Problems on Number Theory

The first problem substitutes for the proof of FLT(3), which was too hard.

1. Prove that the equation $y^{3}=x^{2}+2$ has exactly two integer solutions: $(x, y)=(\pm 5,3)$.
(a) If $y^{3}=x^{2}+2$ is an integer solution, show that x is odd. [Hint: Reduce mod 4.]
(b) If x is odd, show that $x+\sqrt{-2}$ and $x-\sqrt{-2}$ are coprime in $\mathbb{Z}[\sqrt{-2}]$. [Hint: If α is a common divisor then α divides the sum $2 x$ and the difference $2 \sqrt{-2}$. Taking norms gives $N(\alpha) \mid 4 x^{2}$ and $N(\alpha) \mid 8$, hence $N(\alpha) \mid 4$. Show that α must be ± 1.]
(c) If $y^{3}=x^{2}+2$ is an integer solution then we have $y^{3}=(x+\sqrt{-2})(x-\sqrt{-2})$. Use part (b) and the fact that $\mathbb{Z}[\sqrt{-2}]$ is a UFD (proved on the last homework) to conclude that $x+\sqrt{-2}=(a+b \sqrt{-2})^{3}$ for some $a, b \in \mathbb{Z}$. [Hint: The units of $\mathbb{Z}[\sqrt{-2}]$ are ± 1.]
(d) If $y^{3}=x^{2}+2$ and $(x+\sqrt{-2})=(a+b \sqrt{-2})^{3}$, show that $(a, b)=(\pm 1,1)$, hence $(x, y)=(\pm 5,3)$.

Proof. Suppose that $y^{3}=x^{2}+2$ with $x, y \in \mathbb{Z}$. We wish to show that $(x, y)=(\pm 5,3)$. If x is even then $x^{2}=0 \bmod 4$. But then $y^{3}=2 \bmod 4$, which has no solution, hence x is odd.

Next suppose that $\alpha=a+\sqrt{-2}$ is a common divisor of $x+\sqrt{-2}$ and $x-\sqrt{-2}$. Since the norm is multiplicative this implies that $N(\alpha)$ divides $N(x \pm \sqrt{-2})=x^{2}+2$ as integers. We also know that α divides $(x+\sqrt{-2})-(x-\sqrt{-2})=2 \sqrt{-2}$ and hence $N(\alpha)$ divides $N(2 \sqrt{-2})=8$ as integers. Since

We conclude that $N(\alpha)=a^{2}+2 b^{2}=1$ and hence $\alpha= \pm$. That is, $x \pm \sqrt{-2}$ are coprime elements of $\mathbb{Z}[\sqrt{-2}]$.

We can factor $y^{3}=(x+\sqrt{-2})(x-\sqrt{-2})$ in the ring $\mathbb{Z}[\sqrt{-2}]$. Note that the prime factors of y^{3} come in threes. Then since $\mathbb{Z}[\sqrt{-2}]$ is a UFD and since $x \pm \sqrt{-2}$ are coprime, the prime factors of $x+\sqrt{-2}$ must also come in threes. In other words, we have $x+\sqrt{-2}=u(a+b \sqrt{-2})^{3}$ where $u \in \mathbb{Z}[\sqrt{-2}]$ is a unit and $a, b \in \mathbb{Z}$. Since the units of $\mathbb{Z}[\sqrt{-2}]$ are ± 1, we can just say that $x+\sqrt{-2}=(a+b \sqrt{-2})^{3}$ for some $a, b \in \mathbb{Z}$.

