Problems on Rings

1. We say that an ideal $I \subseteq R$ is prime if for all $a, b \in R, a b \in I$ implies that $a \in I$ or $b \in I$.
(a) Prove that $I \subseteq R$ is prime if and only if R / I is an integral domain.
(b) Prove that every maximal ideal is prime.
2. The following two proofs are wrong. Explain why, and fix them.
(a) Let R be an integral domain and consider a principal ideal $(a) \subseteq R$. If a is irreducible, then the ideal (a) is maximal, hence the ideal (a) is prime, hence the element a is prime. We conclude that every irreducible element is prime.
(b) Let $I \subseteq R$ be an ideal in an integral domain. If I is a prime ideal, then $I=(p)$ for some prime element $p \in R$. But every prime element of a domain is irreducible, hence p is irreducible and the ideal $I=(p)$ is maximal. We conclude that every prime ideal is maximal.
3. Given a ring R, there exists a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$ defined by $\varphi\left(1_{\mathbb{Z}}\right)=1_{R}$. If $\operatorname{ker} \varphi=(n) \subseteq \mathbb{Z}$, we say the ring R has "characteristic n ".
(a) Prove that the characteristic of an integral domain is 0 or prime $p \in \mathbb{Z}$.
(b) Prove that a field F has characteristic 0 if and only if it contains a subfield isomorphic to \mathbb{Q}.

Problems on Fields

4. Finite Implies Algebraic. Consider a field extension $F \subseteq K$. We say that $a \in K$ is algebraic over F if $f(a)=0$ for some (monic) polynomial $f(x) \in F[x]$. We say that the extension $F \subseteq K$ is algebraic if every element of K is algebraic over F. Prove that if $[K: F]<\infty$ then $F \subseteq K$ is algebraic. [Hint: Consider the powers $1, \alpha, \alpha^{2}, \ldots$ of some $\alpha \in K$. Are they independent over F ?]
5. Given a field extension $F \subseteq K$, let $F \subseteq \bar{F} \subseteq K$ denote the subset of elements that are algebraic over F. This is called the algebraic closure of F in K. Prove that \bar{F} is a field. [Hint: Consider $a, b \in \bar{F}$ and note that $F(a, b) \subseteq K$ contains $a+b, a-b, a b$ and $a / b\left(=a b^{-1}\right)$. By Problem 4, it suffices to show that $[F(a, b): F]<\infty$.]

Problems on Galois Theory

6. Give a short proof that $\sqrt{2}$ is an element of the field $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{R}$. [Hint: By definition, the real inverse of $\sqrt{2}+\sqrt{3}$ is also in $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. What is this inverse?]
7. Let $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ be the splitting field of $x^{4}+1 \in \mathbb{Q}[x]$.
(a) Prove that $K=\mathbb{Q}(\sqrt{2}, i)$.
(b) Prove that $[K: \mathbb{Q}]=4$ and hence the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ has order 4 .
(c) Prove that $\operatorname{Gal}(K / F) \approx V:=\mathbb{Z} /(2) \times \mathbb{Z} /(2)$, the "Klein Viergruppe".
(d) Draw and label the lattice of fields between \mathbb{Q} and K.
