
Math 562 Spring 2012
Homework 3 Drew Armstrong

Problems on Number Theory

The first problem substitutes for the proof of FLT(3), which was too hard.

1. Prove that the equation y3 = x2 + 2 has exactly two integer solutions: (x, y) = (±5, 3).
(a) If y3 = x2 + 2 is an integer solution, show that x is odd. [Hint: Reduce mod 4.]
(b) If x is odd, show that x+

√
−2 and x−

√
−2 are coprime in Z[

√
−2]. [Hint: If α is a common

divisor then α divides the sum 2x and the difference 2
√
−2. Taking norms gives N(α)|4x2

and N(α)|8, hence N(α)|4. Show that α must be ±1.]
(c) If y3 = x2 + 2 is an integer solution then we have y3 = (x +

√
−2)(x −

√
−2). Use part

(b) and the fact that Z[
√
−2] is a UFD (proved on the last homework) to conclude that

x+
√
−2 = (a+ b

√
−2)3 for some a, b ∈ Z. [Hint: The units of Z[

√
−2] are ±1.]

(d) If y3 = x2+2 and (x+
√
−2) = (a+b

√
−2)3, show that (a, b) = (±1, 1), hence (x, y) = (±5, 3).

Proof. Suppose that y3 = x2 + 2 with x, y ∈ Z. We wish to show that (x, y) = (±5, 3). If x is even
then x2 = 0 mod 4. But then y3 = 2 mod 4, which has no solution, hence x is odd.

Next suppose that α = a+
√
−2 is a common divisor of x+

√
−2 and x−

√
−2. Since the norm is

multiplicative this implies that N(α) divides N(x±
√
−2) = x2 + 2 as integers. We also know that

α divides (x+
√
−2)− (x−

√
−2) = 2

√
−2 and hence N(α) divides N(2

√
−2) = 8 as integers. Since

We conclude that N(α) = a2 + 2b2 = 1 and hence α = ±. That is, x±
√
−2 are coprime elements

of Z[
√
−2].

We can factor y3 = (x +
√
−2)(x −

√
−2) in the ring Z[

√
−2]. Note that the prime factors

of y3 come in threes. Then since Z[
√
−2] is a UFD and since x ±

√
−2 are coprime, the prime

factors of x +
√
−2 must also come in threes. In other words, we have x +

√
−2 = u(a + b

√
−2)3

where u ∈ Z[
√
−2] is a unit and a, b ∈ Z. Since the units of Z[

√
−2] are ±1, we can just say that

x+
√
−2 = (a+ b

√
−2)3 for some a, b ∈ Z.

Thus we have

x+
√
−2 = a3 + 3a2b

√
−2 + 3a(b

√
−2)2 + (b

√
−2)3 = (a3 − 6ab) + (3a2b− 2b)

√
−2.

Comparing coefficients gives x = a3−6ab = a(a2−6b) and 1 = 3a2b−2b3 = b(3a2−2b2). The second
equation requires (a, b) = (±1, 1), which then implies that x = ±5. Finally we have y3 = x2 +2 = 27
which implies y = 3. We conclude that (x, y) = (±5, 3). �

[This result is attributed to Euler (1770), and explains why number theorists care about UFDs. I promise
that I won’t make you do any more Diophantine equations.]

2. Recall that the product of ideals I, J ⊆ R is given by IJ := ({uv : u ∈ I, v ∈ J}). Given the non-
principal ideal A = (2) + (1 +

√
−5) = (2, 1 +

√
−5) ⊆ Z[

√
−5] and its conjugate Ā = (2, 1−

√
−5),

prove that AĀ = (2) (which is principal).

Proof. First note that 2 ∈ AĀ because 2 = 6 − 4 = (1 +
√
−5)(1 −

√
−5) − 2 · 2. Since AĀ is an

ideal this implies (2) ⊆ AĀ. Conversely, note that the general element of AĀ look like

(2a+ (1 +
√
−5)b)(2c+ (1−

√
−5)d) = 4ac+ 2(1−

√
−5)ad+ 2(1 +

√
−5)bc+ 6bd

= 2[(2ac+ ad+ bc+ 3bd) + (bc− ad)
√
−5].

