x]$.
5. Given a field extension $F \subseteq K$, let $F \subseteq \bar{F} \subseteq K$ denote the subset of elements that are algebraic over F. This is called the algebraic closure of F in K. Prove that \bar{F} is a field. [Hint: Consider
$a, b \in \bar{F}$ and note that $F(a, b) \subseteq K$ contains $a+b, a-b, a b$ and $a / b\left(=a b^{-1}\right)$. By Problem 4, it suffices to show that $[F(a, b): F]<\infty$.]
Proof. For any $a, b \in \bar{F} \subseteq K$ with $b \neq 0$, we wish to show that $\{a+b, a-b, a b, a / b\} \subseteq \bar{F}$. We know by definition that $\{a+b, a-b, a b, a / b\} \subseteq F(a, b) \subseteq K$, thus by Problem 4 above it suffices to show that $[F(a, b): F]<\infty$.

Note that $F(a, b)=F(a)(b)$. Since b is algebraic over F, it is certainly algebraic over $F(a)$, hence we know that $[F(a)(b): F(a)]=[F(a, b): F(a)]$ equals the degree of the minimal polynomial for b over $F(a)$, which is finite. Similarly since a is algebraic over F we know that $[F(a): F]<\infty$. By the Tower Law we conclude that

$$
[F(a, b): F]=[F(a, b): F(a)] \cdot[F(a): F]<\infty .
$$

[This is quite a slick proof. We have shown that if $a, b \in K$ satisfy polynomial equations over F, say $f(a)=0$ and $g(b)=0$, then the elements $a+b, a-b, a b, a / b$ also satisfy polynomial equations. However, we didn't say how to find these polynomials. If you tried to construct the polynomials, you probably observed that it's not so easy. For example: We know that $\sqrt[3]{2}$ and $e^{2 \pi i / 3}$ are algebraic over \mathbb{Q} and we know their minimal polynomials. Try to compute the minimal polynomial of $\sqrt[3]{2}+e^{2 \pi i / 3}$ over \mathbb{Q}.]

Problems on Galois Theory

6. Give a short proof that $\sqrt{2}$ is an element of the field $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{R}$. [Hint: By definition, the real inverse of $\sqrt{2}+\sqrt{3}$ is also in $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. What is this inverse?]
Proof. Observe that $(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})=3-2=1 \in \mathbb{R}$. Since $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ is a subfield of \mathbb{R} we conclude that $(\sqrt{2}+\sqrt{3})^{-1}=(\sqrt{3}-\sqrt{2}) \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Finally, we get

$$
\frac{1}{2}[(\sqrt{2}+\sqrt{3})-(\sqrt{3}-\sqrt{2})]=\sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3}) .
$$

7. Let $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ be the splitting field of $x^{4}+1 \in \mathbb{Q}[x]$.
(a) Prove that $K=\mathbb{Q}(\sqrt{2}, i)$.
(b) Prove that $[K: \mathbb{Q}]=4$ and hence the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$ has order 4 .
(c) Prove that $\operatorname{Gal}(K / F) \approx V:=\mathbb{Z} /(2) \times \mathbb{Z} /(2)$, the "Klein Viergruppe".
(d) Draw and label the lattice of fields between \mathbb{Q} and K.

Proof. First suppose that $z^{4}=-1$. Taking absolute value gives $|z|^{4}=1$, hence $z=e^{i \theta}$ for some angle $\theta \in \mathbb{R}$. Since $-1=e^{i \pi}$ we obtain $e^{i 4 \theta}=e^{-i \pi}$, which implies that $4 \theta=-\pi+2 \pi k$ for any integer $k \in \mathbb{Z}$. We conclude that the roots of $x^{4}+1$ are

