Problems on General Rings

1. We say that a general ring R is (right) Artinian if every descending chain of (right) ideals terminates. That is, given ideals $R \supseteq I_{1} \supseteq I_{2} \supseteq \cdots$ there exists some $k \geq 1$ such that $I_{k}=I_{k+1}=$ \cdots. Prove that $a b=1$ implies $b a=1$ in an Artinian ring. [Hint: Consider the descending chain of right ideals $R \supseteq b R \supseteq b^{2} R \supseteq \cdots$ (I don't use the notation $\left(b^{2}\right)$ since R is not commutative). Show that there exists some $c \in R$ with $b^{k}=b^{k+1} c$.]

Proof. Suppose that $a b=1$ in a (right) Artinian ring R and consider the descending chain of right ideals $R \supseteq b R \supseteq b^{2} R \supseteq \cdots$. Since R is Artinian there must exist k such that $b^{k} R=b^{k+1} R$. Then since $b^{k} \in b^{k} R=b^{k+1} R$ there must exist $c \in R$ such that $b^{k}=b^{k+1} c$. Now multiply on the left by a^{k} to obtain $1=a^{k} b^{k}=a^{k} b^{k+1} c=b c$. Finally, note that

$$
a=a 1=a(b c)=(a b) c=1 c=c .
$$

We conclude that $1=b c=b a$.

Problems on Integral Domains

2. Let R be an integral domain. We say that $a, b \in R$ are associates if $b=u a$ where u is a unit. Prove that a and b are associates if and only if $(a)=(b)$.

Proof. We may assume that $a b \neq 0$ otherwise there is nothing to do.
So suppose that $a=u b$, where u is a unit. Since a is a multiple of b we have $a \in(b)$, from which it follows that $(a) \subseteq(b)$. Similarly, since $b=u^{-1} a$ we conclude that $(b) \subseteq(a)$. Hence $(a)=(b)$.

Conersely, suppose that $(a)=(b)$. Since $a \in(b)$ and $b \in(a)$ we have $a=u b$ and $b=v a$ for some $u, v \in R$. Combining the two equations gives $a=u b=u v a$, and then $a(1-u v)=0$. Finally, using the fact that R is an integral domain we get $1=u v$. Hence a, b are associates.
3. We say that a is a proper divisor of b if $b=a q$ and neither a nor q is a unit. Prove that a is a proper divisor of b if and only if $(b)<(a)<(1)$ - where " $<$ " means strict containment of ideals.

Proof. Note that a is a divisor of b if and only if $(b) \subseteq(a) \subseteq(1)$. By Problem 2.2 the first inequality is strict if and only if a is not associate to b. By Problems 2.2 and 1.2 (from the first homework), the second inequality is strict if and only if a is not a unit. Hence a is a proper divisor of b if and only if $(b)<(a)<(1)$; i.e. both inequalities are strict.

It's good to have alternate definitions for important concepts. The next two problems show that "integral domain" equals "subring of a field".
4. Let R be a subring of a field (i.e. suppose there exists a field \mathbb{F} and an injective homomorphism $\iota: R \rightarrow \mathbb{F})$. Prove that R is an integral domain.

Proof. Let $a, b \in R$ and suppose that $a b=0$. Now map this equation into the field to get $\iota(a) \iota(b)=$ $\iota(0)=0$. If $\iota(a)=0$ then by injectivity we have $a=0$, and we are done. Otherwise, since \mathbb{F} is a field, we may divide by $\iota(a)$ to get $\iota(b)=\iota(a)^{-1} \cdot 0=0$. Then injectivity implies $b=0$.
5. Let R be an integral domain. Put an equivalence relation on the set R^{2} of ordered pairs by saying $(a, b) \sim(c, d)$ if and only if $a d=b c$, and let $[(a, b)]$ denote the \sim-class of (a, b). Now define the field of fractions of R,

