Math 562 Spring 2012
Homework 3 Drew Armstrong

Problems on Number Theory
The first problem substitutes for the proof of FLT(3), which was too hard.

1. Prove that the equation 3® = 22 + 2 has exactly two integer solutions: (z,y) = (&5, 3).

(a) If y3 = 22 + 2 is an integer solution, show that x is odd. [Hint: Reduce mod 4.]

(b) If z is odd, show that z ++/—2 and x — /-2 are coprime in Z[y/—2|. [Hint: If o is a common
divisor then « divides the sum 2z and the difference 2v/—2. Taking norms gives N (o)|42>
and N(«)|8, hence N(«)|4. Show that o must be £1.]

(c) If y3 = 2% 4+ 2 is an integer solution then we have y3 = (x + v/~2)(x — v/—2). Use part
(b) and the fact that Z[v/—2] is a UFD (proved on the last homework) to conclude that
T+ r = (a + by/—2)3 for some a,b € Z. [Hint: The units of Z[/—2] are £1.]

(d) Ify? = 2242 and (z++v/—2) = (a+b\/7) show that (a,b) = (41, 1), hence (z,y) = (£5, 3).

Proof. Suppose that y3 = 22 + 2 with 2,y € Z. We wish to show that (z,y) = (£5,3). If x is even
then 22 = 0 mod 4. But then y® = 2 mod 4, which has no solution, hence z is odd.

Next suppose that a = a ++/—2 is a common divisor of z ++/—2 and z — v/—2. Since the norm is
multiplicative this implies that N(a) divides N(z 4+ /—2) = 22 + 2 as integers. We also know that
a divides (z 4+ v/—2) — (z —v/—2) = 2¢/=2 and hence N(«) divides N(2y/—2) = 8 as integers. Since

We conclude that N(a) = a?+2b* = 1 and hence a = 4. That is, 4 \/—2 are coprime elements
of Z[v/=2].

We can factor y3 = (z + v/—2)(z — v/—2) in the ring Z[\/—2]. Note that the prime factors
of 3> come in threes. Then since Z[y/—2] is a UFD and since x + /=2 are coprime, the prime
factors of = + v/—2 must also come in threes. In other words, we have x + v/—2 = u(a + by/—2)?
where u E Z[\/—=2] is a unit and a,b € Z. Since the units of Z[\/—2] are +1, we can just say that

T+ /=2 = (a+by/—-2)3 for some a,b € Z.

Thus we have
T+ V=2 =a®+ 3a®bv/=2 + 3a(bv/—2)* + (bv/—2)3 = (a® — 6ab) + (3a*b — 2b)v/—2.

Comparing coefficients gives x = a® —6ab = a(a?—6b) and 1 = 3a%b—2b® = b(3a? —2b?). The second
equation requires (a,b) = (&1, 1), which then implies that = 4-5. Finally we have y3 = 22 +2 = 27
which implies y = 3. We conclude that (z,y) = (£5, 3). O

[This result is attributed to Euler (1770), and explains why number theorists care about UFDs. | promise
that | won't make you do any more Diophantine equations.]

2. Recall that the product of ideals I, J C R is given by I.J := ({uv : u € I,v € J}). Given the non-
principal ideal A = (2) + (1++/—5) = (2,1 ++/—5) C Z[/—5] and its conjugate A = (2,1 —+/-5),
prove that AA = (2) (which is principal).

Proof. First note that 2 € AA because 2 = 6 —4 = (1 +/=5)(1 — /=5) —2- 2. Since AA is an
ideal this implies (2) C AA. Conversely, note that the general element of AA look like

(2a+ (1++v=5)b)(2c+ (1 — vV—=5)d) = 4ac+ 2(1 — vV=5)ad + 2(1 + v/—5)bc + 6bd
= 2[(2ac + ad + bc + 3bd) + (bc — ad)v/—5].
Since this is divisible by 2 in Z[\/=5] we get AA C (2). O



[It's a general fact that for any ideal I C Z[/—5] we have II = (n) for some n € Z and this is exactly
what's needed to prove that Z[\/—5] has unique factorization of ideals.]

Problems on Polynomials

3. Consider the ring of polynomials R[z] with coefficients in an integral domain R.

(a) Prove that R[z] is an integral domain.

(b) Prove that for all f,g € R[x] with fg # 0 we have deg(fg) = deg(f) + deg(g). If you want
the statement to remain true for fg = 0 how should you define deg(0)?

(c) We can identify R C R[z] as the constant polynomials. Prove that R[x]* = R*.

Proof. Note that a polynomial in R[z] is zero if and only if its leading coefficient is zero. Consider
f(z) # 0 and g(z) # 0 in R[z] with leading coefficients a # 0 and b # 0, respectively. Then
f(z)g(x) has leading coefficient ab # 0, hence f(x)g(z) # 0. We conclude that R[z] is an integral
domain. Next suppose that f(z) and g(z) have leading terms ax™ and bx™, respectively. Then the
leading term of f(x)g(x) is ax™bz" = abx™*", which is nonzero since a,b # 0. We conclude that
deg(fg) = m +n = deg(f) + deg(g). What if fg = 0?7 Without loss of generality this implies that
f = 0. How could we define deg(0) so that the equation deg(0) = deg(0) + deg(g) is true for all
g? Answer: deg(0) = —oo. Or you could just avoid defining deg(0) at all. Finally, we will show
that R[z]* = R*. First note that R* C R[x]* since if ab = 1 in R, then ab = 1 in R[z] also.
Conversely, suppose that f € R[z]* so there exists g € R[z] with fg = 1. Applying the degree map
gives deg(fg) = deg(f) + deg(g) = deg(1) = 0. Since deg(f),deg(g) are non-negative integers this
implies deg(f) = deg(g) = 0. In other words, f,g € R*. Hence R[z]* C R*. O

4. If R is not an integral domain then (R[z])* will be bigger than R*. In particular, if a € R is
nilpotent (say a” = 0), prove that 1 4+ ax € R[z] is a unit. [Hint: You can write 1 = 1+ a"z".] Find
the inverse of 1+ 3z in Z/(27)[x].