Thus we have

$$
x+\sqrt{-2}=a^{3}+3 a^{2} b \sqrt{-2}+3 a(b \sqrt{-2})^{2}+(b \sqrt{-2})^{3}=\left(a^{3}-6 a b\right)+\left(3 a^{2} b-2 b\right) \sqrt{-2} .
$$

Comparing coefficients gives $x=a^{3}-6 a b=a\left(a^{2}-6 b\right)$ and $1=3 a^{2} b-2 b^{3}=b\left(3 a^{2}-2 b^{2}\right)$. The second equation requires $(a, b)=(\pm 1,1)$, which then implies that $x= \pm 5$. Finally we have $y^{3}=x^{2}+2=27$ which implies $y=3$. We conclude that $(x, y)=(\pm 5,3)$.
[This result is attributed to Euler (1770), and explains why number theorists care about UFDs. I promise that I won't make you do any more Diophantine equations.]
2. Recall that the product of ideals $I, J \subseteq R$ is given by $I J:=(\{u v: u \in I, v \in J\})$. Given the nonprincipal ideal $A=(2)+(1+\sqrt{-5})=(2,1+\sqrt{-5}) \subseteq \mathbb{Z}[\sqrt{-5}]$ and its conjugate $\bar{A}=(2,1-\sqrt{-5})$, prove that $A \bar{A}=(2)$ (which is principal).

Proof. First note that $2 \in A \bar{A}$ because $2=6-4=(1+\sqrt{-5})(1-\sqrt{-5})-2 \cdot 2$. Since $A \bar{A}$ is an ideal this implies $(2) \subseteq A \bar{A}$. Conversely, note that the general element of $A \bar{A}$ look like

$$
\begin{aligned}
(2 a+(1+\sqrt{-5}) b)(2 c+(1-\sqrt{-5}) d) & =4 a c+2(1-\sqrt{-5}) a d+2(1+\sqrt{-5}) b c+6 b d \\
& =2[(2 a c+a d+b c+3 b d)+(b c-a d) \sqrt{-5}] .
\end{aligned}
$$

Since this is divisible by 2 in $\mathbb{Z}[\sqrt{-5}]$ we get $A \bar{A} \subseteq(2)$.
[It's a general fact that for any ideal $I \subseteq \mathbb{Z}[\sqrt{-5}]$ we have $I \bar{I}=(n)$ for some $n \in \mathbb{Z}$ and this is exactly what's needed to prove that $\mathbb{Z}[\sqrt{-5}]$ has unique factorization of ideals.]

Problems on Polynomials

3. Consider the ring of polynomials $R[x]$ with coefficients in an integral domain R.
(a) Prove that $R[x]$ is an integral domain.
(b) Prove that for all $f, g \in R[x]$ with $f g \neq 0$ we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. If you want the statement to remain true for $f g=0$ how should you define $\operatorname{deg}(0)$?
(c) We can identify $R \subseteq R[x]$ as the constant polynomials. Prove that $R[x]^{\times}=R^{\times}$.

Proof. Note that a polynomial in $R[x]$ is zero if and only if its leading coefficient is zero. Consider $f(x) \neq 0$ and $g(x) \neq 0$ in $R[x]$ with leading coefficients $a \neq 0$ and $b \neq 0$, respectively. Then $f(x) g(x)$ has leading coefficient $a b \neq 0$, hence $f(x) g(x) \neq 0$. We conclude that $R[x]$ is an integral domain. Next suppose that $f(x)$ and $g(x)$ have leading terms $a x^{m}$ and $b x^{n}$, respectively. Then the leading term of $f(x) g(x)$ is $a x^{m} b x^{n}=a b x^{m+n}$, which is nonzero since $a, b \neq 0$. We conclude that $\operatorname{deg}(f g)=m+n=\operatorname{deg}(f)+\operatorname{deg}(g)$. What if $f g=0$? Without loss of generality this implies that $f=0$. How could we define $\operatorname{deg}(0)$ so that the equation $\operatorname{deg}(0)=\operatorname{deg}(0)+\operatorname{deg}(g)$ is true for all g ? Answer: $\operatorname{deg}(0)=-\infty$. Or you could just avoid defining $\operatorname{deg}(0)$ at all. Finally, we will show that $R[x]^{\times}=R^{\times}$. First note that $R^{\times} \subseteq R[x]^{\times}$since if $a b=1$ in R, then $a b=1$ in $R[x]$ also. Conversely, suppose that $f \in R[x]^{\times}$so there exists $g \in R[x]$ with $f g=1$. Applying the degree map gives $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(1)=0$. Since $\operatorname{deg}(f), \operatorname{deg}(g)$ are non-negative integers this implies $\operatorname{deg}(f)=\operatorname{deg}(g)=0$. In other words, $f, g \in R^{\times}$. Hence $R[x]^{\times} \subseteq R^{\times}$.
4. If R is not an integral domain then $(R[x])^{\times}$will be bigger than R^{\times}. In particular, if $a \in R$ is nilpotent (say $a^{n}=0$), prove that $1+a x \in R[x]$ is a unit. [Hint: You can write $1=1+a^{n} x^{n}$.] Find the inverse of $1+3 x$ in $\mathbb{Z} /(27)[x]$.
Proof. We have $1=1+a^{n} x^{n}=(1+a x)\left(1-a x+a^{2} x^{2}-\cdots+(-1)^{n-1} a^{n-1} x^{n-1}\right)$. Hence the inverse of $1+3 x$ in $\mathbb{Z} /(27)[x]$ is $1-3 x+9 x^{2}$. (Check: $(1+3 x)\left(1-3 x+9 x^{2}\right)=1+27 x^{3}=1$.)
[The general theorem says that $f(x)=\sum a_{i} x^{i} \in R[x]$ is a unit if and only if $a_{0} \in R^{\times}$and a_{i} is nilpotent for all $i \geq 1$. Give it a try if you want.]