$$
\operatorname{Frac}(R):=\{[(a, b)]: b \neq 0\},
$$

with product $[(a, b)] \times[(c, d)]:=[(a c, b d)]$ and $\operatorname{sum}[(a, b)]+[(c, d)]:=[(a d+b c, b d)]$.
(a) Show that \times and + are well-defined on equivalence classes. (It follows that $\operatorname{Frac}(R)$ is a field, but you don't need to verify the boring details.)
(b) Show that the map $\iota(a):=[(a, 1)]$ is an injective homomorphism $\iota: R \rightarrow \operatorname{Frac}(R)$.
[Hint: A better name for $[(a, b)]$ might be a / b. Look in the book.]
Proof. To prove (a), suppose that $[(a, b)]=[(A, B)]$ (i.e. $a B=A b$) and $[(c, d)]=[(C, D)]$ (i.e. $c D=C d)$. Note that multiplication is well-defined, i.e.

$$
[(a, b)] \times[(c, d)]=[(a c, b d)]=[(A C, B D)]=[(A, B)] \times[(C, D)]
$$

because $(a c)(B D)=(a B)(c D)=(A b)(C d)=(A C)(b d)$. Note that addition is well-defined, i.e.

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]=[(A D+B C, B D)]=[(A, B)]+[(C, D)],
$$

because

$$
\begin{aligned}
(a d+b c)(B D) & =(a d)(B D)+(b c)(B D) \\
& =(a B)(d D)+(b B)(c D) \\
& =(A b)(d D)+(b B)(C d) \\
& =(A D)(b d)+(B C)(b d) \\
& =(A D+B C)(b d) .
\end{aligned}
$$

To prove (b) we first show that ι is a homomorphism. Given $a, b \in R$ we have

$$
\iota(a)+\iota(b)=[(a, 1)]+[(b, 1)]=[(a+b, 1)]=\iota(a+b)
$$

and

$$
\iota(a) \times \iota(b)=[(a, 1)] \times[(b, 1)]=[(a b, 1)]=\iota(a b) .
$$

Note that $[(1,1)]$ is the multiplicative identity for \mathbb{F} and $\iota(1)=[(1,1)]$, as desired. Finally, we need to show that ι is injective. So suppose that $\iota(a)=[(a, 1)]=[(b, 1)]=\iota(b)$. This implies that $(a, 1) \sim(b, 1)$, or $a=a 1=1 b=b$.

Problems on Subrings of \mathbb{C}

6. Show that the subring $\mathbb{Z}[\sqrt{-2}]:=\{a+b \sqrt{-2}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ with the norm function $N(a+$ $b \sqrt{-2}):=a^{2}+2 b^{2}$ is a Euclidean domain. [Hint: The principal ideal $(0) \neq(\beta) \subseteq \mathbb{Z}[\sqrt{-2}]$ is a grid of rectangles with side lengths $|\beta|$ and $\sqrt{2}|\beta|$. Recall the proof for $\mathbb{Z}[\sqrt{-1}]$.]
Proof. Given nonzero $\beta \in \mathbb{Z}[\sqrt{-2}]$, note that the principal ideal (β) is a grid of rectangles with side lengths $|\beta|$ and $\sqrt{2}|\beta|$. To see this, note that (β) is just β applied to every element of the lattice (1) $=\mathbb{Z}[\sqrt{-2}]$. Multiplication by the complex number β is geometrically a rotation (by some angle) combined with a dilation by $|\beta|$.

To divide $\alpha \in \mathbb{Z}[\sqrt{-2}]$ by β we will consider α relative to the principal ideal $(\beta) \neq(0)$, and choose $\mu \in \mathbb{Z}[\sqrt{-2}]$ such that $|\alpha-\mu \beta|$ is minimal (i.e. $\mu \beta$ is an element of the lattice (β) that is closest to α; possbly not unique). Note that α will occur inside or on the boundary of some $|\beta|$ by $\sqrt{2}|\beta|$ rectangle.

