
Math 562 Spring 2012
Homework 4 Drew Armstrong

Problems on Rings

1. We say that an ideal I ⊆ R is prime if for all a, b ∈ R, ab ∈ I implies that a ∈ I or b ∈ I.
(a) Prove that I ⊆ R is prime if and only if R/I is an integral domain.
(b) Prove that every maximal ideal is prime.

Proof. First note that the zero element of the ring R/I is 0 + I = I and that a + I = I if and
only if a ∈ I. Now suppose that I ⊆ R is a prime ideal and consider nonzero cosets a+ I and b+ I
in R/I (i.e. consider a 6∈ I and b 6∈ I). Since I is prime this implies that ab 6∈ I, hence ab + I 6= I
and we conclude that R/I is an integral domain. Conversely, let R/I be an integral domain and
consider a, b ∈ R with ab ∈ I (i.e. consider ab+ I = I). Since (a+ I)(b+ I) = ab+ I = I and R/I
is an integral domain we conclude that either a+ I = I (i.e. a ∈ I) or b+ I = I (i.e. b ∈ I). Hence
I ⊆ R is a prime ideal.

Now let I ⊆ R be a maximal ideal. You showed on the previous homework that this implies
that R/I is a field. Since every field is an integral domain, we conclude that I is a prime ideal. �

[Note that this result is quite general; it is true for any commutative ring with 1. The concepts of “prime”
and “maximal” ideals are meant to generalize the concepts of “prime” and “irreducible” elements of a
ring. (The intuition for this comes from PIDs.) However, even though maximal always implies prime for
ideals, it is not always true that irreducible elements are prime. What’s going on here?]

2. The following two proofs are wrong. Explain why, and fix them.
(a) Let R be an integral domain and consider a principal ideal (a) ⊆ R. If a is irreducible, then

the ideal (a) is maximal, hence the ideal (a) is prime, hence the element a is prime. We
conclude that every irreducible element is prime.

(b) Let I ⊆ R be an ideal in an integral domain. If I is a prime ideal, then I = (p) for some prime
element p ∈ R. But every prime element of a domain is irreducible, hence p is irreducible
and the ideal I = (p) is maximal. We conclude that every prime ideal is maximal.

Proof. The problem is that these proofs fail when R is not a PID. So let R be a PID.

Claim 1: Every irreducible element of R is prime. Proof: Let a ∈ R be irreducible and consider
the ideal (a) ⊆ R. Let J be an ideal with (a) < J ⊆ R. Since R is a PID we can write J = (b).
Then note that (b) = R since otherwise b would be a proper divisor of a. Hence (a) ⊆ R is a
maximal ideal and by Problem 1 it is also a prime ideal. That is, given a|bc (i.e. bc ∈ (a)) it follows
that b ∈ (a) (i.e. a|b) or c ∈ (a) (i.e. a|c). We conclude that the element a ∈ R is prime.///

Claim 2: Every prime ideal of R is maximal. Proof: Let I ⊆ R be a prime ideal. Since R is a
PID we have I = (a) for some element a ∈ R, and since (a) is a prime ideal it follows that a ∈ R
is a prime element (see the above proof). Then since R is an integral domain it follows that a ∈ R
is irreducible (if you don’t remember the proof, do it now). Finally, consider an ideal J such that
(a) = I < J ⊆ R. Since R is a PID we have J = (b) for some b ∈ R and then we must have J = R
since otherwise b is a proper divisor of a. We conclude that I ⊆ R is a maximal ideal.///

�

3. Given a ring R, there exists a unique ring homomorphism ϕ : Z→ R defined by ϕ(1Z) = 1R. If
kerϕ = (n) ⊆ Z, we say the ring R has “characteristic n”.

(a) Prove that the characteristic of an integral domain is 0 or prime p ∈ Z.



(b) Prove that a field F has characteristic 0 if and only if it contains a subfield isomorphic to Q.

Proof. To prove (a), let R be an integral domain and consider the unique homomorphism ϕ : Z→ R,
which is defined defined by ϕ(1Z) = 1R. Since Z is a PID we know that kerϕ = (n) for some n.
Suppose that n has a proper factorization n = ab. In particular this means that a, b 6∈ (n) = kerϕ
so that ϕ(a), ϕ(b) 6= 0R. But since ϕ is a homomorphism we also have ϕ(a)ϕ(b) = ϕ(n) = 0R, which
contradicts the fact that R is an integral domain. We conclude that n must be zero or prime.