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(e^{i \pi / 4}, e^{i 3 \pi / 4}, e^{i 5 \pi / 4}, e^{i 7 \pi / 4}\right)=\left(\frac{1+i}{\sqrt{2}}, \frac{-1+i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}\right)
$$

hence the splitting field is $K=\mathbb{Q}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \subseteq \mathbb{C}$. To prove (a), first note that all of these roots are in $\mathbb{Q}(\sqrt{2}, i)$, hence $K \subseteq \mathbb{Q}(\sqrt{2}, i)$. Conversely, we have $\sqrt{2}=a_{1}+a_{4} \in K$ and $i=$ $\left(a_{1}+a_{2}\right) /\left(a_{1}+a_{4}\right) \in K$, hence $\mathbb{Q}(\sqrt{2}, i) \subseteq K$. We conclude that $K=\mathbb{Q}(\sqrt{2}, i)$.

To prove (b), note that the inclusions $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, i)$ are strict because $\sqrt{2}$ is not rational and i is not real. Hence the Tower Law implies that $[K: \mathbb{Q}]=[K: \mathbb{Q}(\sqrt{2})] \cdot[\mathbb{Q}(\sqrt{2}): \mathbb{Q}] \geq 2 \cdot 2=4$. On the other hand, $\{1, \sqrt{2}, i, i \sqrt{2}\}$ is clearly a spanning set for $K=\mathbb{Q}(\sqrt{2}, i)$, hence $[K: \mathbb{Q}] \leq 4$
(because every spanning set contains a basis). We conclude that $[K: \mathbb{Q}]=4$, and it follows (for general reasons, not yet proved in class) that $|\operatorname{Gal}(K / \mathbb{Q})|=4$.

What could this group be? Recall that there are only two groups of size 4 ; they are isomorphic to $\mathbb{Z} /(4)$ and $V:=\mathbb{Z} /(2) \times \mathbb{Z} /(2)$. To prove (c), we will show that $\operatorname{Gal}(K / \mathbb{Q}) \approx V$. Note that an element $\sigma \in \operatorname{Gal}(K: \mathbb{Q})$ is determined by the two values $\sigma(\sqrt{2}), \sigma(i)$, since $\sqrt{2}$ and i generate the splitting field. If we apply σ to the equations $z^{2}=2$ and $z^{2}=-1$ (for any $z \in K$) then we obtain $\sigma(z)^{2}=\sigma(2)=2$ and $\sigma(z)^{2}=\sigma(-1)=-1$, hence $\sigma(z)$ will be a root of $x^{2}-2$ (respectively, $x^{2}+1$) if and only if z is a root of $x^{2}-2$ (respectively, $x^{2}+1$). We conclude that σ is one of the four maps:

$$
\mathrm{id}=\left\{\begin{array}{c}
\sqrt{2} \mapsto \sqrt{2} \\
i \mapsto i
\end{array}\right\}, \sigma=\left\{\begin{array}{c}
\sqrt{2} \mapsto-\sqrt{2} \\
i \mapsto i
\end{array}\right\}, \tau=\left\{\begin{array}{c}
\sqrt{2} \mapsto \sqrt{2} \\
i \mapsto-i
\end{array}\right\}, \mu=\left\{\begin{array}{c}
\sqrt{2} \mapsto-\sqrt{2} \\
i \mapsto-i
\end{array}\right\}
$$

The group table is given by:

\circ	id	σ	τ	μ
id	id	σ	τ	μ
σ	σ	id	μ	τ
τ	τ	μ	id	σ
μ	μ	τ	σ	id

This can't be the group $\mathbb{Z} /(4)$ because there is no element of order 4 (in fact, every non-identity element has order 2), so it must be $\mathbb{Z} /(2) \times \mathbb{Z} /(2)$. More directly, each of σ, τ generates a group isomorphic to $\mathbb{Z} /(2)$, and then $\operatorname{Gal}(K / \mathbb{Q})=\langle\sigma\rangle \times\langle\tau\rangle \approx \mathbb{Z} /(2) \times \mathbb{Z} /(2)$.

Now to part (d). It is a bit, say, creative for me to ask you this since I haven't yet given you any theorems to this effect. It is easy to find a few intermediate fields:

But are there any more? I will return to this discussion in class.