Problems on Fields

5. We say that an ideal $I \subseteq R$ is maximal if there does not exist an ideal $J \subseteq R$ with $I<J<R$. Prove that $I \subseteq R$ is maximal if and only if R / I is a field. Describe the maximal ideals of a PID.

Proof. I will give two proofs. First the fancy proof. By the correspondence theorem there is a $1-1$ correspondence between nontrivial ideals of R / I and ideals strictly between I and R. Note that R / I is a field if and only if it has no nontrivial ideals (proved on the first homework) if and only if there are no ideals strictly between I and R if and only if I is maximal.

Now an explicit proof. Let $I \subseteq R$ be maximal and consider an element $a+I \in R / I$. If $a+I \neq 0+I$ then $a \notin I$. But then the ideal $(a)+I$ is strictly larger than I. By maximality of I this implies that $(a)+I=R$. Since $1 \in R=(a)+I$, there exist $b \in R$ and $u \in I$ such that $1=a b+u$. But then $(a+I)(b+I)=a b+I=1-u+I=1+I$. Hence $(a+I)^{-1}=(b+I)$ and R / I is a field.

Conversely, suppose that R / I is a field and let $\varphi: R \rightarrow R / I$ be the natural map. If $J \subseteq R$ is an ideal with $I<J$ then $\varphi(J)$ is a nonzero ideal of R / I. (Proof: Consider $(u+I),(v+I) \in \varphi(J)$ and $(a+I) \in R / I$. Then we have $(u+I)+(a+I)(v+I)=(u+a v)+I \in \varphi(J)$ because $u+a v \in J$. The ideal $\varphi(J)$ is nonzero because it contains $\varphi(a)$ for some $a \in J$ but not in $I=\operatorname{ker} \varphi$.) But you showed on the first homework that the only nonzero ideal of a field is the field itself, hence
$\varphi(J)=R / I$. Now since $1+I \in \varphi(J)=R / I$, there exists $a \in J$ such that $\varphi(a)=1+I$, and then $\varphi(1-a)=\varphi(1)-\varphi(a)=(1+I)-(1+I)=0+I$ implies that $1-a \in \operatorname{ker} \varphi=I<J$. Since J is an ideal this implies $1=a+(1-a) \in J$ and hence $J=R$ (you showed on the first homework that any ideal containing a unit is the full ring). We conclude that I is maximal.