Since this is divisible by 2 in Z[
√
−5] we get AĀ ⊆ (2). �



[It’s a general fact that for any ideal I ⊆ Z[
√
−5] we have IĪ = (n) for some n ∈ Z and this is exactly

what’s needed to prove that Z[
√
−5] has unique factorization of ideals.]

Problems on Polynomials

3. Consider the ring of polynomials R[x] with coefficients in an integral domain R.
(a) Prove that R[x] is an integral domain.
(b) Prove that for all f, g ∈ R[x] with fg 6= 0 we have deg(fg) = deg(f) + deg(g). If you want

the statement to remain true for fg = 0 how should you define deg(0)?
(c) We can identify R ⊆ R[x] as the constant polynomials. Prove that R[x]× = R×.

Proof. Note that a polynomial in R[x] is zero if and only if its leading coefficient is zero. Consider
f(x) 6= 0 and g(x) 6= 0 in R[x] with leading coefficients a 6= 0 and b 6= 0, respectively. Then
f(x)g(x) has leading coefficient ab 6= 0, hence f(x)g(x) 6= 0. We conclude that R[x] is an integral
domain. Next suppose that f(x) and g(x) have leading terms axm and bxn, respectively. Then the
leading term of f(x)g(x) is axmbxn = abxm+n, which is nonzero since a, b 6= 0. We conclude that
deg(fg) = m + n = deg(f) + deg(g). What if fg = 0? Without loss of generality this implies that
f = 0. How could we define deg(0) so that the equation deg(0) = deg(0) + deg(g) is true for all
g? Answer: deg(0) = −∞. Or you could just avoid defining deg(0) at all. Finally, we will show
that R[x]× = R×. First note that R× ⊆ R[x]× since if ab = 1 in R, then ab = 1 in R[x] also.
Conversely, suppose that f ∈ R[x]× so there exists g ∈ R[x] with fg = 1. Applying the degree map
gives deg(fg) = deg(f) + deg(g) = deg(1) = 0. Since deg(f),deg(g) are non-negative integers this
implies deg(f) = deg(g) = 0. In other words, f, g ∈ R×. Hence R[x]× ⊆ R×. �

4. If R is not an integral domain then (R[x])× will be bigger than R×. In particular, if a ∈ R is
nilpotent (say an = 0), prove that 1 + ax ∈ R[x] is a unit. [Hint: You can write 1 = 1 + anxn.] Find
the inverse of 1 + 3x in Z/(27)[x].

Proof. We have 1 = 1 + anxn = (1 + ax)(1− ax+ a2x2− · · ·+ (−1)n−1an−1xn−1). Hence the inverse
of 1 + 3x in Z/(27)[x] is 1− 3x+ 9x2. (Check: (1 + 3x)(1− 3x+ 9x2) = 1 + 27x3 = 1.) �

[The general theorem says that f(x) =
∑
aix

i ∈ R[x] is a unit if and only if a0 ∈ R× and ai is nilpotent
for all i ≥ 1. Give it a try if you want.]

Problems on Fields

5. We say that an ideal I ⊆ R is maximal if there does not exist an ideal J ⊆ R with I < J < R.
Prove that I ⊆ R is maximal if and only if R/I is a field. Describe the maximal ideals of a PID.

Proof. I will give two proofs. First the fancy proof. By the correspondence theorem there is a 1-1
correspondence between nontrivial ideals of R/I and ideals strictly between I and R. Note that
R/I is a field if and only if it has no nontrivial ideals (proved on the first homework) if and only if
there are no ideals strictly between I and R if and only if I is maximal.

Now an explicit proof. Let I ⊆ R be maximal and consider an element a+I ∈ R/I. If a+I 6= 0+I
then a 6∈ I. But then the ideal (a) + I is strictly larger than I. By maximality of I this implies that
(a) + I = R. Since 1 ∈ R = (a) + I, there exist b ∈ R and u ∈ I such that 1 = ab + u. But then
(a+ I)(b+ I) = ab+ I = 1− u+ I = 1 + I. Hence (a+ I)−1 = (b+ I) and R/I is a field.