To prove (b), let F be a field and consider the map ϕ : Z → F defined by ϕ(1Z) = 1F . If F has
characteristic 0 then the map ϕ is injective and we can use this to define an injective homomorphism
ϕ̄ : Q ↪→ F by ϕ̄(a/b) := ϕ(a)/ϕ(b) whenever b 6= 0Z. This map is well-defined since if a/b = c/d (i.e.
ad = bc) then we obtain ϕ(a)ϕ(d) = ϕ(b)ϕ(c), hence ϕ(a)/ϕ(b) = ϕ(c)/ϕ(d). It’s a homomorphism
because ϕ̄(1Z/1Z) = ϕ(1Z)/ϕ(1Z) = 1F /1F = 1F ,
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whenever the denominators are nonzero. Finally, the map ϕ̄ is injective because ϕ̄(a/b) = ϕ̄(c/d)⇒
ϕ(a)/ϕ(b) = ϕ(c)/ϕ(d) ⇒ ϕ(a)ϕ(d) = ϕ(b)ϕ(c) ⇒ ϕ(ad) = ϕ(bc), and then the injectivity of
ϕ implies ad = bc ⇒ a/d = b/c. Hence F contains a subfield isomorphic to Q; namely, the
homomorphic image ϕ̄(Q) ⊆ F .

Conversely, suppose that K ⊆ F is a subfield isomorphic to Q. Since ϕ maps 1Z to 1F ∈ K ⊆ F
it follows that ϕ maps Z into K. But K is a field of characteristic 0 (why?). Hence kerϕ = (0) and
we conclude that F has characteristic 0. �

[In general, given any field F we define its prime subfield F ′ ⊆ F as the intersection of all subfields —
equivalently, F ′ is the subfield generated by 1F . It’s a general fact that the prime subfield is isomorphic
to either Q or Z/(p), depending on the characteristic of F . You just proved the characteristic 0 case.]

Problems on Fields

4. Finite Implies Algebraic. Consider a field extension F ⊆ K. We say that a ∈ K is algebraic
over F if f(a) = 0 for some (monic) polynomial f(x) ∈ F [x]. We say that the extension F ⊆ K
is algebraic if every element of K is algebraic over F . Prove that if [K : F ] < ∞ then F ⊆ K is
algebraic. [Hint: Consider the powers 1, a, a2, . . . of some a ∈ K. Are they independent over F?]

Proof. Let F ⊆ K be an extension of fields and suppose that [K : F ] = n < ∞. That is, K
is a vector space of dimension n over F . Let a ∈ K be any nonzero element and consider the set
{1, a, . . . , an} ⊆ K. If this set contains any repetition, say aj = ak, then a is a root of the polynomial
f(x) = xj − xk ∈ F [x]. Otherwise the set {1, a, . . . , an} contains n + 1 distinct elements. Since K
has dimension n we know that any set of > n elements must be linearly dependent. Hence there
exist c0, . . . , cn ∈ F such that

c0 + c1a+ c2a
2 + · · ·+ cna

n = 0.

We conclude that a is a root of the polynomial f(x) = c0 + c1x+ · · · cnxn ∈ F [x]. �

5. Given a field extension F ⊆ K, let F ⊆ F ⊆ K denote the subset of elements that are algebraic
over F . This is called the algebraic closure of F in K. Prove that F is a field. [Hint: Consider



a, b ∈ F and note that F (a, b) ⊆ K contains a + b, a − b, ab and a/b (= ab−1). By Problem 4, it
suffices to show that [F (a, b) : F ] <∞.]

Proof. For any a, b ∈ F ⊆ K with b 6= 0, we wish to show that {a+ b, a− b, ab, a/b} ⊆ F . We know
by definition that {a+ b, a− b, ab, a/b} ⊆ F (a, b) ⊆ K, thus by Problem 4 above it suffices to show
that [F (a, b) : F ] <∞.

Note that F (a, b) = F (a)(b). Since b is algebraic over F , it is certainly algebraic over F (a), hence
we know that [F (a)(b) : F (a)] = [F (a, b) : F (a)] equals the degree of the minimal polynomial for b
over F (a), which is finite. Similarly since a is algebraic over F we know that [F (a) : F ] < ∞. By
the Tower Law we conclude that

[F (a, b) : F ] = [F (a, b) : F (a)] · [F (a) : F ] <∞.