Note that the distance $|\alpha-\mu \beta|$ is less than or equal to half of the diagonal of the rectangle, i.e. $|\alpha-\mu \beta| \leq(\sqrt{3} / 2)|\beta|<|\beta|$. Using the norm function $N(a+b \sqrt{-2})=|a+b \sqrt{-2}|^{2}=a^{2}+2 b^{2}$, we can rephrase this as $N(\alpha-\mu \beta)<N(\beta)$.

In summary: Given $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$ with $\beta \neq 0$, there exist μ and $\rho=\alpha-\mu \beta$ such that

- $\alpha=\mu \beta+\rho$,
- $\rho=0$ or $N(\rho)<N(\beta)$.

We conclude that $\mathbb{Z}[\sqrt{-2}]$ with norm function N is a Euclidean domain.
7. Consider the subring $\mathbb{Z}[\sqrt{-3}] \subseteq \mathbb{C}$ with norm $N(a+b \sqrt{-3}):=a^{2}+3 b^{2}$.
(a) Show that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$.
(b) Show that $u \in \mathbb{Z}[\sqrt{-3}]$ is a unit if and only if $N(u)=1$.
(c) Show that $N(\alpha)=4$ implies that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is irreducible.
(d) Show that $4 \in \mathbb{Z}[\sqrt{-3}]$ can be factored into irreducibles in two distinct ways.

Proof. To show (a), note that $N(a+b \sqrt{-3})=|a+b \sqrt{-3}|^{2}=|a+i b \sqrt{3}|^{2}=a^{2}+3 b^{2}$. Thus we can obtain the multiplicativity of N from the multiplicativity of absolute value on \mathbb{C} :

$$
N(\alpha \beta)=|\alpha \beta|^{2}=(|\alpha||\beta|)^{2}=|\alpha|^{2}|\beta|^{2}=N(\alpha) N(\beta) .
$$

To show (b), suppose that $u \in \mathbb{Z}[\sqrt{-3}]$ is a unit; i.e. suppose that there exists $v \in \mathbb{Z}[\sqrt{-3}]$ with $u v=1$. Applying N gives $N(u) N(v)=N(1)=1$. Then since $N(u), N(v)$ are positive integers we get $N(u)=1$. Conversely, suppose that $u=a+b \sqrt{-3}$ satisfies $N(u)=a^{2}+3 b^{2}=1$. This implies that $(a, b)=(1,0)($ i.e. $u=1)$ or $(a, b)=(-1,0)$ (i.e. $u=-1$). In either case u is a unit. As a corollary of this proof, we have also shown that $\mathbb{Z}[\sqrt{-3}]^{\times}=\{ \pm 1\}$.

To show (c), suppose for contradiction that $N(\alpha)=4$ and that α has a nontrivial factorization $\alpha=\beta \gamma$. Since $N(\beta) N(\gamma)=N(\alpha)=4$ and since β, γ are not units, we conclude from part (b) that $N(\beta)=N(\gamma)=2$. However, $\mathbb{Z}[\sqrt{-3}]$ contains no element of norm 2 because the equation $a^{2}+3 b^{2}=2$ has no integer solution. Contradiction.

To show (d), first note that

$$
4=2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3}) .
$$

Since $2,1+\sqrt{-3}$, and $1-\sqrt{-3}$ all have norm 4 , they are irreducible by part (c). Then since the units of $\mathbb{Z}[\sqrt{-3}]$ are $\{ \pm 1\}$ we observe that 2 is not associate to either of $1 \pm \sqrt{-3}$. Thus we have obtained two distinct irreducible factorizations of 4 .

We conclude that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, hence it's not a PID, hence it's not Euclidean. If you try to prove that $\mathbb{Z}[\sqrt{-3}]$ is Euclidean using the argument from Problem 5, you will see that the center point of a $|\beta| \times \sqrt{3}|\beta|$ rectangle is exactly $|\beta|$ away from the closest vertex. That's too far away.