Conversely, suppose that R/I is a field and let ϕ : R→ R/I be the natural map. If J ⊆ R is an
ideal with I < J then ϕ(J) is a nonzero ideal of R/I. (Proof: Consider (u+ I), (v + I) ∈ ϕ(J) and
(a + I) ∈ R/I. Then we have (u + I) + (a + I)(v + I) = (u + av) + I ∈ ϕ(J) because u + av ∈ J .
The ideal ϕ(J) is nonzero because it contains ϕ(a) for some a ∈ J but not in I = kerϕ.) But
you showed on the first homework that the only nonzero ideal of a field is the field itself, hence



ϕ(J) = R/I. Now since 1 + I ∈ ϕ(J) = R/I, there exists a ∈ J such that ϕ(a) = 1 + I, and then
ϕ(1 − a) = ϕ(1)− ϕ(a) = (1 + I) − (1 + I) = 0 + I implies that 1 − a ∈ kerϕ = I < J . Since J is
an ideal this implies 1 = a+ (1− a) ∈ J and hence J = R (you showed on the first homework that
any ideal containing a unit is the full ring). We conclude that I is maximal.

In a PID, note that (a) ⊆ R is maximal if and only if the element a ∈ R is irreducible. And since
a PID is a domain, this happens if and only if a ∈ R is prime. �

6. Let γ ∈ C be a root of the polynomial f(x) = x3 − 2.
(a) Prove that f(x) is irreducible over Q and hence Q[x]/(f) ≈ Q(γ) is a field.
(b) Compute the inverse of 1+2γ+γ2 in Q(γ). [Hint: Apply the Euclidean algorithm to express

1 as a linear combination of 1 + 2x+ x2 and x3 − 2 with coefficients in Q[x]. Plug in γ.]

Proof. If x3 − 2 is reducible then it has a factor of degree 1 and by the factor theorem this implies
that x3 − 2 has a root in Q, say δ3 − 2 = 0 for δ ∈ Q. Write δ = a/b with a, b ∈ Z coprime and
note that δ3 = 2 implies a3 = 2b3. This implies that a3 and hence a is even, say a = 2k. But then
2b3 = a3 = 8k3 implies b3 = 4k3, hence b is even. This contradicts our assumption that a, b are
coprime. Hence x3 − 2 is irreducible over Q. By Problem 5 this implies that Q[x]/(x3 − 2) ≈ Q(γ)
is a field.

To compute the inverse of 1 + 2γ + γ2 ∈ Q(γ) we will express 1 as a combination of x2 + x + 1
and x3 − 2 in Q[x]. First divide x3 − 2 by x2 + 2x+ 1 to get (x3 − 2) = (x− 2)(x2 + 2x+ 1) + 3x.
Then divide x2 + 2x+ 1 by 3x to get (x2 + 2x+ 1) = (x/3 + 2/3)(3x) + 1. Finally, back-substitute:

1 = (x2 + 2x+ 1)− (x/3 + 2/3)(3x)

= (x2 + 2x+ 1)− (x/3 + 2/3)[(x3 − 2)− (x− 2)(x2 + 2x+ 1)]

= [1 + (x/3 + 2/3)(x− 2)](x2 + 2x+ 1)− (x/3 + 2/3)(x3 − 2)

= (x2/3− 1/3)(x2 + 2x+ 1)− (x/3 + 2/3)(x3 − 2).

Plugging in x 7→ γ gives 1 = (γ2/3− 1/3)(γ2 + 2γ + 1), hence (1 + 2γ + γ2)−1 = γ2/3− 1/3.
One could follow exactly the same procedure to compute (a+ bγ + cγ2)−1 for general a, b, c ∈ Q.

I did this on my computer and got

(a+ bγ + cγ2)−1 =
(
a2 − 2bc

∆

)
+
(

2c2 − ab
∆

)
γ +

(
b2 − ac

∆

)
γ2,

where ∆ = a3 + 2b3 + 4c3 − 6abc. Check that (a, b, c) = (1, 2, 1) gives the right answer. (If you
want to do it by hand, it’s probably easier to expand (a+ bγ + cγ)(X + Y γ + Zγ2) = 1 + 0γ + 0γ2

and compare coefficients of γ to get a 3 × 3 linear system in X,Y, Z. Then solve using Gaussian
elimination.) �

[Note that the three (complex) roots of x3 − 2 are indistinguishable over Q, so I chose not to say
γ = 3
√

2 ∈ R. The field Q doesn’t really know what γ “is”; it only knows that γ3 − 2 = 0.]