In a PID, note that $(a) \subseteq R$ is maximal if and only if the element $a \in R$ is irreducible. And since a PID is a domain, this happens if and only if $a \in R$ is prime.
6. Let $\gamma \in \mathbb{C}$ be a root of the polynomial $f(x)=x^{3}-2$.
(a) Prove that $f(x)$ is irreducible over \mathbb{Q} and hence $\mathbb{Q}[x] /(f) \approx \mathbb{Q}(\gamma)$ is a field.
(b) Compute the inverse of $1+2 \gamma+\gamma^{2}$ in $\mathbb{Q}(\gamma)$. [Hint: Apply the Euclidean algorithm to express 1 as a linear combination of $1+2 x+x^{2}$ and $x^{3}-2$ with coefficients in $\mathbb{Q}[x]$. Plug in γ.]
Proof. If $x^{3}-2$ is reducible then it has a factor of degree 1 and by the factor theorem this implies that $x^{3}-2$ has a root in \mathbb{Q}, say $\delta^{3}-2=0$ for $\delta \in \mathbb{Q}$. Write $\delta=a / b$ with $a, b \in \mathbb{Z}$ coprime and note that $\delta^{3}=2$ implies $a^{3}=2 b^{3}$. This implies that a^{3} and hence a is even, say $a=2 k$. But then $2 b^{3}=a^{3}=8 k^{3}$ implies $b^{3}=4 k^{3}$, hence b is even. This contradicts our assumption that a, b are coprime. Hence $x^{3}-2$ is irreducible over \mathbb{Q}. By Problem 5 this implies that $\mathbb{Q}[x] /\left(x^{3}-2\right) \approx \mathbb{Q}(\gamma)$ is a field.

To compute the inverse of $1+2 \gamma+\gamma^{2} \in \mathbb{Q}(\gamma)$ we will express 1 as a combination of $x^{2}+x+1$ and $x^{3}-2$ in $\mathbb{Q}[x]$. First divide $x^{3}-2$ by $x^{2}+2 x+1$ to get $\left(x^{3}-2\right)=(x-2)\left(x^{2}+2 x+1\right)+3 x$. Then divide $x^{2}+2 x+1$ by $3 x$ to get $\left(x^{2}+2 x+1\right)=(x / 3+2 / 3)(3 x)+1$. Finally, back-substitute:

$$
\begin{aligned}
1 & =\left(x^{2}+2 x+1\right)-(x / 3+2 / 3)(3 x) \\
& =\left(x^{2}+2 x+1\right)-(x / 3+2 / 3)\left[\left(x^{3}-2\right)-(x-2)\left(x^{2}+2 x+1\right)\right] \\
& =[1+(x / 3+2 / 3)(x-2)]\left(x^{2}+2 x+1\right)-(x / 3+2 / 3)\left(x^{3}-2\right) \\
& =\left(x^{2} / 3-1 / 3\right)\left(x^{2}+2 x+1\right)-(x / 3+2 / 3)\left(x^{3}-2\right) .
\end{aligned}
$$

Plugging in $x \mapsto \gamma$ gives $1=\left(\gamma^{2} / 3-1 / 3\right)\left(\gamma^{2}+2 \gamma+1\right)$, hence $\left(1+2 \gamma+\gamma^{2}\right)^{-1}=\gamma^{2} / 3-1 / 3$.
One could follow exactly the same procedure to compute $\left(a+b \gamma+c \gamma^{2}\right)^{-1}$ for general $a, b, c \in \mathbb{Q}$. I did this on my computer and got

$$
\left(a+b \gamma+c \gamma^{2}\right)^{-1}=\left(\frac{a^{2}-2 b c}{\Delta}\right)+\left(\frac{2 c^{2}-a b}{\Delta}\right) \gamma+\left(\frac{b^{2}-a c}{\Delta}\right) \gamma^{2},
$$

where $\Delta=a^{3}+2 b^{3}+4 c^{3}-6 a b c$. Check that $(a, b, c)=(1,2,1)$ gives the right answer. (If you want to do it by hand, it's probably easier to expand $(a+b \gamma+c \gamma)\left(X+Y \gamma+Z \gamma^{2}\right)=1+0 \gamma+0 \gamma^{2}$ and compare coefficients of γ to get a 3×3 linear system in X, Y, Z. Then solve using Gaussian elimination.)
[Note that the three (complex) roots of $x^{3}-2$ are indistinguishable over \mathbb{Q}, so I chose not to say $\gamma=\sqrt[3]{2} \in \mathbb{R}$. The field \mathbb{Q} doesn't really know what γ "is"; it only knows that $\gamma^{3}-2=0$.]

