Problems on Number Theory

The first problem substitutes for the proof of FLT for exponent 3 , which was too hard.

1. Prove that the equation $y^{3}=x^{2}+2$ has exactly two integer solutions: $(x, y)=(\pm 5,3)$.
(a) If $y^{3}=x^{2}+2$ is an integer solution, show that x is odd. [Hint: Reduce mod 4.]
(b) If x is odd, show that $x+\sqrt{-2}$ and $x-\sqrt{-2}$ are coprime in $\mathbb{Z}[\sqrt{-2}]$. [Hint: If α is a common divisor then α divides the sum $2 x$ and the difference $2 \sqrt{-2}$. Taking norms gives $N(\alpha) \mid 4 x^{2}$ and $N(\alpha) \mid 8$, hence $N(\alpha) \mid 4$. Show that α must be ± 1.]
(c) If $y^{3}=x^{2}+2$ is an integer solution then we have $y^{3}=(x+\sqrt{-2})(x-\sqrt{-2})$. Use part (b) and the fact that $\mathbb{Z}[\sqrt{-2}]$ is a UFD (proved on the last homework) to conclude that $x+\sqrt{-2}=(a+b \sqrt{-2})^{3}$ for some $a, b \in \mathbb{Z}$. [Hint: The units of $\mathbb{Z}[\sqrt{-2}]$ are ± 1.]
(d) If $y^{3}=x^{2}+2$ and $(x+\sqrt{-2})=(a+b \sqrt{-2})^{3}$, show that $(a, b)=(\pm 1,1)$, hence $(x, y)=(\pm 5,3)$.
2. Recall that the product of ideals $I, J \subseteq R$ is given by $I J:=(\{u v: u \in I, v \in J\})$. Given the nonprincipal ideal $A=(2)+(1+\sqrt{-5})=\overline{(2}, 1+\sqrt{-5}) \subseteq \mathbb{Z}[\sqrt{-5}]$ and its conjugate $\bar{A}=(2,1-\sqrt{-5})$, prove that $A \bar{A}=(2)$ (which is principal).

Problems on Polynomials

3. Consider the ring of polynomials $R[x]$ with coefficients in an integral domain R.
(a) Prove that $R[x]$ is an integral domain.
(b) Prove that for all $f, g \in R[x]$ with $f g \neq 0$ we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. If you want the statement to remain true for $f g=0$ how should you define $\operatorname{deg}(0)$?
(c) We can identify $R \subseteq R[x]$ as the constant polynomials. Prove that $(R[x])^{\times}=R^{\times}$.
4. If R is not an integral domain then $(R[x])^{\times}$will be bigger than R^{\times}. In particular, if $a \in R$ is nilpotent (say $a^{n}=0$), prove that $1+a x \in R[x]$ is a unit. [Hint: You can write $1=1+a^{n} x^{n}$.] Find the inverse of $1+3 x$ in $\mathbb{Z} /(27)[x]$.
[The general theorem says that $f(x)=\sum a_{i} x^{i} \in R[x]$ is a unit if and only if $a_{0} \in R^{\times}$and a_{i} is nilpotent for all $i \geq 1$. Give it a try if you want.]

Problems on Fields

5. We say that an ideal $I \subseteq R$ is maximal if there does not exist an ideal $J \subseteq R$ with $I<J<R$. Prove that $I \subseteq R$ is maximal if and only if R / I is a field. Describe the maximal ideals of a PID.
6. Let $\gamma \in \mathbb{C}$ be a root of the polynomial $f(x)=x^{3}-2$.
(a) Prove that $f(x)$ is irreducible over \mathbb{Q} and hence $\mathbb{Q}[x] /(f) \approx \mathbb{Q}(\gamma)$ is a field.
(b) Compute the inverse of $1+2 \gamma+\gamma^{2}$ in $\mathbb{Q}(\gamma)$. [Hint: Apply the Euclidean algorithm to express 1 as a linear combination of $1+2 x+x^{2}$ and $x^{3}-2$ with coefficients in $\mathbb{Q}[x]$. Plug in γ.]
[Note that the three (complex) roots of $x^{3}-2$ are indistinguishable over \mathbb{Q}, so I chose not to say $\gamma=\sqrt[3]{2} \in \mathbb{R}$. The field \mathbb{Q} doesn't really know what γ "is". It only knows that $\gamma^{3}-2=0$.]