�

[This is quite a slick proof. We have shown that if a, b ∈ K satisfy polynomial equations over F , say
f(a) = 0 and g(b) = 0, then the elements a+b, a−b, ab, a/b also satisfy polynomial equations. However,
we didn’t say how to find these polynomials. If you tried to construct the polynomials, you probably
observed that it’s not so easy. For example: We know that 3

√
2 and e2πi/3 are algebraic over Q and we

know their minimal polynomials. Try to compute the minimal polynomial of 3
√

2 + e2πi/3 over Q.]

Problems on Galois Theory
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�

7. Let Q ⊆ K ⊆ C be the splitting field of x4 + 1 ∈ Q[x].
(a) Prove that K = Q(

√
2, i).

(b) Prove that [K : Q] = 4 and hence the Galois group Gal(K/Q) has order 4.
(c) Prove that Gal(K/F ) ≈ V := Z/(2)× Z/(2), the “Klein Viergruppe”.
(d) Draw and label the lattice of fields between Q and K.

Proof. First suppose that z4 = −1. Taking absolute value gives |z|4 = 1, hence z = eiθ for some
angle θ ∈ R. Since −1 = eiπ we obtain ei4θ = e−iπ, which implies that 4θ = −π + 2πk for any
integer k ∈ Z. We conclude that the roots of x4 + 1 are

(a1, a2, a3, a4) = (eiπ/4, ei3π/4, ei5π/4, ei7π/4) =
(

1 + i√
2
,
−1 + i√

2
,
−1− i√

2
,
1− i√

2

)
hence the splitting field is K = Q(a1, a2, a3, a4) ⊆ C. To prove (a), first note that all of these
roots are in Q(

√
2, i), hence K ⊆ Q(

√
2, i). Conversely, we have

√
2 = a1 + a4 ∈ K and i =

(a1 + a2)/(a1 + a4) ∈ K, hence Q(
√

2, i) ⊆ K. We conclude that K = Q(
√

2, i).
To prove (b), note that the inclusions Q ⊆ Q(

√
2) ⊆ Q(

√
2, i) are strict because

√
2 is not rational

and i is not real. Hence the Tower Law implies that [K : Q] = [K : Q(
√

2)] · [Q(
√

2) : Q] ≥ 2 · 2 = 4.
On the other hand, {1,

√
2, i, i

√
2} is clearly a spanning set for K = Q(

√
2, i), hence [K : Q] ≤ 4



(because every spanning set contains a basis). We conclude that [K : Q] = 4, and it follows (for
general reasons, not yet proved in class) that |Gal(K/Q)| = 4.

What could this group be? Recall that there are only two groups of size 4; they are isomorphic
to Z/(4) and V := Z/(2) × Z/(2). To prove (c), we will show that Gal(K/Q) ≈ V . Note that an
element σ ∈ Gal(K : Q) is determined by the two values σ(

√
2), σ(i), since

√
2 and i generate the

splitting field. If we apply σ to the equations z2 = 2 and z2 = −1 (for any z ∈ K) then we obtain
σ(z)2 = σ(2) = 2 and σ(z)2 = σ(−1) = −1, hence σ(z) will be a root of x2− 2 (respectively, x2 + 1)
if and only if z is a root of x2− 2 (respectively, x2 + 1). We conclude that σ is one of the four maps:

id =
{ √

2 7→
√

2
i 7→ i

}
, σ =

{ √
2 7→ −

√
2

i 7→ i

}
, τ =

{ √
2 7→

√
2

i 7→ −i

}
, µ =

{ √
2 7→ −

√
2

i 7→ −i

}
.

The group table is given by:
◦ id σ τ µ
id id σ τ µ
σ σ id µ τ
τ τ µ id σ
µ µ τ σ id

This can’t be the group Z/(4) because there is no element of order 4 (in fact, every non-identity
element has order 2), so it must be Z/(2) × Z/(2). More directly, each of σ,τ generates a group
isomorphic to Z/(2), and then Gal(K/Q) = 〈σ〉 × 〈τ〉 ≈ Z/(2)× Z/(2).

Now to part (d). It is a bit, say, creative for me to ask you this since I haven’t yet given you any
theorems to this effect. It is easy to find a few intermediate fields:

But are there any more? I will return to this discussion in class.
�


