
Math 562 Spring 2012
Homework 2 Drew Armstrong

Problems on General Rings

1. We say that a general ring R is (right) Artinian if every descending chain of (right) ideals
terminates. That is, given ideals R ⊇ I1 ⊇ I2 ⊇ · · · there exists some k ≥ 1 such that Ik = Ik+1 =
· · · . Prove that ab = 1 implies ba = 1 in an Artinian ring. [Hint: Consider the descending chain of
right ideals R ⊇ bR ⊇ b2R ⊇ · · · (I don’t use the notation (b2) since R is not commutative). Show
that there exists some c ∈ R with bk = bk+1c.]

Proof. Suppose that ab = 1 in a (right) Artinian ring R and consider the descending chain of right
ideals R ⊇ bR ⊇ b2R ⊇ · · · . Since R is Artinian there must exist k such that bkR = bk+1R. Then
since bk ∈ bkR = bk+1R there must exist c ∈ R such that bk = bk+1c. Now multiply on the left by
ak to obtain 1 = akbk = akbk+1c = bc. Finally, note that

a = a1 = a(bc) = (ab)c = 1c = c.

We conclude that 1 = bc = ba. �

Problems on Integral Domains

2. Let R be an integral domain. We say that a, b ∈ R are associates if b = ua where u is a unit.
Prove that a and b are associates if and only if (a) = (b).

Proof. We may assume that ab 6= 0 otherwise there is nothing to do.
So suppose that a = ub, where u is a unit. Since a is a multiple of b we have a ∈ (b), from which

it follows that (a) ⊆ (b). Similarly, since b = u−1a we conclude that (b) ⊆ (a). Hence (a) = (b).
Conersely, suppose that (a) = (b). Since a ∈ (b) and b ∈ (a) we have a = ub and b = va for some

u, v ∈ R. Combining the two equations gives a = ub = uva, and then a(1− uv) = 0. Finally, using
the fact that R is an integral domain we get 1 = uv. Hence a, b are associates. �

3. We say that a is a proper divisor of b if b = aq and neither a nor q is a unit. Prove that a is a
proper divisor of b if and only if (b) < (a) < (1) — where “ < ” means strict containment of ideals.

Proof. Note that a is a divisor of b if and only if (b) ⊆ (a) ⊆ (1). By Problem 2.2 the first inequality
is strict if and only if a is not associate to b. By Problems 2.2 and 1.2 (from the first homework),
the second inequality is strict if and only if a is not a unit. Hence a is a proper divisor of b if and
only if (b) < (a) < (1); i.e. both inequalities are strict. �

It’s good to have alternate definitions for important concepts. The next two problems show that “integral
domain” equals “subring of a field”.

4. Let R be a subring of a field (i.e. suppose there exists a field F and an injective homomorphism
ι : R→ F). Prove that R is an integral domain.

Proof. Let a, b ∈ R and suppose that ab = 0. Now map this equation into the field to get ι(a)ι(b) =
ι(0) = 0. If ι(a) = 0 then by injectivity we have a = 0, and we are done. Otherwise, since F is a
field, we may divide by ι(a) to get ι(b) = ι(a)−1 · 0 = 0. Then injectivity implies b = 0. �



5. Let R be an integral domain. Put an equivalence relation on the set R2 of ordered pairs by
saying (a, b) ∼ (c, d) if and only if ad = bc, and let [(a, b)] denote the ∼-class of (a, b). Now define
the field of fractions of R,

Frac(R) := {[(a, b)] : b 6= 0},
with product [(a, b)]× [(c, d)] := [(ac, bd)] and sum [(a, b)] + [(c, d)] := [(ad+ bc, bd)].

(a) Show that × and + are well-defined on equivalence classes. (It follows that Frac(R) is a field,
but you don’t need to verify the boring details.)

(b) Show that the map ι(a) := [(a, 1)] is an injective homomorphism ι : R→ Frac(R).
[Hint: A better name for [(a, b)] might be a/b. Look in the book.]

Proof. To prove (a), suppose that [(a, b)] = [(A,B)] (i.e. aB = Ab) and [(c, d)] = [(C,D)] (i.e.
cD = Cd). Note that multiplication is well-defined, i.e.

[(a, b)]× [(c, d)] = [(ac, bd)] = [(AC,BD)] = [(A,B)]× [(C,D)],

because (ac)(BD) = (aB)(cD) = (Ab)(Cd) = (AC)(bd). Note that addition is well-defined, i.e.

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] = [(AD +BC,BD)] = [(A,B)] + [(C,D)],

because

(ad+ bc)(BD) = (ad)(BD) + (bc)(BD)

= (aB)(dD) + (bB)(cD)

= (Ab)(dD) + (bB)(Cd)

= (AD)(bd) + (BC)(bd)

= (AD +BC)(bd).