Proof. We have 1 = 1+a"2" = (1+az)(1 —ax +a*z? — -+ (—1)""1a"12"~1). Hence the inverse
of 143z in Z/(27)[z] is 1 — 3z + 92%. (Check: (1+ 3z)(1 — 3z + 922) =1+ 2723 =1.) O

[The general theorem says that f(z) = Y_ a;2* € R[x] is a unit if and only if ag € R* and a; is nilpotent
for all i > 1. Give it a try if you want.]

Problems on Fields

5. We say that an ideal I C R is maximal if there does not exist an ideal J C R with [ < J < R.
Prove that I C R is maximal if and only if R/I is a field. Describe the maximal ideals of a PID.

Proof. 1 will give two proofs. First the fancy proof. By the correspondence theorem there is a 1-1
correspondence between nontrivial ideals of R/I and ideals strictly between I and R. Note that
R/I is a field if and only if it has no nontrivial ideals (proved on the first homework) if and only if
there are no ideals strictly between I and R if and only if I is maximal.

Now an explicit proof. Let I C R be maximal and consider an element a+1 € R/I. Ifa+1 # 0+1
then a ¢ I. But then the ideal (a) 4 I is strictly larger than I. By maximality of I this implies that
(a) +I = R. Since 1 € R = (a) + I, there exist b € R and u € I such that 1 = ab + u. But then
(a+D)(b+1)=ab+I1=1—-u+I=1+1. Hence (a+ 1)~ = (b+1I) and R/I is a field.

Conversely, suppose that R/I is a field and let ¢ : R — R/I be the natural map. If J C R is an
ideal with I < J then ¢(J) is a nonzero ideal of R/I. (Proof: Consider (u+I),(v+ 1) € ¢(J) and
(a+1I)€ R/I. Then we have (u+ 1)+ (a+ I)(v+I) = (u+ av) + I € ¢(J) because u + av € J.
The ideal ¢(J) is nonzero because it contains ¢(a) for some a € J but not in I = kerp.) But
you showed on the first homework that the only nonzero ideal of a field is the field itself, hence



©(J) = R/I. Now since 1 + I € ¢(J) = R/I, there exists a € J such that ¢(a) =1+ I, and then
(1 —a)=¢(1)—¢la)=1+1)—(14+1)=0+1T implies that 1 —a € kerp =1 < J. Since J is
an ideal this implies 1 = a+ (1 —a) € J and hence J = R (you showed on the first homework that
any ideal containing a unit is the full ring). We conclude that I is maximal.

In a PID, note that (a) C R is maximal if and only if the element a € R is irreducible. And since
a PID is a domain, this happens if and only if a € R is prime. O

6. Let v € C be a root of the polynomial f(z) = 23 — 2.
(a) Prove that f(z) is irreducible over Q and hence Q[z]/(f) ~ Q(v) is a field.
(b) Compute the inverse of 1+2v++2 in Q(v). [Hint: Apply the Euclidean algorithm to express
1 as a linear combination of 1+ 2z + 22 and 2% — 2 with coefficients in Q[z]. Plug in .]

Proof. If 23 — 2 is reducible then it has a factor of degree 1 and by the factor theorem this implies
that 23 — 2 has a root in Q, say 6% —2 = 0 for § € Q. Write § = a/b with a,b € Z coprime and
note that 6% = 2 implies a® = 203. This implies that a® and hence a is even, say a = 2k. But then
203 = @® = 8k3 implies b> = 4k3, hence b is even. This contradicts our assumption that a,b are
coprime. Hence 2% — 2 is irreducible over Q. By Problem 5 this implies that Q[z]/(z% — 2) ~ Q(v)
is a field.

To compute the inverse of 1 + 2y +~? € Q(vy) we will express 1 as a combination of 22 + z + 1
and 2% — 2 in Q[z]. First divide 23 — 2 by 22 + 22 + 1 to get (2® — 2) = (v — 2)(z? + 22 + 1) + 3.
Then divide 22 + 22 + 1 by 3z to get (22 + 2z + 1) = (2/3 +2/3)(3x) + 1. Finally, back-substitute:

1= (2? +2x+1) — (/3 +2/3)(3x)
= (24 224+1) — (2/3+2/3)[(z® —2) — (z — 2)(2? + 22 + 1)]
=1+ (2/3+2/3)(x —2)](x* + 2z + 1) — (2/3 +2/3)(z* — 2)
= (2%/3-1/3)(z? + 22+ 1) — (/3 +2/3)(z> - 2).

Plugging in x — 7 gives 1 = (v2/3 — 1/3)(v? + 27y + 1), hence (1 + 2y +~2)"! =42/3 - 1/3.
One could follow exactly the same procedure to compute (a + by + cy?)~! for general a,b,c € Q.
I did this on my computer and got

_ a? — 2bc 2¢2 — ab b2 — ac
(a+b’Y+C’YQ)1:<A>+<A>V+< A >’72,

where A = a® 4 2b3 + 4¢® — 6abe. Check that (a,b,c) = (1,2,1) gives the right answer. (If you
want to do it by hand, it’s probably easier to expand (a + by + ¢7)(X + Yy + Z~42) = 1 + 0y + 042
and compare coefficients of v to get a 3 x 3 linear system in X,Y,Z. Then solve using Gaussian
elimination.) O

[Note that the three (complex) roots of x3 — 2 are indistinguishable over @, so | chose not to say