To prove (b) we first show that ι is a homomorphism. Given a, b ∈ R we have

ι(a) + ι(b) = [(a, 1)] + [(b, 1)] = [(a+ b, 1)] = ι(a+ b)

and
ι(a)× ι(b) = [(a, 1)]× [(b, 1)] = [(ab, 1)] = ι(ab).

Note that [(1, 1)] is the multiplicative identity for F and ι(1) = [(1, 1)], as desired. Finally, we
need to show that ι is injective. So suppose that ι(a) = [(a, 1)] = [(b, 1)] = ι(b). This implies that
(a, 1) ∼ (b, 1), or a = a1 = 1b = b. �

Problems on Subrings of C

6. Show that the subring Z[
√
−2] := {a + b

√
−2 : a, b ∈ Z} ⊆ C with the norm function N(a +

b
√
−2) := a2 + 2b2 is a Euclidean domain. [Hint: The principal ideal (0) 6= (β) ⊆ Z[

√
−2] is a grid

of rectangles with side lengths |β| and
√

2 |β|. Recall the proof for Z[
√
−1].]

Proof. Given nonzero β ∈ Z[
√
−2], note that the principal ideal (β) is a grid of rectangles with side

lengths |β| and
√

2 |β|. To see this, note that (β) is just β applied to every element of the lattice
(1) = Z[

√
−2]. Multiplication by the complex number β is geometrically a rotation (by some angle)

combined with a dilation by |β|.
To divide α ∈ Z[

√
−2] by β we will consider α relative to the principal ideal (β) 6= (0), and choose

µ ∈ Z[
√
−2] such that |α − µβ| is minimal (i.e. µβ is an element of the lattice (β) that is closest

to α; possbly not unique). Note that α will occur inside or on the boundary of some |β| by
√

2 |β|
rectangle.



Note that the distance |α − µβ| is less than or equal to half of the diagonal of the rectangle, i.e.
|α − µβ| ≤ (

√
3/2) |β| < |β|. Using the norm function N(a+ b

√
−2) = |a+ b

√
−2|2 = a2 + 2b2, we

can rephrase this as N(α− µβ) < N(β).
In summary: Given α, β ∈ Z[

√
−2] with β 6= 0, there exist µ and ρ = α− µβ such that

• α = µβ + ρ,
• ρ = 0 or N(ρ) < N(β).

We conclude that Z[
√
−2] with norm function N is a Euclidean domain. �

7. Consider the subring Z[
√
−3] ⊆ C with norm N(a+ b

√
−3) := a2 + 3b2.

(a) Show that N(αβ) = N(α)N(β) for all α, β ∈ Z[
√
−3].

(b) Show that u ∈ Z[
√
−3] is a unit if and only if N(u) = 1.

(c) Show that N(α) = 4 implies that α ∈ Z[
√
−3] is irreducible.

(d) Show that 4 ∈ Z[
√
−3] can be factored into irreducibles in two distinct ways.

Proof. To show (a), note that N(a+ b
√
−3) = |a+ b

√
−3|2 = |a+ ib

√
3|2 = a2 + 3b2. Thus we can

obtain the multiplicativity of N from the multiplicativity of absolute value on C:

N(αβ) = |αβ|2 = (|α| |β|)2 = |α|2|β|2 = N(α)N(β).

To show (b), suppose that u ∈ Z[
√
−3] is a unit; i.e. suppose that there exists v ∈ Z[

√
−3] with

uv = 1. Applying N gives N(u)N(v) = N(1) = 1. Then since N(u), N(v) are positive integers we
get N(u) = 1. Conversely, suppose that u = a+ b

√
−3 satisfies N(u) = a2 + 3b2 = 1. This implies

that (a, b) = (1, 0) (i.e. u = 1) or (a, b) = (−1, 0) (i.e. u = −1). In either case u is a unit. As a
corollary of this proof, we have also shown that Z[

√
−3]× = {±1}.

To show (c), suppose for contradiction that N(α) = 4 and that α has a nontrivial factorization
α = βγ. Since N(β)N(γ) = N(α) = 4 and since β, γ are not units, we conclude from part (b)
that N(β) = N(γ) = 2. However, Z[

√
−3] contains no element of norm 2 because the equation

a2 + 3b2 = 2 has no integer solution. Contradiction.
To show (d), first note that

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3).

Since 2, 1 +
√
−3, and 1 −

√
−3 all have norm 4, they are irreducible by part (c). Then since the

units of Z[
√
−3] are {±1} we observe that 2 is not associate to either of 1 ±

√
−3. Thus we have

obtained two distinct irreducible factorizations of 4. �

We conclude that Z[
√
−3] is not a UFD, hence it’s not a PID, hence it’s not Euclidean. If you try

to prove that Z[
√
−3] is Euclidean using the argument from Problem 5, you will see that the center

point of a |β| ×
√

3 |β| rectangle is exactly |β| away from the closest vertex. That’s too far away.


